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POSITIVE SOLUTIONS FOR THE Φ-LAPLACIAN WHEN Φ IS A
SUP - MULTIPLICATIVE - LIKE FUNCTION

GEORGE L. KARAKOSTAS

Abstract. We provide sufficient conditions for the existence of positive solu-
tions of a boundary-value problem for a one dimensional Φ-Laplacian ordinary
differential equation with deviating arguments, where Φ is a sup-multiplicative-
like function (in a sense introduced here) and the boundary conditions include
nonlinear expressions at the end points. For this end, we use the Krasnoselskii
fixed point theorem in a cone. The results obtained improve and generalize
known results in [17] and elsewhere.

1. Introduction

We call sup-multiplicative-like function an odd homeomorphism Φ of the real line
R onto itself for which there exists a homeomorphism φ of R+ := [0,+∞) onto R+

which supports Φ in the sense that for all v1, v2 ≥ 0 it holds

φ(v1)Φ(v2) ≤ Φ(v1v2).

Note that any sup-multiplicative function is sup-multiplicative-like function. Also
any function of the form

Φ(u) :=
k∑
0

cj |u|ju, u ∈ R

is sup-multiplicative-like, provided that cj ≥ 0. Here a supporting function is
defined by φ(u) := min{uk+1, u}, u ≥ 0.

It is clear that a sup-multiplicative-like function Φ and any corresponding sup-
porting function φ are increasing functions vanishing at zero and moreover their
inverses Ψ and ψ respectively are increasing and such that

Ψ(w1w2) ≤ ψ(w1)Ψ(w2),

for all w1, w2 ≥ 0. From this relation it follows easily that for all M,u > 0 it holds

MΦ(u) ≥ Φ
( u

ψ(1/M)

)
. (1.1)

More facts from the pathology of this meaning will be presented later in this section.
For the moment we notice only that if Φ1 and Φ2 are two sup-multiplicative -like
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functions, then the functions Φ1+Φ2, Φ1|Φ2| and Φ1◦Φ2 are also sup-multiplicative-
like functions, hence this class is closed with respect to the addition, multiplication
and composition. Indeed to see this, assume that φ1, φ2 are functions which support
Φ1 and Φ2 respectively. Then for all u, v > 0 we have[

Φ1 + Φ2

]
(uv) ≥ Φ1(u)φ1(v) + Φ2(u)φ2(v) ≥

[
Φ1 + Φ2

]
(u)φ(v),

where φ(v) := min{φ1(v), φ2(v)}. Also we have

Φ1(uv)Φ2(uv) ≥ Φ1(u)φ1(v)Φ2(u)φ2(v) ≥
(
Φ1(u)Φ2(u)

)
φ(v),

where φ(v) := φ1(v)φ2(v). Finally we have

Φ1

(
Φ2(uv)

)
≥ Φ1

(
Φ2(u)φ2(v)

)
≥

(
Φ1

(
Φ2(u)

)
φ(v),

where φ(v) := φ1

(
φ2(v)

)
.

Let Φ be a differentiable sup-multiplicative-like function and, for each j =
1, 2, . . . , n, let gj : [0, 1] → [0, 1] be measurable functions.

In this paper we investigate the case when positive solutions of the one dimen-
sional differential equation (with deviated arguments) of the form

[Φ(x′)]′ + c(t)f(t, x(g1(t)), x(g2(t)), . . . , x(gn(t))) = 0, a.a. t ∈ I (1.2)

exist which satisfy one of the following three pairs of conditions

x(0)−B0(x′(0)) = 0, x(1) +B1(x′(1)) = 0, (1.3)

x(0)−B0(x′(0)) = 0, x′(1) = 0, (1.4)

x′(0) = 0, x(1) +B1(x′(1)) = 0. (1.5)

Here we extend and in some cases improve the results given in [17] and elsewhere.
For instance, we show existence of positive solutions when at least one of B0 or
B1 is sub-linear only near zero, thus they might be exponential. The existence of
multiple positive solutions of this problem will be given in a forthcoming paper.

