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TRIPLE POSITIVE SOLUTIONS FOR THE Φ-LAPLACIAN
WHEN Φ IS A SUP-MULTIPLICATIVE-LIKE FUNCTION

GEORGE L. KARAKOSTAS

Abstract. The existence of triple positive solutions for a boundary-value
problem governed by the Φ-Laplacian is investigated, when Φ is a so-called

sup-multiplicative-like function (in a sense introduced in [22]) and the bound-
ary conditions include nonlinear expressions at the end points (as in [21, 28]).
The Leggett-Williams fixed point theorem in a cone is used. The results im-

prove and generalize known results given in [21].

1. Introduction

We call sup-multiplicative-like function (SML in short) an odd homeomorphism
Φ of the real line R onto itself for which there exists a homeomorphism φ of R+ :=
[0,+∞) onto R+ such that for all v1, v2 ≥ 0 it holds

φ(v1)Φ(v2) ≤ Φ(v1v2).

We then say that φ supports Φ. This is a meaning introduced in [22] and some
properties of it were given therein. In Section 2 we shall present more properties by
connecting the meaning of SML functions with the literature. In particular we shall
see the relation of this meaning with the ”uniform quietness at zero” introduced in
[24].

It is clear that any sup-multiplicative function is a SML function with φ = Φ.
Also any function of the form

Φ(u) :=
k∑

j=0

cj |u|rju, u ∈ R

is SML, provided that 0 < r0 < r1 < · · · < rk, ckc0 6= 0 and 0 ≤ cj , j = 0, 1, . . . , k.
Here a supporting function is defined by

φ(u) := min{urk+1, ur0+1}, u ≥ 0.

Let Φ be a differentiable SML function and, for each i = 1, 2, . . . , n, let gi : [0, 1] →
[0, 1] be measurable functions.

2000 Mathematics Subject Classification. 34B15, 34B18.
Key words and phrases. Boundary value problems, positive solutions, Φ-Laplacian,

Leggett-Williams fixed point theorem.
c©2004 Texas State University - San Marcos.

Submitted February 5, 2004. Published May 6, 2004.

1



2 GEORGE L. KARAKOSTAS EJDE-2004/69

In this paper we investigate when there exist triple positive solutions of the
one-dimensional differential equation with deviated arguments of the form

[Φ(x′)]′ + p(t)f(t, x(g1(t)), x(g2(t)), . . . , x(gn(t))) = 0, a. a. t ∈ I := [0, 1],
(1.1)

which satisfy one of the following three pairs of conditions

x(0)−B0(x′(0)) = 0, x(1) +B1(x′(1)) = 0, (1.2)

x(0)−B0(x′(0)) = 0, x′(1) = 0, (1.3)

x′(0) = 0, x(1) +B1(x′(1)) = 0. (1.4)

When the leading function Φ is of the form Φ(u) := |u|m−2u, equation (1.1)
comes from the nonautonomous m-Laplacian elliptic equation in the n-dimensional
space which has radially symmetric solutions. Also equation (1.1) is generated from
an equation of the form

x′′ + q(x′)f(t, x) = 0,
where inf{q(u) : |u| ≤ r} > 0, for all r > 0, by setting

Φ(u) :=
∫ u

0

dξ

q(ξ)
.

The problem of existence of positive solutions for boundary value problems gener-
ated by applications in applied mathematics, physics, mechanics, chemistry, biology,
etc., and described by ordinary or functional differential equations was extensively
studied in the literature, see the bibliography in this article. Most of these works
make use of the well known Leggett-Williams Fixed Point Theorem [17, 27], since it
may also provide information for the multiplicity of the solutions. Boundary value
problems with boundary conditions of the form (1.2)–(1.4) were first discussed in
[18], where a problem of the form

x′′ + f(t, x) = 0, t ∈ (0, 1)

is considered associated with the boundary conditions

ax(0)− bx′(0) = 0, cx(1) + dx′(1) = 0, (1.5)

where all the coefficients a, b, c, d are positive reals. Section 6 in [18] is devoted
to boundary value problems with retarded arguments associated with Dirichlet
boundary conditions.

