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RECOVERING A TIME- AND SPACE-DEPENDENT KERNEL IN
A HYPERBOLIC INTEGRO-DIFFERENTIAL EQUATION FROM

A RESTRICTED DIRICHLET-TO-NEUMANN OPERATOR

JAAN JANNO

Abstract. We prove that a space- and time-dependent kernel occurring in

a hyperbolic integro-differential equation in three space dimensions can be

uniquely reconstructed from the restriction of the Dirichlet-to-Neumann oper-
ator of the equation into a set of Dirichlet data of the form of products of a

fixed time-dependent coefficient times arbitrary space-dependent functions.

1. Introduction

Motion of viscoelastic materials is governed by hyperbolic integro-differential
equations involving time-dependent (and in the case of inhomogeneity also space-
dependent) kernels [22, 23]. These kernels, which describe the relaxation of the
material, are often unknown or scarcely known in practice. To determine these
kernels, inverse problems are used.

Inverse problems for space-independent kernels in hyperbolic equations are well-
studied (see e.g. [4, 5, 6, 7, 10, 11, 15, 16, 19, 27]). Some results are obtained in
the case of space-dependent kernels, too. For instance, in [18, 19] the identification
of kernels depending on partial space variables or satisfying certain spherical sym-
metry conditions, was studied. The papers [13, 16, 17] consider the determination
of kernels representable as finite sums of products of known space-dependent and
unknown time-dependent functions.

In this paper we consider a hyperbolic integro-differential equation in a three-
dimensional domain, which contains a time- and space-dependent kernel. We do
not assume any special form of this kernel and study an inverse problem to recover
the kernel from the Dirichlet-to-Neumann operator (DNO) of the equation.

A global uniqueness result for an inverse problem involving DNO of an elliptic
equation was first time proved in the paper [24]. Later on this result was extended
to several identification problems of inhomogeneous media, in particular some prob-
lems to identify space- and time-dependent coefficients of evolutionary equations
(see, e.g., [8, 9, 25]). In [3] a problem to identify a kernel contained in a lower or-
der term of a hyperbolic equation was studied. In the mentioned papers the time-
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and space-dependent unknowns are recovered by means of the full DNO, i.e., DNO
given in all space- and time-dependent Dirichlet data.

On the other hand, inverse problems using full DNO are highly over-determined.
In this paper we will show how it is possible to reduce the amount of information
related to DNO in a case of a special problem of such kind. Namely, we will prove
that the identification of the kernel in the above-mentioned hyperbolic integro-
differential equation does not require the full DNO. The kernel can be uniquely re-
covered from a restriction of DNO into a set of Dirichlet data which contain products
of a fixed time-dependent coefficient times arbitrary space-dependent functions. A
similar result for a parabolic problem was earlier proved by the author in [12].

2. Problem formulation and results

Let us start by introducing some notation. Given a Banach space X, σ ∈ R,
k ∈ {0, 1, 2, . . . } and p ∈ [1,∞] we define the following sets of abstract functions
with values in X:

W k,p
σ ((0,∞);X) =

{
z : (0,∞) → X : e−σ·z(·) ∈W k,p((0,∞);X)

}
,

Ck
σ([0,∞);X) =

{
z : [0,∞) → X : e−σ·z(·) ∈ Ck([0,∞);X)

}
.

Here W k,p((0,∞);X) is the abstract Sobolev space and Ck([0,∞);X) consists of
abstract functions bounded and continuous in [0,∞) together with their derivatives
up to the order k. In case k = 0 we set Lp

σ((0,∞);X) := W 0,p
σ ((0,∞);X) and

Cσ([0,∞);X) := C0
σ([0,∞);X). Moreover, in case X = C, we use the simplified

notation W k,p
σ (0,∞) := W k,p

σ ((0,∞); C) and Ck
σ [0,∞) := Ck

σ([0,∞); C). Finally,
given k ∈ {0, 1, 2, . . . } and µ > 0, we denote by Ck,µ(Ω) the space of functions
which are Hölder-continuous of degree λ in Ω together with their derivatives up to
the order k.

Let Ω be a three-dimensional domain with a Lipschitz-boundary Γ. In case Ω
is filled by the isotropic non-homogeneous viscoelastic material, the constitutive
relations and the system of equations of motion of the material point of Ω contain
time- and space-dependent relaxation functions a(t, x) and b(t, x), which correspond
to the shear and bulk moduli, respectively (see [22, p. 122-127]). We suppose that
these functions are unknown. Unfortunately, inverse problems to determine both
a(t, x) and b(t, x) in the viscoelasticity system, are very complex. Therefore we
essentially simplify the situation taking into consideration a partially theoretical
scalar model of such kind. If the displacement field is solenoidal, then the system
of equations of motion is reduced to three independent equations of divergence type,
which can be summarized as

ρ(x)∂2
t v(t, x) =

∫ t

−∞
div [a(t− τ, x)∇∂τv(τ, x)] dτ , x ∈ Ω, t ∈ R , (2.1)

where v is an arbitrary linear combination of coordinates of the displacement and
ρ is the density. We will pose and study an inverse problem that consists in deter-
mining the kernel a(t, x) in (2.1) for t ≥ 0 and x ∈ Ω.

Let us assume v(t, x) = 0 for t ≤ 0. Then the equation (2.1) for twice differen-
tiable v(t, ·) is equivalent to the integrated equation

ρ(x)∂tv(t, x) =
∫ t

0

(t− τ)div [a(t− τ, x)∇∂τv(τ, x)] dτ , x ∈ Ω, t ∈ R . (2.2)
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We interpret the latter equation as a generalized form of (2.1) and complement it
with the initial and Dirichlet boundary conditions

v(0, x) = 0 , x ∈ Ω , v(t, x) = ψ(t, x) , x ∈ Γ, t > 0 . (2.3)

Let us associate with v the secondary variable s(t, x) =
t∫

−∞
a(t− τ, x)∇∂τv(τ, x)dτ

and denote by ν(x) the outer normal of the boundary of Ω at the point x ∈ Γ.
Given ρ, a and ψ, the solution v of the initial-boundary value problem (2.2), (2.3)
determines the normal component of s at the boundary:

h(t, x) := −ν(x) · s(t, x) =
∫ t

0

a(t− τ, x)∂ν∂tv(τ, x)dτ, x ∈ Γ, t > 0. (2.4)

The operator D, which depends on ρ and a, and maps the Dirichlet data ψ via the
solution v to the Neumann data h, is called the Dirichlet-to-Neumann operator of
the problem (2.2), (2.3).