It is clear that in case Φ is a function of the form Φ(u) := |u|m−2u, Equation (1.2)
comes from the nonautonomousm-Laplacian elliptic equation in the n−dimensional
space which has radially symmetric solutions. Also (1.2) is generated from an
equation of the form

x′′ + p(x′)f(t, x) = 0,
where inf{p(u) : |u| ≤ r} > 0, for all r > 0, by setting

Φ(u) :=
∫ u

0

dξ

p(ξ)
.

Boundary-value problems with boundary conditions of the form (1.3)–(1.5) were
discussed first by Gustafson and Schmitt [11] who considered a problem of the form

x′′ + f(t, x) = 0, t ∈ (0, 1)

with the boundary conditions

ax(0)− bx′(0) = 0, cx(1) + dx′(1) = 0, (1.6)

where the coefficients a, b, c, d are positive reals. Notice that [11, Section 6] is de-
voted to boundary value problems with retarded arguments associated with Dirich-
let boundary conditions. Boundary value problems with delays were investigated
by many authors, because of their importance in variational problems, in control
theory, mechanics, physics and a variety of areas in applied mathematics, see, e. g.,
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[3, 4, 5, 9, 10, 13, 18, 20] and the references therein. Related topics can be found
in [2, 7].

In [8] the existence of positive solutions of the equation

x′′ + c(t)f(x) = 0, t ∈ (0, 1)

associated with the conditions (1.6), was investigated. The same subject, but with
a nonlocal boundary condition was, also, treated in [14].

Motivated by [8], Wang [17] considered the function g(u) = |u|p−2u, p > 1 and
he studied the boundary -value problem

(g(x′))′ + c(t)f(x) = 0, t ∈ (0, 1)

associated with the boundary conditions of the form (1.3)–(1.5) where B0 and B1

are both nondecreasing, continuous, odd functions defined on the whole real line
and at least one of them is sub-linear. The function c satisfies an integral condition
through the inverse function of g. An analog condition we shall also assume in
this paper. Conditions for the existence of multiple positive solutions of the same
problem were recently given in [12, 16]. A case with simpler boundary conditions
is discussed in [1]. In [19] the same conditions were imposed to a one dimensional
p-Laplacian differential equation, where the derivative affects the response function.

In [6], where an equation of the form (1.2) was discussed (but without deviating
arguments and with simple Dirichlet conditions), the leading factor depends on an
odd homeomorphism Φ, which, in order to guarantee the nonexistence of solutions,
actually, satisfies the condition

sup
u>0

Φ(uv)
Φ(u)

< +∞,

for all v > 0. It is clear that the condition lim supu→+∞ Φ(uv)/Φ(u) < +∞, as it
is placed in [6], is not sufficient; see [6, Lemma 4].

It is well known that in order to seek for positive solutions of operator equations
Krasnoselskii presented in [15] a fixed point theorem, which is stated below and
which has been proved as a powerful tool in investigating the existence of positive
solutions of boundary value problems, see, e. g., most of the papers cited above.

Theorem 1.1 (Krasnoselskii [15]). Let B be a Banach space and let K be a cone
in B. Assume that Ω1, Ω2 are open subsets of E, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or

‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

This article is organized as follows: Section 2 is devoted to the conditions of the
problem and to some facts needed in the sequel. The main results are exhibited in
Section 3. The paper closes with some illustrative examples in Section 4.
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2. The conditions and some auxiliary facts

In this section we present the basic conditions used throughout this paper and
give some auxiliary results. We shall denote by 〈·, ·〉 the inner product in the n-
dimensional space Rn. Also, for each vector a := (α1, α2, . . . αn) we shall denote by
|a| its sum-norm, namely

|a| := |α1|+ |α2|+ · · ·+ |αn|.
Also we shall denote by Wa the set

Wa := {u ∈ (R+)n : 〈a, u〉 6= 0}.
It is clear that, if the vector a has nonnegative coordinates, then for each u ∈ Wa

the inner product 〈a, u〉 is positive.
(H1) Assume that Φ : R → R is a differentiable sup-multiplicative-like function.

Let φ be a corresponding supporting function. In the sequel we shall assume that
Ψ and ψ are the inverses of Φ and φ, respectively. Moreover we notice that both
functions are defined on the whole real line.