In [16] the existence of positive solutions of the equation

x′′ + c(t)f(x) = 0, t ∈ (0, 1)

associated with the conditions (1.5), was investigated. Motivated by [16] Wang [28]
considered the function g(u) = |u|p−2u, p > 1 and he studied the boundary-value
problem

(g(x′))′ + c(t)f(x) = 0, t ∈ (0, 1) (1.6)
associated with the boundary conditions of the form (1.2)–(1.4), where B0 and B1

are both nondecreasing, continuous, odd functions defined on the whole real line
and at least one of them is sub-linear. The function c satisfies an integral condition
through the inverse function of g. An analog condition will also be assumed in this
paper.

In [15], where an equation of the form (1.1) was discussed (but without deviating
arguments and with simple Dirichlet conditions), the leading factor depends on an
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odd homeomorphism Φ, which, in order to guarantee the nonexistence of solutions,
it satisfies the condition

lim sup
u→+∞

Φ(uv)
Φ(u)

< +∞,

for all v > 0. But it is clear that such a condition is not enough. Instead, one
should adopt the condition

sup
u>0

Φ(uv)
Φ(u)

< +∞. (1.7)

In Section 2 we shall see how this condition is related to the meaning of SML
functions and quietness at zero, see, [23, 24].

Our results extend and improve the results given in [21]. Indeed, we show exis-
tence of solutions under rather mild conditions on the functions B0 and B1 (they
are not necessarily sublinear), where the Leggett-Williams Fixed Point Theorem
on (topologically) closed cones in Banach spaces is applied. In [29] the same con-
ditions were imposed to a one dimensional p-Laplacian differential equation, where
the derivative affects the response function.

Our paper is organized as follows: In Section 2 we present some properties of the
sup-multiplicative-like functions. In Section 3 we give some auxiliary facts needed
in the sequel. The main results are stated in Section 4. The article closes with
a specific case and an application in Section 5, where a retarded boundary-value
problem is given with no sublinear functions B0, B1. It is proved that there exist
constants a, b, c, with 0 < a < b < c and three positive solutions x1, x2, x3 such
that ‖xj‖ < c, j = 1, 2, 3 and ‖x1‖ ≤ a < ‖x2‖ and for a subinterval J of I it
holds infs∈J x2(s) < b < infs∈J x3(s). In particular we notice that the constants
are chosen uniformly with respect to the retardation.

2. On Sup-Multiplicative-Like functions

In this section we shall present some properties of the SML functions. And
although most of them are exhibited in [22], we shall repeat them here and shall
present new ones. In particular we shall see how these functions are connected with
the uniformly quiet at zero functions introduced in [24]. See, also [23].

¿From the definition it follows that a SML function Φ and any corresponding
supporting function φ are increasing unbounded functions vanishing at zero and
moreover their inverses Ψ and ψ respectively are increasing unbounded and such
that

Ψ(w1w2) ≤ ψ(w1)Ψ(w2),
for all w1, w2 ≥ 0. From this relation it follows easily that, for all M > 0 and u ≥ 0,
it holds

MΦ(u) ≥ Φ
( u

ψ
(

1
M

))
. (2.1)

Proposition 2.1. If Φ1 and Φ2 are two SML functions, then so do the functions
Φ defined by

(i) Φ := Φ1 + Φ2

(ii) Φ := Φ1|Φ2|
(iii) Φ := Φ1 ◦ Φ2,

(iv) Φ(u) :=

{
Φ1(u)|[Φ2(u−1)]−1|, if u 6= 0
0, if u = 0 .
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Proof. Indeed, let φ1, φ2 be functions which support the SML functions Φ1 and Φ2,
respectively. Then, for all u, v ≥ 0, we have[

Φ1 + Φ2

]
(uv) ≥ Φ1(u)φ1(v) + Φ2(u)φ2(v) ≥

[
Φ1 + Φ2

]
(u)φ(v),

where φ(v) := min{φ1(v), φ2(v)}. This proves (i). Also

Φ1(uv)Φ2(uv) ≥ Φ1(u)φ1(v)Φ2(u)φ2(v) ≥
(
Φ1(u)Φ2(u)

)
φ(v),

where φ(v) := φ1(v)φ2(v). This proves (ii). Moreover we have

Φ1

(
Φ2(uv)

)
≥ Φ1

(
Φ2(u)φ2(v)

)
≥

(
Φ1

(
Φ2(u)

)
φ(v),

where φ(v) := φ1

(
φ2(v)

)
, which proves (iii). Finally, we have

Φ(uv)
Φ(u)

=
Φ1(uv)

Φ2(u−1v−1)
.
Φ2(u−1)
Φ1(u)

=
Φ1(uv)
Φ1(u)

.
Φ2(u−1)

Φ2(u−1v−1)
≥ φ1(v)φ2(v),

which completes the proof. �

To proceed we shall repeat the meaning of the so called uniformly quiet at zero
functions introduced in [24]. But first we start with a definition from [23].