We begin by eliminating the derivative in the equation (2.2) by the change of
variable

u(t, x) = ∂tv(t, x) ⇔ v(t, x) =
∫ t

0

u(τ, x)dτ . (2.5)

Defining ϕ(t, x) := ∂tψ(t, x), the problem (2.2), (2.3) is transformed to

ρ(x)u(t, x) =
∫ t

0

(t− τ)div [a(t− τ, x)∇u(τ, x)] dτ , x ∈ Ω, t > 0 , (2.6)

u(t, x) = ϕ(t, x) , x ∈ Γ, t > 0 . (2.7)

For the obtained problem have the following theorem which will be be proved in
section 3.

Theorem 2.1. Let

ρ ∈ L∞(Ω) , ρ(x) ≥ ρ0 > 0 , x ∈ Ω (2.8)

and
a ∈W 1,1

σ0
((0,∞);W 1,∞(Ω)) ∩W 2,1

σ0
((0,∞);L∞(Ω)) ,

a(0, x) ≥ a0 > 0 , x ∈ Ω
(2.9)

with some σ0 ∈ R. Moreover, let

ϕ ∈W 5,1
σ1

((0,∞);H3/2(Γ)) , ϕ(0, x) = ∂tϕ(0, x) = · · · = ∂4
t ϕ(0, x) ≡ 0 (2.10)

with some σ1 ∈ R.
Then there exists σa, which depends on a and satisfies the inequalities σa >

0, σa ≥ σ0, such that the problem (2.6), (2.7) has a solution u in the space
Cσu

([0,∞);H2(Ω)), where σu = max{σ1, σa}. Moreover, u(0, x) ≡ 0. The solution
is unique in the space L1

σu
((0,∞);H2(Ω)).

Due to (2.4) and (2.5) the Neumann data h has the form

h(t, x) =
∫ t

0

a(t− τ, x)∂νu(τ, x)dτ , x ∈ Γ, t > 0 . (2.11)

Theorem 2.1 with the trace theorem implies the following result.

Corollary 2.2. Under the assumptions of Theorem 2.1, h ∈ C1
σu

([0,∞);L2(Γ)).
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Let D̃ be the operator which assigns to a function ϕ the function h via the
solution u of the problem (2.6), (2.7). Observing Corollary 2.2 we see that D̃
transforms the set of functions ϕ satisfying (2.10) into the space C1

σu
([0,∞);L2(Γ)),

provided ρ and a meet the conditions (2.8) and (2.9). Moreover, Dψ = D̃∂tψ.
Therefore, the operator D transforms the space{

ψ ∈W 6,1
σ1

((0,∞);H3/2(Γ)) |ψ(0, x) = ∂tψ(0, x) = · · · = ∂5
t ψ(0, x) ≡ 0

}
into the space C1

σu
([0,∞);L2(Γ)), provided ρ and a meet the conditions (2.8) and

(2.9).
Let us choose a function f such that

f ∈W 5,1
σ1

(0,∞) , f 6= 0, Im f = 0, f(0) = f ′(0) = · · · = f IV (0) = 0 , (2.12)

where σ1 ∈ R. For given f , ρ and a satisfying (2.12), (2.8) and (2.9), respectively, let
us define the operator λa : H3/2(Γ) → C1

σu
([0,∞);L2(Γ)) by the following relation

λag := D̃(f(t)g(x)) = D
( ∫ t

0

f(τ)dτ g(x)
)
.

The main result of the paper is the following theorem, which asserts that a
is uniquely recovered by λa, in other words, by the restriction of the Dirichlet-to-
Neumann operatorD in the set of Dirichlet data of the form ψ(t, x) =

∫ t

0
f(τ)dτ g(x)

with fixed f .

Theorem 2.3. Let Γε be some neighbourhood of Γ. Assume that (2.8), (2.12)
are valid and ρ ∈ C0,µ(Γε) with some µ > 0. Furthermore, let a1 and a2 be two
functions satisfying (2.9)) and the relations

aj ∈ L1
σ0

(
(0,∞);W 2,∞(Ω) ∩ C1,µ(Γε)

)
, Im aj = 0 , j = 1, 2 . (2.13)

Then the equality λa1 = λa2 implies a1 = a2.

The proof of this theorem will be given in section 5. It uses a preliminary result
concerning the boundary identifiability proved in section 4.

3. Auxiliary results

Let X be a complex Banach space and z ∈ L1
σ((0,∞);X) with some σ ∈ R.

Then the Laplace transform of z, i.e.,

Z(p) = Lt→p(z) =
∫ ∞

0

e−ptz(t)dt (3.1)

exists in the half plane Re p > σ and is holomorphic there (see [22]).

Lemma 3.1. Let z ∈ L1
σ((0,∞);X) with some σ ∈ R. Then

‖Z(p)‖X ≤ C(z,Re p) for Re p > σ , (3.2)

where

C(z, s) =
∫ ∞

0

e−(s−σ)t
∥∥e−σtz(t)

∥∥
X
dt→ 0 as s→∞ . (3.3)

If, in addition, z ∈W k,1
σ ((0,∞);X) with some k ∈ {1, 2, . . . } then∥∥pkZ(p)−pk−1z(0)−pk−2z′(0)−· · ·− z(k−1)(0)

∥∥
X
≤ C(z(k),Re p) for Re p > σ ,

(3.4)
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which in case z(0) = z′(0) = · · · = z(k−1)(0) = 0 implies

|p|k‖Z(p)‖ ≤ C(z(k),Re p) forRe p > σ . (3.5)

The proof of the lemma above can be found in [12].

Lemma 3.2. Let Z : C → X be holomorphic for Re p > σ with some σ ∈ R and

|p|2‖Z(p)‖X ≤ c0 for Re p > σ (3.6)

with a constant c0. Then there exists a function z ∈ Cσ([0,∞);X) such that Z(p) =
Lt→p(z). Moreover, z(0) = 0.

The assertion of the lemma above follows from [22, Proposition 0.2].

Lemma 3.3. Let a satisfy (2.9)) with some σ0 ∈ R and A(p, x) = Lt→p(a(·, x)).
Then

|p|‖A(p, ·)‖W 1,∞(Ω) ≤ c1 for Re p > σ0 (3.7)

with a constant c1 and

pA(p, ·) → a(0, ·) as Re p→∞
in W 1,∞(Ω) uniformly with respect to Im p .