(H2) f : I × Rn → R is a continuous function such that f(t, u) ≥ 0, for all
u ∈ R+

n and t ∈ I.
(H3) c : I → R+ is a (Lebesgue) integrable function such that for some nontrivial

subinterval J := [α, β] of I it holds c(t) > 0 almost everywhere on J . We
set

‖c‖1 :=
∫ 1

0

c(t)dt.

(H4) The functions gj : I → I, j = 1, 2, . . . , n are measurable and such that

γ := inf
t∈J

min{gj(t), 1− gj(t) : j = 1, 2, . . . , n} > 0,

where J is the interval defined in (H3).
(H5) There exist vectors a := (α1, α2, . . . αn) and b := (β1, β2, . . . , βn) with non-

negative coordinates such that

lim
{u∈Wa, u→0}

sup
t∈I

f(t, u)
Φ(〈a, u〉)

= 0

and

lim
{u∈Wb, |u|→∞}

inf
t∈I

f(t, u)
Φ(〈b, u〉)

= +∞.

(H6)1 There exists a := (α1, α2, . . . αn) in R+
n such that

lim
{u∈Wa, u→0}

inf
t∈I

f(t, u)
Φ(〈a, u〉)

= +∞.

(H6)2 There exist a := (α1, α2, . . . αn) in R+
n and j0 ∈ {1, 2, . . . , n} such that

lim
{u∈Wa, uj0→+∞}

sup
t∈I

f(t, u1, u2, . . . , uj0 , . . . , un)
Φ(〈a, u〉)

= 0,

uniformly with respect to the variables ui for all i 6= j0.

(H7) For each i = 0, 1 the function Bi is continuous nondecreasing and such that
αBi(α) ≥ 0.

(H8) lim supα→0+
B0(α)

α < +∞.
(H9) lim supα→0+

−B1(−α)
α < +∞.
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(H10) supα>0
B0(α)

α < +∞.
(H11) supα>0

−B1(−α)
α < +∞.

In this paper we shall work in the Banach space C := C(I,R+) of all continuous
functions x : I → R furnished with the usual sup-norm ‖ · ‖. To apply Theorem 1.1
we need the set

K := {x ∈ C : x is concave},
which is a cone in C. We start with the following lemma which follows by the
concavity.

Lemma 2.1. For each x in K and t ∈ I it holds x(t) ≥ min{t, 1− t}‖x‖.

To give an integral equivalent formula of the problem we need the following
auxiliary results.

Lemma 2.2. Suppose the functions B0, B1 satisfy condition (H7). Then for each
(Θ, y) with 0 ≤ y(t) ≤ Θ, t ∈ I, there exists a unique real number U(Θ, y) which
depends continuously on Θ, y and it satisfies

0 ≤ U(Θ, y) ≤ Ψ(Θ),

Ω
(
U(Θ, y)

)
= 0, (2.1)

where

Ω(w) := B0(w) +B1

[
Ψ

(
Φ(w)−Θ)

]
+

∫ 1

0

Ψ
[
Φ(w)− y(s)

]
ds, w ≥ 0.

Proof. We observe that

Ω(0) = B1

[
Ψ

(
−Θ

)]
+

∫ 1

0

Ψ
(
− y(s)

)
ds ≤ 0,

Ω
[
Ψ(Θ)

]
= B0

[
Ψ(Θ)

]
+

∫ 1

0

Ψ
(
Θ− y(s)

)
ds ≥ 0.

Thus the existence follows. The uniqueness is trivial since Ω is (strictly) increasing.
To show the continuity of U we let 0 ≤ yn ≤ Θn, yn → y, (uniformly,) Θn → Θ,

but U(Θn, yn) → w, where w 6= U(Θ, y). The latter is impossible by the continuity
and monotonicity of Ψ. �

3. Main results

Suppose that x(t), t ∈ I solves the boundary -value problem (1.2)–(1.3). Inte-
grate twice both sides of (1.2) from 0 to t and take into account Lemma 2.2. Then
we obtain

x(t) = (Ax)(t), (3.1)
where A is the operator defined on the set C by the formula

(Ay)(t) = B0

[
U

(
Ey(1), Ey

)]
+

∫ t

0

Ψ
[
Φ

(
U(Ey(1), Ey)

)
− Ey(r)

]
dr (3.2)

and by the formula

(Ay)(t) = −B1

(
−Ψ

[
Ey(1)− Φ

(
U(Ey(1), Ey)

)])
+

∫ 1

t

Ψ
[
Ey(r)− Φ

(
U(Ey(1), Ey)

)]
dr,

(3.3)
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where, for simplicity, we have set

Ey(t) :=
∫ t

0

zy(s)ds,

zy(s) := c(s)f
(
s, y(g1(s)), y(g2(s)), . . . , y(gn(s)).