Definition 2.2. A continuous function f : [0,+∞) → R+, with f(x) > 0, when
x > 0, is said to be quiet at zero, if for any pair of sequences (xn), (yn) with
0 ≤ xn ≤ yn, n = 1, 2, . . . , which converge to zero, it holds

f(xn) = O(f(yn)).

An equivalent definition is the following (see [23]): A continuous function f :
[0,+∞) → R+, with f(x) > 0, when x > 0 is quiet at zero, if and only if for each
T > 0 there is a µ ≥ 1 such that for all τ ∈ (0, T ) it holds

sup{f(x) : x ∈ [0, τ ]} ≤ µ inf{f(x) : x ∈ [τ, T ]}.

Now, a continuous function f : [0,+∞) → R+, with f(x) > 0, when x > 0, is
uniformly quiet at zero, if it is quiet at zero and the constant µ works uniformly
with respect to all T > 0. See [24]. We shall show the following result.

Theorem 2.3. Let Φ be a differentiable odd homeomorphism of R onto R, whose
the derivative Φ′ is uniformly quiet at zero. Then Φ is a SML function, if and only
if it satisfies relation (1.7).

Proof. Observe that (1.7) is equivalent to

inf
u>0

Φ(uv)
Φ(u)

> 0, v > 0.

Indeed, if for each v > 0 we have

sup
u>0

Φ(uv)
Φ(u)

=: H(v) < +∞,

then

inf
u>0

Φ(uv)
Φ(u)

=
1

H(1/v)
=: h(v) > 0.

Clearly, the function h is increasing. We claim that h is unbounded. Indeed, take
any M > 1 and let µ be the constant in the definition of the uniform quieteness at
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zero of the derivative Φ′. We let v := 1 + (M − 1)µ, which is greater than 1. Then,
for each u > 0, we have uv > u and

(M − 1)Φ(u) = (M − 1)
∫ u

0

Φ′(s)ds ≤ (M − 1)u sup
s∈[0,u]

Φ′(s)

≤ (M − 1)µu inf
s∈[u,uv]

Φ′(s) = u(v − 1) inf
s∈[u,uv]

Φ′(s)

≤
∫ uv

u

Φ′(s)ds = Φ(uv)− Φ(u),

from which we get MΦ(u) ≤ Φ(uv). Thus we have M ≤ h(v), which proves the
claim.

Now the continuous function φ defined by

φ(0) = 0, φ(v) :=
1
v

∫ v

0

h(s)ds, v > 0

is (strictly) increasing and unbounded. Indeed, the first is obvious. If it is bounded,
then, for some K > 0 and all 0 < r < v, it holds

Kv ≥
∫ v

0

h(s)ds ≥
∫ v

r

h(s)ds ≥ (v − r)h(r)

and so

h(r) ≤ Kv

v − r
→ K, as v → +∞.

This implies that h is bounded, a contradiction.
Since φ(v) ≤ h(v), for all v ≥ 0, the function φ supports Φ, thus the latter is a

sup-multiplicative-like function. The only if part is evident. �

3. Preliminaries and some basic lemmas

To formulate the problem, we let C(I,R) be the set of all continuous functions
x : I → R endowed with the sup-norm

‖x‖ := sup
t∈I

|x(t)|.

Let, also, L∞(I,R) be the B-space of all (Lebesgue) measurable functions z : I → R
such that

|z|∞ := ess sup
t∈I

|z(t)| < +∞.

(Here ess sup |z(t)| stands for the essential supremum of |z|, namely the infimum of
all N > 0 such that the set of all t ∈ I satisfying |z(t)| > N has measure zero.)