(3.8)

Moreover, there exists σa, satisfying the inequalities σa > 0, σa ≥ σ0, such that

|p| |A(p, x)| ≥ κ > 0 for Re p > σa , x ∈ Ω , (3.9)

Re p a(0, x)− |pa(0, x)− p2A(p, x)| ≥ κ > 0 for Re p > σa , x ∈ Ω . (3.10)

Proof. Using the estimate (3.4) for a we obtain

‖pA(p, ·)− a(0, ·)‖W 1,∞(Ω) ≤ C(∂ta,Re p) for Re p > σ0 , (3.11)

‖p2A(p, ·)− pa(0, ·)− ∂ta(0, ·)‖L∞(Ω) ≤ C(∂2
t a,Re p) for Re p > σ0 . (3.12)

In view of (3.3) and the assumption a(0, x) ≥ a0 > 0 the relation (3.11) implies
(3.7) - (3.9) and (3.12) yields (3.10). �

Lemma 3.4. Let ϕ satisfy (2.10) with some σ1 ∈ R and Φ(p, x) = Lt→p(ϕ(·, x)).
Then

|p|5‖Φ(p, ·)‖H3/2(Γ) ≤ c2 for Re p > σ1 (3.13)

with a constant c2.

The assertion of this lemma follows from (3.5) and (3.3).

4. Direct problem

The direct problem (2.6), (2.7) is formally equivalent to the following elliptic
boundary value problem derived by means of the Laplace transform:

(LAU)(p, x) ≡ −div (A(p, x)∇U(p, x)) + pρ(x)U(p, x) = 0 , x ∈ Ω , (4.1)

U(p, x) = Φ(p, x) , x ∈ Γ . (4.2)

Here p ∈ C, A(p, x) = Lt→p(a(·, x)),Φ(p, x) = Lt→p(ϕ(·, x)), and U(p, x) =
Lt→p(u(·, x)).
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Proposition 4.1. Let ρ satisfy (2.8) and a satisfy (2.9) with some σ0 ∈ R. More-
over, let Φ(p, x) and F (p, x) be given functions such that

Φ(p, ·) ∈ H3/2(Γ) , F (p, ·) ∈ L2(Ω) for Re p > σ1 (4.3)

with some σ1 ∈ R. Then the problem

(LAU)(p, x) = F (p, x) , x ∈ Ω , U(p, x) = Φ(p, x) , x ∈ Γ (4.4)

has a unique solution U(p, ·) ∈ H2(Ω) for every Re p > σu with σu = max{σa, σ1}
and σa from Lemma 3.3. This solution satisfies the estimate

‖U(p, ·)‖H2(Ω) ≤ c3|p|2
(
‖F (p, ·)‖L2(Ω) + |p|‖Φ(p, ·)‖H3/2(Γ)

)
, Re p > σu , (4.5)

where the coefficient c3 depends on ρ, a,Ω, but is independent of p,Φ and F .

Proof. Due to the assumption Φ(p, ·) ∈ H3/2(Γ) for Re p > σ1, there exists a
function Φ̃(p, x) such that Φ̃(p, ·) ∈ H2(Ω) and Φ̃(p, x)|x∈Γ = Φ(p, x) for Re p > σ1.
Denoting W = U − Φ̃, the problem (4.4) reduces to the following problem with
homogeneous boundary condition for W :

(LAW )(p, x) = F (p, x)− (LAΦ̃)(p, x) , x ∈ Ω , W (p, x) = 0 , x ∈ Γ. (4.6)

The sesquilinear form, associated with the operator LA in the spaceH1
0 (Ω), reads

lp(W1,W2) =
∫

Ω

A(p, x)∇W1(x) · ∇W 2(x)dx+ p

∫
Ω

ρ(x)W1(x)W 2(x)dx . (4.7)

By (2.8) and the assertion (3.7) of Lemma 3.3, lp is bounded in (H1
0 (Ω))2 if Re p >

σ0. We are going to prove the coercitivity of lp. For any W ∈ H1
0 (Ω) we have

|lp(W,W )| ≥
∣∣1
p

∫
Ω

a(0, x)|∇W (x)|2dx+ p

∫
Ω

ρ(x)|W (x)|2dx
∣∣

− 1
|p|2

∫
Ω

|p a(0, x)− p2A(p, x)| |∇W (x)|2dx .
(4.8)

In order to estimate the first term on the right-hand side of (4.8) from below
we use the relation |c1p−1 + c2p| ≥ Re p(c1|p|−2 + c2), which, as easily can be
verified, holds for any c1, c2 ≥ 0 and Re p > 0. Applying this relation with c1 =∫
Ω
a(0, x)|∇W (x)|2dx and c2 =

∫
Ω
ρ(x)|W (x)|2dx in (4.8) we derive

|lp(W,W )| ≥ 1
|p|2

∫
Ω

[Re p a(0, x)− |pa(0, x)− p2A(p, x)|]|∇W (x)|2dx

+ Re p
∫

Ω

ρ(x)|W (x)|2dx

for Re p > 0. Applying the estimate (3.10) of Lemma 3.3 and the assumed inequality
ρ(x) ≥ ρ0 > 0 we obtain

|lp(W,W )| ≥ c4
( 1
|p|2

‖∇W‖2L2(Ω) + ‖W‖2L2(Ω)

)
, Re p > σa (4.9)

with a coefficient c4 depending on a and ρ. Thus, lp is coercive in (H1
0 (Ω))2 for

Re p > σa.
By (2.8), (4.3), (3.7) and the relation Φ̃(p, ·) ∈ H2(Ω) for Re p > σ1 the inclusion

F (p, ·)− (LAΦ̃)(p, ·) ∈ L2(Ω) ⊂ H−1(Ω) holds for Re p > σu. Consequently, due to
the Lax-Milgram lemma the problem (4.6) has a unique solution W (p, ·) ∈ H1

0 (Ω)
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for Re p > σu. This yields the existence and uniqueness of the solution U(p, ·) of
the problem (4.4) in the space H1(Ω) for any Re p > σu.

To prove the assertion U(p, ·) ∈ H2(Ω) for Re p > σu we rewrite the problem
(4.4) in the form

∆U(p, x) = FU (p, x) , x ∈ Ω , U(p, x) = Φ(p, x) , x ∈ Γ (4.10)

for Re p > σu, where ∆ is the Laplacian and

FU (p, x) = A(p, x)−1 [pρ(x)U(p, x)−∇A(p, x) · ∇U(p, x)− F (p, x)] . (4.11)

In view of the assumptions of Proposition 4.1 and the assertions of Lemma 3.3 we
see that FU (p, ·) ∈ L2(Ω) for Re p > σu. Taking this relation and the assumption
Φ(p, ·) ∈ H3/2(Γ) into account, the well-known theory of smoothness of the solution
of the Dirichlet problem for the Poisson equation (see, e.g., [26, Theorem 27.2])
yields U(p, ·) ∈ H2(Ω) for Re p > σu and the estimate

‖U(p, ·)‖H2(Ω) ≤ c5
(
‖FU (p, ·)‖L2(Ω) + ‖Φ(p, ·)‖H3/2(Γ)