It is clear that a function x is a solution of the operator equation (3.1) if and only
if it is a solution of the boundary value problem (1.2), (1.3). Thus what we have
to (and shall) do is to provide sufficient conditions for the existence of solutions of
the integral equation (3.1).

Let x ∈ K. We can see that for all t it holds

(Ax)′(t) = Ψ
(
Φ

(
U(Ex(1), Ex)

)
− Ex(t)

)
and moreover

(Ax)(1) = −B1

(
Ψ

[
Φ

(
U(Ex(1), Ex)

)
− Ex(1)

])
≥ 0,

(Ax)(0) = B0

(
U

(
Ex(1), Ex

))
≥ 0.

These facts ensure that the function Ax is nonnegative and concave; thus Ax ∈ K.
Let σ be the smallest point in I satisfying

Φ
(
U(Ex(1), Ex)

)
= Ex(σ).

It is clear that such a point exists because of Lemma 2.2. Then the maximum of
Ax is achieved at σ and therefore from (3.2) we have

‖Ax‖ = B0

[
U

(
Ex(1), Ex

)]
+

∫ σ

0

Ψ
[ ∫ σ

r

zx(s)ds
]
dr. (3.4)

while from (3.3)

‖Ax‖ = −B1

(
−Ψ

[
Ex(1)− Φ

(
U

(
Ex(1), Ex)

)])
+

∫ 1

σ

Ψ
[ ∫ r

σ

zx(s)ds
)]
dr. (3.5)

Now consider the boundary value problem (1.2)–(1.4). In this case the problem
is equivalent to the operator equation (3.1), where A is the completely continuous
operator

(Ax)(t) = B0

[
Ψ

(
Ex(1)

)]
+

∫ t

0

Ψ
( ∫ 1

s

zx(s)ds
)
.

For each x ∈ K the image Ax is a nonnegative function and the derivative (Ax)′

is a non-increasing function. Thus it is concave and so A maps K into K. Also Ax
is a nondecreasing function, thus we have

‖Ax‖ = B0

[
Ψ

(
Ex(1)

)]
+

∫ 1

0

Ψ
( ∫ 1

s

zx(s)ds
)
.

Finally, let the boundary value problem (1.2)–(1.5) In this case the problem is
equivalent to the operator equation Ax = x, where A is the completely continuous
operator defined by

(Au)(t) = −B1

[
−Ψ(Eu(1))

]
+

∫ 1

t

Ψ(Eu(s))ds.
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Observe that for each x ∈ K the image Ax is a nonnegative function, having its
first derivative non-increasing. Thus it is a concave function and so A maps K into
K. Also Ax is a non-increasing function, thus we have

‖Ax‖ = (Ax)(0) = −B1

[
−Ψ(Eu(1))

]
+

∫ 1

0

Ψ(Ex(s))ds.

Next, we give the proofs of the results for the problem (1.2)–(1.3), since the other
cases follow by obvious small modifications. Our first main result in this section is
the following.

Theorem 3.1. The boundary-value problem (1.2), (1.3) admits a positive solution
provided that the conditions (H1)–(H5), (H7), and at least one of (H8), (H9) are
satisfied.

Proof. Assume that (H8) holds; thus there is a µ > 0 such that

0 ≤ u ≤ 1 implies B0(u) ≤ µu. (3.6)

Let ε be a positive number such that

ε ≤ 1
(µ+ 1)ψ(‖c‖1)|a|

, (3.7)

where a is the vector given in condition (H5). From the continuity at zero of the
inverse function ψ it follows that there is a δ > 0 such that ψ(v) ≤ ε, for all
v ∈ [0, δ].

From the first condition in (H5) it follows that there is T1 > 0 such that

T1 ≤
1

ψ(‖c‖1)ε|a|
(3.8)

and 0 ≤ uj ≤ T1, j = 1, 2, . . . , n implies

f(t, u1, u2, . . . , un) ≤ δΦ(〈a, u〉)

for all t ∈ I, where u := (u1, u2, . . . , un). Therefore for all t ∈ I and u ∈ Wa with
coordinates in (0, T1] we have

ψ
(f(t, u1, u2, . . . , un)

Φ(〈a, u〉)

)
≤ ε,

which implies

f(t, u1, u2, . . . , un) ≤ φ(ε)Φ(〈a, u〉) ≤ Φ(ε〈a, u〉) ≤ Φ(ε|a|T1). (3.9)

The latter holds for all u with 0 ≤ uj ≤ T1.
Consider an x ∈ K with ‖x‖ = T1. Then for each t ∈ I we have 0 ≤ x(t) ≤ T1.

By Lemma 2.2 and relations (3.8), (3.9) it follows that

U
(
Ex(1), Ex

)
≤ Ψ

(
Ex(1)

)
≤ Ψ

( ∫ 1

0

zx(s)ds
)

≤ Ψ
(
‖c‖1Φ(ε|a|T1)

)
= Ψ

(
φ(ψ(‖c‖1))Φ(ε|a|T1)

)
≤ Ψ

(
Φ

(
ψ(‖c‖1)ε|a|T1

))
= ψ(‖c‖1)ε|a|T1 ≤ 1.
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Hence from (3.4) and (3.6) we have

‖Ax‖ = B0

(
U

(
Ex(1), Ex

))
+

∫ σ

0

Ψ
( ∫ σ

r

zx(s)ds
)
dr

≤ (µ+ 1)Ψ
( ∫ 1

0

zx(s)ds
)
≤ (µ+ 1)ψ(‖c‖1)ε|a|T1

and therefore by (3.7), we get

‖Ax‖ ≤ T1 = ‖x‖. (3.10)

On the other hand, if condition (H9) holds, then we work with (3.5) and get (3.10).
Now, conditions (H3) and (H4) imply that the function

Q(t) :=
∫ t

α

dr

ψ
(( ∫ t

r
c(s)ds

)−1
) +

∫ β

t

dr

ψ
(( ∫ r

t
c(s)ds

)−1
) ,

is well defined on the interval J and it takes a positive minimum on it say 2q. (Also
an upper bound of Q is (β − α)/ψ(1/‖c‖1). Keep in mind the monotonicity of the
function ψ.) Note that

Q(α) =
∫ β

α

dr

ψ
(( ∫ r

α
c(s)ds

)−1
) (≥ 2q),

Q(β) =
∫ β

α

dr

ψ
(( ∫ β

r
c(s)ds

)−1
) (≥ 2q).

Let b := (β1, . . . , βn) be the vector in the second condition in (H5) and consider
any M such that

M ≥ 1
φ(q|b|γ)

. (3.11)

From the second condition in (H5) there is a R > 0 such that

u ∈ R+and uj ≥ R, j = 1, 2, . . . , n

implies that

f(t, u) ≥MΦ(〈b, u〉) ≥MΦ(R|b|) ≥ Φ
( R|b|
ψ(1/M)

)
, (3.12)

because of (1.1).
Define T2 := R/γ and take any x ∈ K with ‖x‖ = T2. Then by Lemma 2.1,

x(gj(s)) ≥ min{gj(s), 1− gj(s)}T2 ≥ γT2 = R, j = 1, 2, . . . , n

for all s ∈ J and so

f(s, x(g1(s)), x(g2(s)), . . . , x(gn(s))) ≥ Φ
( R|b|
ψ(1/M)

)
, s ∈ J.