)
, Re p > σu , (4.12)

where c5 is a constant depending on Ω.
It remains to derive (4.5). We substitute W (p, ·) for W1 and W2 in the for-

mula (4.7), where W is the solution of (4.6), and apply the divergence theorem
for the first integral in the right-hand side of this formula to get lp(W,W ) =∫
Ω
[F (p, x) − (LAΦ̃)(p, x)]W (p, x)dx. Thereupon we estimate this expression from

above by means of the Cauchy-Schwartz inequality, use the definition of LA and
combine the obtained result with the estimate from below (4.9). This leads to the
relation

‖W (p, ·)‖Hk(Ω) ≤ c6|p|k
(
‖F (p, ·)‖L2(Ω) + |p|‖Φ̃(p, ·)‖H2(Ω)

)
, (4.13)

for Re p > σu, where k ∈ {0; 1} and c6 depends on a, ρ. Note that we can choose
Φ̃(p, ·) ∈ H2(Ω), satisfying the relation Φ̃(p, x)|x∈Γ = Φ(p, x), so that the inequality
‖Φ̃(p, ·)‖H2(Ω) ≤ c7‖Φ(p, ·)‖H3/2(Γ) holds for Re p > σu with a constant c7, which
depends on Ω but is independent of Φ. Using the latter inequality, the estimate
(4.13) and the obvious relation 1 < σ−1

u |p| for Re p > σu in the formula U = W +Φ̃
we obtain

‖U(p, ·)‖Hk(Ω) ≤ c8|p|k
(
‖F (p, ·)‖L2(Ω) + |p|‖Φ(p, ·)‖H3/2(Γ)

)
, (4.14)

for Re p > σu, where k ∈ {0; 1} and c8 depends on a, ρ,Ω. Applying the assumptions
imposed on ρ, F , the assertions (3.7), (3.9) of Lemma 3.3 and the estimate (4.14)
in (4.11) we derive

‖FU (p, ·)‖L2(Ω) ≤ c9|p|2
(
‖F (p, ·)‖L2(Ω) + |p|‖Φ(p, ·)‖H3/2(Γ)

)
, (4.15)

for Re p > σu, where c9 depends on a, ρ,Ω. Finally, (4.12) with (4.15) implies
(4.5). �

Proposition 4.2. Let the assumptions of Proposition 4.1 hold for ρ, a and Φ.
Also let A(p, ·) and Φ(p, ·) be holomorphic in Re p > σu with values in W 1,∞(Ω)
and H3/2(Γ), respectively. Then the solution U(p, ·) of (4.1), (4.2) is holomorphic
in Re p > σu with values in H2(Ω).
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Proof. Let p and q be arbitrary numbers such that Re p > σu, Re q > σu. Define
Aq(p, x) := A(q, x) − A(p, x), Φq(p, x) := Φ(q, x) − Φ(p, x), Uq(p, x) := U(q, x) −
U(p, x). From (4.1) and (4.2) we obtain the following problem for Uq:

(LAUq)(p, x) = div
{
Aq(p, x)∇[Uq(p, x) + U(p, x)]

}
− (q − p)ρ(x)[Uq(p, x) + U(p, x)],

Uq(p, x)|x∈Γ = Φq(p, x).

(4.16)

Applying estimate (4.5) of Proposition 4.1 to this problem we obtain

‖Uq(p, ·)‖H2(Ω) ≤ c3|p|2
{[
‖Aq(p, ·)‖W 1,∞(Ω) + |q − p|‖ρ‖L∞(Ω)

]
×

[
‖Uq(p, ·)‖H2(Ω) + ‖U(p, ·)‖H2(Ω)

]
+ |p|‖Φq(p, ·)‖H3/2(Γ)

}
.

This estimate due the relations ‖Aq(p, ·)‖W 1,∞(Ω) → 0 and ‖Φq(p, ·)‖H3/2(Γ) → 0 as
q → p, following from the assumptions of the proposition, yields

‖Uq(p, ·)‖H2(Ω) → 0 as q → p . (4.17)

Further, let A′(p, x) and Φ′(p, x) be the derivatives of A(p, x) and Φ(p, x) with
respect to p, respectively, and let Û be the solution of the problem

(LAÛ)(p, x) = div (A′(p, x)∇U(p, x)) , Û(p, x)|x∈Γ = Φ′(p, x) . (4.18)

Denoting Ûq(p, x) := Uq(p,x)
q−p − Û(p, x) = U(q,x)−U(p,x)

q−p − Û(p, x) and subtracting
(4.18) from (4.16) divided by q − p we obtain the problem

(LAÛq)(p, x) = div
{[Aq(p, x)

q − p
−A′(p, x)

]
∇U(p, x) +

Aq(p, x)
q − p

∇Uq(p, x)
}

−ρ(x)Uq(p, x),

Ûq(p, x)|x∈Γ =
Φq(p, x)
q − p

− Φ′(p, x) .

Using the estimate (4.5) for this problem we have

‖Ûq(p, ·)‖H2(Ω)

≤ c3|p|2
{
‖U(p, ·)‖H2(Ω)

∥∥Aq(p, ·)
q − p

−A′(p, ·)
∥∥

W 1,∞(Ω)

+ ‖Uq(p, ·)‖H2(Ω)

×
[∥∥Aq(p, ·)

q − p

∥∥
W 1,∞(Ω)

+ ‖ρ‖L∞(Ω)

]
+ |p|

∥∥Φq(p, ·)
q − p

− Φ′(p, ·)
∥∥

H3/2(Γ)

}
.

(4.19)

Due to the assumptions of the proposition we have
∥∥Aq(p,·)

q−p −A′(p, ·)
∥∥

W 1,∞(Ω)
→ 0

and
∥∥Φq(p,·)

q−p −Φ′(p, ·)
∥∥

H3/2(Γ)
→ 0 as q → p. Using these relations as well as (4.17)

in (4.19) we obtain ‖Ûq(p, ·)‖H2(Ω) → 0 as q → p, or equivalently, U(q,·)−U(p,·)
q−p →

Û(p, ·) as q → p in H2(Ω). This yields the differentiability, hence holomorphy of
U(p, ·) at p. �
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Proof of Theorem 2.1. In virtue of Proposition 4.1 the problem (4.1), (4.2) has a
unique solution U(p, .) ∈ H2(Ω) for any Re p > σu. Applying the estimate (4.5) to
this solution and observing Lemma 3.4 we obtain

|p|2‖U(p, ·)‖H2(Ω) ≤ c2c3 for Re p > σu .

Further, since A and Φ are the Laplace transforms of abstract functions a and
ϕ with values in W 1,∞(Ω) and H3/2(Γ), respectively, A(p, ·) ∈ W 1,∞(Ω) and
Φ(p, ·) ∈ H3/2(Γ) are holomorphic in the half-plane Re p > σu. Proposition 4.2
yields the holomorphy of U(p, ·) ∈ H2(Ω) for Re p > σu. Summing up, the as-
sumptions of Lemma 3.2 are valid for U . Consequently, there exists a function
u ∈ Cσu([0,∞);H2(Ω)) such that Lt→p(u(·, x)) = U(p, x) and u(0, x) ≡ 0. Apply-
ing the inverse transform to (4.1), (4.2) we see that u satisfies the problem (2.6),
(2.7). This proves the existence assertion of Theorem 2.1

To prove the uniqueness assertion let us suppose that (2.6), (2.7) has two solu-
tions uj ∈ L1

σu
((0,∞);H2(Ω)), j = 1, 2. Denote U j(p, x) = Lt→p(uj(·, x)), j = 1, 2.

Then U j(p, ·) ∈ H2(Ω), j = 1, 2 solve (4.1), (4.2) for Re p > σu. Proposition 4.1
implies U1(p, ·) = U2(p, ·) for Re p > σu. Finally, by the uniqueness of the inverse
transform the relation u1(t, ·) = u2(t, ·) for almost any t ∈ (0,∞) follows. �

5. Uniqueness on the boundary

In this section we will prove that the assumption λa1 = λa2 implies the equalities
a1 = a2 and ∂νa1 = ∂νa2 on the boundary Γ.

We begin by introducing some additional notation. Let ua,g denote the solution
of (2.6), (2.7) corresponding to the kernel a and the boundary condition ϕ(t, x) =
f(t)g(x). Define Ua,g(p, x) = Lt→p(ua,g(·, x)) and F (p) = Lt→p(f). Then Ua,g

solves (4.1), (4.2) with the boundary condition Φ(p, x) = F (p)g(x). Further, let
Λa stand for the operator that assigns to every function g ∈ H3/2(Γ) the Laplace
transform of λag, namely

(Λag)(p, x) = Lt→p((λag)(·, x))

= Lt→p

(∫ ·

0

a(· − τ, x)∂νua,g(τ, x)dx
)

= A(p, x)∂νUa,g(p, x) , x ∈ Γ, Re p > σu .

(5.1)

Finally, for any pair of functions a1 and a2 satisfying (2.9) we define Aj(p, x) =
Lt→p(aj(·, x)), j = 1, 2 and σ12 := max{σ1, σa1 , σa2}.

Let us prove some lemmas. First one is an analogue of the Alessandrini’s equality
for the inverse conductivity problem [1].

Lemma 5.1. Let (2.8), (2.12) hold, a1, a2 satisfy (2.9) and g1, g2 ∈ H3/2(Γ).
Then ∫

Ω

[A1(p, x)−A2(p, x)]∇Ua1,g1(p, x) · ∇Ua2,g2(p, x)dx

= F (p)
∫

Γ

[(Λa1 − Λa2)g1] (p, x)g2(x)dΓx , Re p > σ12 ,

(5.2)

where dΓx is the Lebesgue surface measure of Γ.

Proof. Let a, b be arbitrary functions satisfying (2.9), A = Lt→p(a), B = Lt→p(b)
and g, γ be arbitrary functions in H3/2(Γ). Multiplying the equation (4.1) for Ua,g
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by Ub,γ , using the divergence formula and the definition of Λa we obtain the equality
E(A, g;B, γ) = 0, where

E(A, g;B, γ)

=
∫

Ω

[A(p, x)∇Ua,g(p, x) · ∇Ub,γ(p, x) + pρ(x)Ua,g(p, x)Ub,γ(p, x)] dx

− F (p)
∫

Γ

(Λag)(p, x)γ(x)dΓx .

This equality implies the relation

E(A1, g1;A2, g2)− E(A2, g2;A1, g1)− E(A2, g1;A2, g2) + E(A2, g2;A2, g1) = 0 ,

which is identical to (5.2). �

Lemma 5.2. Let z ∈ Γ and B be a neighbourhood of z. Let α and β be given
functions such that α ∈ W 1,∞(Ω) ∩ C1,µ(B), β ∈ L∞(Ω) ∩ C0,µ(B) with some
µ > 0 and α(x) ≥ α0 > 0, β(x) ≥ ρ0 > 0 for x ∈ Ω ∪B. Then, for any y ∈ B \ Ω,
there exists a function wy : Ω ∪B \ {y} → R satisfying the following conditions:

(i) wy solves the equation

−div(α(x)∇wy(x)) + β(x)wy(x) = 0 , x ∈ Ω ∪B \ {y}; (5.3)

(ii) wy(x)|x∈Ω belongs to H2(Ω). Moreover, for any x ∈ B \ {y} the relation

wy(x) =
α(y)

4π|x− y|
+ ωy(x) (5.4)

is valid, where

|ωy(x)| ≤ c10|x− y|δ−1, |∂xi
ωy(x)| ≤ c10|x− y|δ−2, i = 1, 2, 3 (5.5)

with a coefficient c10 and an exponent δ ∈ (0, 1) independent of x ∈ B \ {y}
and y ∈ B \ Ω.

The proof of this lemma is given in [12]. Now we can prove the main result of
the section.

Theorem 5.3. Let the assumptions of Theorem 2.3 be satisfied for ρ, f and a1,
a2. Then λa1 = λa2 implies a1(t, z) = a2(t, z) and ∂νa1(t, z) = ∂νa2(t, z) for z ∈ Γ
and a.e. t ∈ (0,∞).

Proof. The proof uses in an adapted form the method of singular solutions due to
Alessandrini [2]. First, we note that the assumption λa1 = λa2 implies Λa1 = Λa2 .
This, by Lemma 5.1 yields∫

Ω

[A1 −A2](p, x)∇Ua1,g1(p, x) · ∇Ua2,g2(p, x)dx = 0 for Re p > σ12. (5.6)

Let us choose some p0 ∈ R, p0 > σ12, such that F (p0) 6= 0. In view of the
assumptions Im aj = 0, aj(0, x) ≥ a0 > 0 and the assertions (3.8), (3.9) of Lemma
3.3, the functions Aj satisfy the inequality Aj(p0, x) ≥ κ

p0
> 0 for x ∈ Ω. Moreover,

due to (2.13) we have Aj(p0, ·) ∈W 2,∞(Ω) ∩ C1,µ(Γε), j = 1, 2.
Let z be an arbitrary point on Γ. Observing the properties of Aj(p0, x) and the

assumptions imposed on ρ, we can choose a neighbourhood Bz ⊂ Γε of z such that
the assumptions of Lemma 5.2 are fulfilled for B = Bz, , β = p0ρ and α = Aj(p0, ·)
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with j ∈ {1, 2}. Let wj,y with j ∈ {1, 2} be a function which fulfills the assertions
of Lemma 5.2 for α = αj = Aj(p0, ·), β = p0ρ. Thus,