Next we distinguish three cases:
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Case (i) σ < α. From (3.5), (1.1), and (3.12), we obtain

‖Ax‖ ≥
∫ 1

σ

Ψ
( ∫ r

σ

zx(s)ds
)
dr ≥

∫ β

α

Ψ
(
Φ

( R|b|
ψ(1/M)

) ∫ r

α

c(s)ds
)
dr

≥
∫ β

α

Ψ
(
Φ

( R|b|

ψ
(

1
M

)
ψ

(( ∫ r

α
c(s)ds

)−1
)))

dr

=
R|b|

ψ(1/M)
Q(α) ≥ R|b|

ψ(1/M)
q

and so from the choice of M we obtain

‖Ax‖ ≥ T2 = ‖x‖. (3.13)

Case (ii) α ≤ σ ≤ β. Adding relations (3.4) and (3.5), we obtain

2‖Ax‖ ≥
∫ σ

0

Ψ
( ∫ σ

r

zx(s)ds
)
dr +

∫ 1

σ

Ψ
( ∫ r

σ

zx(s)ds
)
dr

≥
∫ σ

α

Ψ
(
Φ

( R|b|
ψ(1/M)

) ∫ σ

r

c(s)ds
)
dr +

∫ β

σ

Ψ
(
Φ

( R|b|
ψ(1/M)

) ∫ r

σ

c(s)ds
)
dr

≥
∫ σ

α

Ψ
(
Φ

( R|b|

ψ(1/M)ψ
(( ∫ σ

r
c(s)ds

)−1
)))

dr

+
∫ β

σ

Ψ
(
Φ

( R|b|

ψ(1/M)ψ
(( ∫ r

σ
c(s)ds

)−1
)))

dr

=
R|b|

ψ(1/M)
Q(σ) ≥ R|b|

ψ(1/M)
2q

and by the choice of M (see (3.11)) we, again, obtain (3.13)
Case (iii) σ > β. In this case we use relation (3.4) as exactly in case (i) and, finally,
obtain (3.13).

Since the operator A is obviously completely continuous, inequalities (3.10) and
(3.13) imply that Theorem 1.1 applies with Ω1 and Ω2 being the open balls in C
with center the origin and radius T1 and T2 respectively. �

Theorem 3.2. Assume that the function f is (upper) bounded and the conditions
(H1)–(H4), (H6)1 and (H7) are satisfied. Then the boundary-value problem (1.2),
(1.3) admits a positive solution.

Proof. Assume that R1 is a bound of f . Take any x ∈ K with

‖x‖ = S1 := B0

[
Ψ(‖c‖1R1)

]
+ Ψ(‖c‖1R1).

Then from (3.4) we obtain

‖Ax‖ = B0

[
U

(
Ex(1), Ex

)]
+

∫ σ

0

Ψ
[ ∫ σ

r

zx(s)ds
]
dr

≤ B0

[
Ψ(Ex(1))

]
+ Ψ

(
Ex(1)

)
≤ B0

[
Ψ(‖c‖1R1)

]
+ Ψ(‖c‖1R1)

= S1 = ‖x‖,

for all x with ‖x‖ = S1.
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Now we let any M > 0 satisfying (3.11), but |a| in place of |b|. From condition
(H6)1 it follows that there is a S2 > 0 with S2 < S1 such that each u := (u1, . . . , un)
with 0 ≤ uj ≤ S2, satisfies relation (3.12), but with |a| in the place of |b|. Take an
x ∈ K with ‖x‖ = S2. Then proceed as in the second part of Theorem 3.1. �

Theorem 3.3. Assume that the conditions (H1)–(H4), (H6)1 and (H7) are satisfied
and the function f(t, u1, u2, . . . , un) is not (upper) bounded with respect to a variable
uj0 . If the condition (H6)2 is satisfied with respect to the index j0 and at least one
of the conditions (H10), (H11) is satisfied, then the boundary value problem (1.2),
(1.3) admits a positive solution.

Proof. Consider an ε > 0 such that

ε ≤ 1
‖c‖1

φ
( 1
|a|(ρ+ 1)

)
,

where a is the vector in condition (H6)2. From this condition it follows that there
is a P > 0 such that for all t ∈ I and u ∈ R+ the inequality uj0 ≥ P implies

f(t, u) ≤ εΦ(〈a, u〉),

for all t ∈ I. Since f is unbounded with respect to the variable uj0 , there is a
S1 > P such that if 0 ≤ uj0 ≤ S1 then

f(t, u1, . . . , uj0 , . . . , un) ≤ sup
t∈I

f(t, u1, . . . , S1, . . . , un)

≤ εΦ(α1u1 + · · ·+ αj0uj0 + · · ·+ αnun),

for all t ∈ I and ui ≥ 0, i 6= j0. For all x ∈ K with ‖x‖ = S1 it holds

Ψ
(
Ex(1)

)
≤ Ψ

(
‖c‖1εΦ(|a|S1)

)
= Ψ

(
φ(ψ(‖c‖1ε))Φ(|a|S1)

)
≤ Ψ

(
Φ[|a|ψ(‖c‖1ε)S1]

)
= |a|ψ(‖c‖1ε)S1 .