−div(Aj(p0, x)∇wj,y(x)) + p0ρ(x)wj,y(x) = 0, x ∈ Ω ∪Bz \ {y}, j = 1, 2, (5.7)

Observing the assertions of Lemma 5.2 and the inequality αj(y) ≥ κ
p0
> 0, one can

verify that

∇w1,y(x) · ∇w2,y(x) ∼ α1(y)α2(y)
|x− y|4

as y → x . (5.8)

Let us set gj(x) := wj,y(x)|x∈Γ for j = 1, 2. Then the function Uaj ,gj
(p, x) solves

(4.1), (4.2) with A = Aj and Φ(p, x) = F (p)gj(x) = F (p)wj,y(x)|x∈Γ. Since (4.1)
in case p = p0 coincides with (5.7), we have Uaj ,gj

(p0, x) = F (p0)wj,y(x) for x ∈ Ω.
Using this relation in (5.6) and taking the inequality F (p0) 6= 0 into account we
obtain

Iy :=
∫

Ω

[A1 −A2](p0, x)∇w1,y(x) · ∇w2,y(x)dx = 0 . (5.9)

On the other hand, by Aj(p0, ·) ∈ C1,µ(Bz) we have

(A1 −A2)(p0, x) = (A1 −A2)(p0, z) +∇(A1 −A2)(z) · (x− z) +O(|x− z|1+µ)

for x ∈ Bz. Thus, Iy = I0
y + I1

y + I2
y , where

I0
y = (A1 −A2)(p0, z)

∫
Ω∩Bz

∇w1,y(x) · ∇w2,y(x)dx ,

I1
y = ∇(A1 −A2)(p0, z) ·

∫
Ω∩Bz

(x− z)∇w1,y(x) · ∇w2,y(x)dx ,

I2
y =

∫
Ω∩Bz

O
(
|x− z|1+µ

)
∇w1,y(x) · ∇w2,y(x)dx

+
∫

Ω\Bz

[A1 −A2](p0, x)∇w1,y(x) · ∇w2,y(x)dx .

Observing that the singularity of wj,y(x) is located at x = y, where wj,y(x) satisfies
the relation (5.8), and the distance between y and Ω \ Bz is bounded away from
0 as y → z, we see that the term I2

y is bounded as y → z. Moreover, supposing
(A1−A2)(p0, z) 6= 0, we have Iy ∼ I0

y and |I0
y | → ∞ as y → z. But this contradicts

(5.9). Thus, (A1 − A2)(p0, z) = 0. Further, supposing ∇(A1 − A2)(p0, z) 6= 0, we
have Iy ∼ I1

y and |I1
y | → ∞ as y → z. Again, this contradicts (5.9). Consequently,

∇(A1 −A2)(p0, z) = 0.
Since z ∈ Γ was chosen arbitrarily, we have proven the equalities

A1(p, ·) = A2(p, ·) , ∂νA1(p, ·) = ∂νA2(p, ·) (5.10)

in C1,λ(Γ) for any p > σ12 such that F (p) 6= 0. The set {p : p > σ12, F (p) 6= 0}
has an accumulation point because of the assumption f 6= 0. Therefore, by means
of the analytic continuation we can extend the equalities (5.10) in C1,λ(Γ) to all
Re p > σ12. Finally, by uniqueness of the inverse transform we obtain the assertion
of the theorem. �
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6. Uniqueness in the whole domain

In this section, we prove Theorem 2.3 For this end we need the following lemmas.

Lemma 6.1. Let (2.8), (2.12) hold and a satisfy (2.9), (2.13). Moreover, let
g ∈ H3/2(Γ). Define

Va,g(p, x) := A1/2(p, x)Ur,g(p, x) , (6.1)

where A1/2(p, x) is the principal value of the square root of A(p, x), namely

A1/2(p, x) = |A(p, x)|1/2
(
cos

argA(p, x)
2

+ i sin
argA(p, x)

2
)
.

Then Va,g(p, ·) belongs to H2(Ω) and solves the problem

−∆Va,g(p, x) +K(p, x)Va,g(p, x) = 0 , x ∈ Ω , (6.2)

Va,g(p, x) = F (p)A1/2(p, x)g(x) , x ∈ Γ (6.3)

for Re p > σu, where K(p, ·) belongs to L∞(Ω) and is given by

K(p, x) =
[
∆A1/2(p, x) + pρ(x)A−1/2(p, x)

]
A−1/2(p, x) (6.4)

for Re p > σa.

Proof. In view of the assumption (2.13) we obtain A(p, ·) ∈W 2,∞(Ω) for Re p > σ0.
This together with the assertion (3.9) of Lemma 3.3 yields

A1/2(p, ·) ∈W 2,∞(Ω), |A1/2(p, x)| ≥ κ1/2

|p|1/2
> 0, x ∈ Ω (6.5)

for Re p > σa. Applying these relations and (2.8) in (6.4) we deduce K(p, ·) ∈
L∞(Ω) for Re p > σa. Further, due to Theorem 2.1 Ua,g(p, ·) ∈ H2(Ω) for Re p >
σu. This in view of (6.1) and (6.5) yields Va,g(p, ·) ∈ H2(Ω) for Re p > σu. Finally,
observing that Ua,g(p, x) solves the problem (4.1), (4.2) with Φ(p, x) = F (p)g(x),
the change of the unknown by (6.1) in this problem results in (6.2) and (6.3) with
K of the form (6.4). �

Lemma 6.2. Let the assumptions of Theorem 2.3 be valid for f , ρ, a1 and a2.
Assume that g1, g2 ∈ H3/2(Γ) and Kj , j = 1, 2, are defined by (6.4) with A replaced
by Aj. Let A1(p, x) = A2(p, x), ∂νA1(p, x) = ∂νA2(p, x) for any x ∈ Γ and Re p >
σ12. Then ∫

Ω

[K1(p, x)−K2(p, x)]Va1,g1(p, x)Va2,g2(p, x) dx

= F (p)
∫

Γ

[(Λa1 − Λa2)g1] (p, x)g2(x)dΓx , Re p > σ12 .