Assume that (H10) holds. Then for some ρ > 0 from Lemma 2.2 and relation (3.4)
we obtain

‖Ax‖ ≤ B0

[
U

(
Ex(1), Ex

)]
+

∫ σ

0

Ψ
[
Ex(σ)

]
dr

≤ (ρ+ 1)Ψ
[
Ex(1)

]
≤ |a|(ρ+ 1)ψ(‖c‖1ε)S1 ≤ S1,

because of the choice of ε. So we have ‖Ax‖ ≤ ‖x‖ for all x with ‖x‖ = S1.
If (H11) holds, we use (3.5) and obtain the same result. The rest of the proof is

similar as that of Theorem 3.2. �

4. Examples

Example 4.1. Consider the boundary-value problem

[(λ1|x′|+ λ2|x′|2)x′]′ + c(t)[Λ1x(t/2) + Λ2x(t)]4 = 0, t ∈ [0, 1],

x(0)− ex′(0) + 1 = 0, x(1) + [x′(1)]1/3 = 0,
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where λi,Λi > 0 for i = 1, 2 and the function c satisfies condition (H3). It is easy
to see that Theorem 3.1 is applicable, where here we have

Φ(u) := (λ1|u|+ λ2|u|2)u, φ(u) := min{u2, u3},

B0(u) = eu − 1, B1(u) = u1/3

and a = b is the vector with coordinates (Λ1,Λ2). Note that (H8) is satisfied.

Example 4.2. Consider the boundary-value problem

[(λ1|x′|+ λ2|x′|2)x′]′ + c(t)[Λ1x(t/2) + Λ2x(t)] = 0, t ∈ [0, 1],

x(0)− λ
(
x′(0) + sin[x′(0)]

)
= 0, x(1) + [x′(1)]1/3 = 0,

where λ > 0 and the other coefficients are as in Example 4.1. It is not hard to see
that Theorem 3.3 applies. Here one can get j0 = 1, or 2. Also (H10) holds.

Example 4.3. Consider the boundary-value problem

x′′ + c(t)(1 + e−x′
)
[
sin

(
Λ1x(t/2) + Λ2x(t)

)]2/3

= 0, t ∈ [0, 1], (4.1)

associated with any of the three pairs of conditions (1.2)–(1.5), where λ,Λ1,Λ2 >
0 and the function c is continuous. Here (4.1) depends on the first derivative
of the solution. Thus in order to investigate existence of solutions one has to
follow a standard method where the space C1(I,R) should be taken into account.
Nevertheless, we can easily see that (4.1) can be written as

[Φ(x′)]′ + a(t)
[
sin

(
Λ1x(t/2) + Λ2x(t)

)]2/3

= 0, t ∈ [0, 1], (4.2)

where Φ(u) := ln[ 12 (1 + eu)]. We claim that for all u, v > 0 it holds

Φ(uv)
Φ(u)

≥ v, (4.3)

thus Φ is a sup-multiplicative-like function, with a supporting function φ(v) = v.
To prove the claim it is sufficient to show that the function

h(u) := 1 + euv − 1
2v−1

(1 + eu)v, u ≥ 0

takes nonnegative values. Indeed, we have h(0) = 0 and

h′(u) = veuv − v

2v−1
(1 + eu)v−1.

Clearly is sufficient to show that h′(u) ≥ 0, or equivalently, that

η(u) := 2v−1(1 + eu)− (1 + e−u)v ≥ 0.

The latter is true since η is increasing and it vanishes at zero. Thus (4.3) holds.
Now we can apply Theorem 3.2 to conclude the existence of solutions of the problem
(4.2)–(1.3) provided that the functions B0, and B1 satisfy condition (H7).
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