(6.6)

Proof. Let a, b be arbitrary functions satisfying (2.9), A = Lt→p(a), B = Lt→p(b),
K be given by (6.4) and g, γ be arbitrary functions in H3/2(Γ). Multiplying the
equation (6.2) for Va,g by Vb,γ and using the divergence formula we obtain the
equality Ê(A, g;B, γ) = 0, where

Ê(A, g;B, γ) =
∫

Ω

[∇Va,g(p, x) · ∇Vb,γ(p, x) +K(p, x)Va,g(p, x)Vb,γ(p, x)] dx

−
∫

Γ

∂νVa,gVb,γdΓx .
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This equality implies the relation

Ê(A1, g1;A2, g2)− Ê(A2, g2;A1, g1)− Ê(A2, g1;A2, g2) + Ê(A2, g2;A2, g1) = 0 ,

which is identical to∫
Ω

[K1 −K2]Va,gVb,γdx

=
∫

Γ

[∂νVa1,g1Va2,g2 − ∂νVa2,g2Va1,g1 + ∂νVa2,g2Va2,g1 − ∂νVa2,g1Va2,g2 ] dΓx .

(6.7)
By (6.3) and the proved equalities A(p, x) = A1(p, x) = A2(p, x), ∂νA1(p, x) =
∂νA2(p, x) for x ∈ Γ we have

Va2,g1(p, x) = Va1,g1(p, x) = F (p)A1/2(p, x)g1(x) ,

Va2,g2(p, x) = Va1,g2(p, x) = F (p)A1/2(p, x)g2(x) ,

∂νVa1,g1(p, x)− ∂νVa2,g1(p, x)

= ∂ν [A1(p, x)1/2]Ua1,g1(p, x)− ∂ν [A2(p, x)1/2]Ua2,g1(p, x)

+A−1/2(p, x) [A1(p, x)∂νUa1,g1(p, x)−A2(p, x)∂νUa2,g1(p, x)]

= A−1/2(p, x) [(Λa1 − Λa2)g1] (p, x)

for x ∈ Γ. Using these relations in (6.7) we derive (6.6). �

Lemma 6.3. Let z, ζ, η ∈ R3 and ω > 0 satisfy the relations

z · η = z · ζ = η · ζ = 0 , |η| = 1 , |ζ|2 =
|z|2

2
+ ω2 . (6.8)

Define

ξ1 = i
(z
2

+ ωη
)

+ ζ , ξ2 = i
(z
2
− ωη

)
− ζ . (6.9)

Furthermore, let αj ∈ L∞(Ω), j = 1, 2. Then there exists M ≥ 0 depending on α1,
α2 such that the equations

−∆ŵj(x) + αj(x)ŵj(x) = 0 , j = 1, 2 (6.10)

have solutions ŵj, j = 1, 2, which belong to H2(Ω) and have the form

ŵj(x) = ex·ξj [1 + ψj(x)] , (6.11)

where ψj , j = 1, 2 satisfy the estimates

‖ψj‖L2(Ω) ≤
1
|ξj |

‖αj‖L∞(Ω) for |ξj | > M , j = 1, 2 . (6.12)

The proof of the above lemma is given in [12].

Proof of Theorem 2.3. To prove this theorem, we will apply in an adapted form,
the method due to Sylvester and Uhlmann [24]. Assume that λa1 = λa2 . Let us
fix some p0 ∈ R, p0 > σ12, such that F (p0) 6= 0. Further, let us choose z ∈ R3 and
ω > 0 and let ζ, η ∈ R3 satisfy the relations (6.8). Define αj(x) := Kj(p0, x) for
j = 1, 2, where Kj is given by (6.4) with A replaced by Aj . Finally, let ŵj , j = 1, 2,
be the functions satisfying the assertions of Lemma 6.3 with these αj . By virtue of
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Theorem 5.3 we have A1(p, x) = A2(p, x) =: A(p, x) for x ∈ Γ, Re p > σ12. Let us
set

gj(x) :=
ŵj(x)

F (p0)A1/2(p0, x)
for x ∈ Γ, j = 1, 2 . (6.13)

The functions gj , j = 1, 2 belong to H3/2(Γ) because of the relations ŵj ∈ H2(Ω),
F (p0) 6= 0 and (6.5). The problem (6.2), (6.3) for Vaj ,gj reads

−∆Vaj ,gj
(p, x) +Kj(p, x)Vaj ,gj

(p, x) = 0 , x ∈ Ω , (6.14)

Vaj ,gj
(p, x) = F (p)A1/2(p, x)gj(x) , x ∈ Γ , (6.15)

where Re p > σ12. Due to the relation αj = Kj(p0, ·) the equation (6.14) for Vaj ,gj

coincides with (6.10) for ŵj in case p = p0. Further, in view of (6.13) and (6.15)
we have Vaj ,gj (p0, x) = ŵj(x) for x ∈ Γ and j = 1, 2. Recall that ŵj solves (6.10).
Thus, by the uniqueness of the solution of the boundary value problem (6.14),
(6.15), we obtain the equality Vaj ,gj

(p0, x) = ŵj(x) for x ∈ Ω and j = 1, 2.
By the assumptions of Theorem 2.3, the supposed relation λa1 = λa2 and The-

orem 5.3 the assumptions of Lemma 6.2 are satisfied. Moreover, λa1 = λa2 implies
Λa1 = Λa2 . Hence, the equality (6.6) holds with 0 in the right-hand side. In case
p = p0 it reads ∫

Ω

[K1(p0, x)−K2(p0, x)] ŵ1(x)ŵ2(x)dx = 0 .

This, in view of (6.11) and (6.9), implies∫
Ω

[K1(p0, x)−K2(p0, x)] eix·z[1 + ψ1(x)][1 + ψ2(x)]dx = 0 . (6.16)

From (6.8) and (6.9) we see that that |ξj | → ∞ as ω → ∞ for fixed z. Hence, by
and (6.12) ‖ψj‖L2(Ω) → 0 as ω →∞ for fixed z. Thus, passing to the limit ω →∞
in (6.16) we deduce ∫

Ω

[K1(p0, x)−K2(p0, x)] eix·zdx = 0 .

Since this equality holds for arbitrary z ∈ R3, we obtain K1(p0, x) = K2(p0, x) for
x ∈ Ω.

Due to this equality, (6.4), and Theorem 5.3, the differenceA1/2
1 (p0, ·)−A1/2

2 (p0, ·)
solves the problem

−∆[A1/2
1 (p0, x)−A

1/2
2 (p0, x)] + α̃(p0, x)[A

1/2
1 (p0, x)−A

1/2
2 (p0, x)] = 0, (6.17)

A
1/2
1 (p0, x)−A

1/2
2 (p0, x) = 0 , x ∈ Γ , (6.18)

where

α̃(p0, x)

=
1

A
1/2
2 (p0, x)

[ p0ρ(x)

A
1/2
1 (p0, x)

+
1

A
1/2
2 (p0, x)

(
p0ρ(x) +

∆A2(p0, x)
2

− |∇A2(p0, x)|2

4A2(p0, x)
)]
.

Let us study the asymptotic behaviour of α̃ as p0 → ∞. Observe that (2.13) and
the assertions (3.2), (3.3) of Lemma 3.1 imply ‖∆A2(p0, ·)‖L∞(Ω) → 0 as p0 →∞.
Moreover, by the assertions (3.7) and (3.9) of Lemma 3.3

|∇A2(p0, x)|2

|A2(p0, x)|
=

1
p0

|p0∇A2(p0, x)|2

p0|A2(p0, x)|
≤ c1
κp0

→ 0 as p0 →∞.
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Consequently, in view of (2.8)

α̃(p0, x) ∼
p0ρ(x)

A
1/2
2 (p0, x)

[ 1

A
1/2
1 (p0, x)

+
1

A
1/2
2 (p0, x)

]
as p0 →∞

uniformly in x ∈ Ω. The assumptions Im aj = 0, j = 1, 2 and aj(0, x) ≥ a0 > 0
imply that Aj(p0, x) > 0 for sufficiently large p0. Hence, α̃(p0, x) ≥ 0 for p0 > σ̃
with some sufficiently large σ̃. This implies that the solution of the problem (6.17),
(6.18) is unique if p0 > σ̃. Consequently, A1(p0, x) = A2(p0, x) for x ∈ Ω and
p0 > σ̃ such that F (p0) 6= 0.

The set {p | p > σ̃, F (p) 6= 0} has an accumulation point in view of the assump-
tion f 6= 0. Hence, by means of analytic continuation we can extend the equality
A1(p, ·) = A2(p, ·) for all Re p > σ12. Finally, by the uniqueness of the inverse
transform we derive a1 = a2. �

References

[1] Alessandrini, G., Stable determination of conductivity by boundary measurements. Appl.
Anal. 27 (1988), 153–172.

[2] Alessandrini, G., Singular solutions of elliptic equations and the determination of conductivity
by boundary measurements. J. Differ. Equ. 84 (1990), 252–273.

[3] Bukhgeim, A. L.; Dyatlov, G. V.; Isakov V. M., Stability of memory reconstruction from the
Dirichlet-to-Neumann operator. Siberian Math. J. 38 (1997), 636–646.

[4] Cavaterra, C.; Grasselli, M., On an inverse problem for a model of linear viscoelastic Kirchhoff
plate. J. Int. Equ. Appl. 9 (1997), 179–218.

[5] Grasselli, M., An identification problem for an abstract linear hyperbolic integro-differential
equation. J. Math. Anal. Appl. 171 (1992), 27–60.

[6] Grasselli, M.; Kabanikhin, S. I.; Lorenzi, A., An inverse hyperbolic integro-differential prob-
lem occurring in Geophysics I. Siberian Math. J. 33 (1992), 415–462.

[7] Grasselli, M.; Kabanikhin, S. I.; Lorenzi, A., An inverse hyperbolic integro-differential prob-
lem occurring in Geophysics II. Nonlin. Anal.: Theory, Meth. Appl. 15 (1990), 283–298.

[8] Isakov, V., Completeness of products of solutions and some inverse problems for PDE. J.

Differ. Equ. 92 (1991), 305–317.
[9] Isakov V., On uniqueness in inverse problems for semilinear parabolic equations. Arch. Ra-

tional Mech. Anal. 124 (1993), 1–13.

[10] Janno, J., Inverse problems for determining monotone weakly singular relaxation kernels in
viscoelasticity. Nonlin. Anal.: Theory, Meth. Appl. 41 (2000), 943–962.

[11] Janno, J., Identification of weakly singular relaxation kernels in three-dimensional viscoelas-

ticity. J. Math. Anal. Appl. 262 (2001), 133–159.
[12] Janno, J., Determination of a time- and space-dependent heat flux relaxation function by

means of a restricted Dirichlet-to-Neumann operator. Math. Meth. Appl. Sci., to appear.

[13] Janno, J.; Lorenzi, A., Recovering degenerate kernels in hyperbolic integro-differential equa-
tions. Z. Anal. Anwen. 21 (2002), 399–430.

[14] Janno, J.; v. Wolfersdorf, L., Inverse problems for identification of memory kernels in vis-

coelasticity. Math. Meth. Appl. Sci. 20 (1997), 291–314.
[15] Janno, J.; v. Wolfersdorf, L., Identification of weakly singular memory kernels in viscoelas-

ticity. Z. Angew. Math. Mech. 78 (1998), 391–403.
[16] Janno, J.; v. Wolfersdorf, L., An inverse problem for identification of a time- and space-

dependent memory kernel in viscoelasticity. Inverse Problems. 17 (2001), 13–24.

[17] Janno, J.; v. Wolfersdorf, L., A general inverse problem for a memory kernel in one-
dimensional viscoelasticity. Z. Anal. Anwen. 21 (2002), 465–483.

[18] Lorenzi, A., A multidimensional identification problem related to a hyperbolic integro-

differential equation. Z. Anal. Anwen. 18 (1999), 407–435.
[19] Lorenzi, A.; Paparoni, E., Identification of two unknown coefficients in an integro-differential

hyperbolic equation. J. Inv. Ill-Posed Probl. 1 (1993), 331–348.

[20] Lorenzi, A.; Yakhno, V. G., An identification problem related to an isotropic nonhomogeneous
stratified viscoelastic body. J. Inv. Ill-Posed Probl. 5 (1997), 29–53.



16 JAAN JANNO EJDE-2004/67

[21] Miranda, C., Partial differential equations of elliptic type. Springer-Verlag, Berlin, 1970.

[22] Prüss, J., Evolutionary integral equations and applications. Birkhäuser, Basel, 1993.

[23] Renardy, M.; Hrusa, W. J.; Nohel, J. A., Mathematical problems in viscoelasticity. Longman,
Harlow, 1987.

[24] Sylvester, J.; Uhlmann, G., A global uniqueness theorem for an inverse boundary value

problem. Annals of Math. 125 (1987), 153–169.
[25] Stefanov, P. D., Uniqueness of the multidimensional inverse scattering problem for time

dependent potentials. Math. Z. 201 (1989), 542–559.

[26] Treves, F., Basic linear partial differential equations. Academic Press, New York, 1975.
[27] v. Wolfersdorf, L., On identification of memory kernels in linear viscoelasticity. Math. Nachr.

161 (1993), 203–217.

Jaan Janno
Institute of Cybernetics, Tallinn University of Technology, 12618 Tallinn, Estonia

E-mail address: janno@ioc.ee