In the sequel we assume that
(H1) Φ : R → R is a differentiable SML function.
Let φ be a corresponding supporting function of Φ. Then we let Ψ and ψ be the

inverses of Φ and φ, respectively. Note that both these functions are defined on the
whole real line.

For the other statements of the problem we assume the following:
(H2) f(t, u), (t, u) ∈ I × Rn is a real valued function measurable in the first

variable and continuous in the second one. Moreover assume that for all u ∈
Rn with nonnegative coordinates it holds f(·, u) ∈ L∞(I,R) and f(t, u) > 0
for a.a. t ∈ I.
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(H3) p : I → R+ is a (Lebesgue) integrable function such that for some nontrivial
subinterval J := [α, β] of I it holds p(t) > 0 a.e. on J . We set

‖p‖1 :=
∫ 1

0

p(t)dt.

(H4) The functions gj : I → I, j = 1, 2, . . . , n are measurable and such that

γ := inf
t∈J

min{t, 1− t, min
j=1,2,...,n

{gj(t), 1− gj(t)}} > 0,

where J is the interval defined in (H3).
(H5) For each i = 0, 1 the function Bi is continuous nondecreasing and such that

uBi(u) ≥ 0, u ∈ R.
As we stated above, to prove our main results we will use the Leggett-Williams
Fixed Point Theorem, which we state here. First we give some notation.

Definition 3.1. A cone P in a real Banach space E is a nonempty closed subset of
E such that

(i) κP + λP ⊂ P, for all κ, λ ≥ 0
(ii) P ∩ (−P) = {0}.

Let P be a cone in E. For any r > 0 and any cone P let

Pr := {y ∈ P : ‖y‖ < r} .
Then, Pr is the closure of Pr, i.e. the set {y ∈ P : ‖y‖ ≤ r}.

Also, for all ρ, r > 0 and any real valued function h defined on the cone P,
consider the set

P(h; r, ρ) := {y ∈ Pρ : r ≤ h(y)}.

Theorem 3.2 (Leggett-Williams [17, 27]). Let T : Pc → Pc be a completely con-
tinuous operator and h : P → R a nonnegative continuous concave function on P
such that h(y) ≤ ‖y‖ for all y ∈ Pc. Suppose that there exist numbers a, b, c, d, with
0 < a < b < d ≤ c and such that

(i) {x ∈ P(h; b, d) : h(x) > b} 6= ∅ and h(T (x)) > b, for all x ∈ P(h; b, d),
(ii) ‖T (x)‖ < a, for all x ∈ Pa,
(iii) h(Ty) > b, for y ∈ P(h; b, c) with ‖Ty‖ > d.

Then T has at least three fixed points y1, y2, and y3 in Pc such that

‖y1‖ ≤ a < ‖y2‖ and h(y2) < b < h(y3).

The following result follows easily from the concavity.

Lemma 3.3. Any concave continuous function x : I → R+ satisfies the inequality

x(t) ≥ min{t, 1− t}‖x‖.

The following result (which is proved in [22]) plays an important role in our
approach.

Lemma 3.4. Suppose the functions B0, B1 satisfy condition (H5). Then for each
Θ ≥ 0 and y ∈ C(I,R), with 0 ≤ y(t) ≤ Θ, t ∈ I, there exists a unique real
number U(Θ, y), which depends continuously on Θ, y and it satisfies

0 ≤ U(Θ, y) ≤ Ψ(Θ),

Ω
(
U(Θ, y)

)
= 0,
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where

Ω(w) := B0(w) +B1

[
Ψ

(
Φ(w)−Θ)

]
+

∫ 1

0

Ψ
[
Φ(w)− y(s)

]
ds, w ≥ 0.

4. Main results

Following the lines of [22] we can see that a function x ∈ C(I,R) solves the
boundary-value problem (1.1), (1.2), if and only if it solves the equation

x(t) = (Ax)(t), (4.1)

where A is the operator defined on the set C by the formula

(Ay)(t) = B0

[
U

(
Ey(1), Ey

)]
+

∫ t

0

Ψ
[
Φ

(
U(Ey(1), Ey)

)
− Ey(r)

]
dr, (4.2)

or, equivalently, by the formula

(Ay)(t) = −B1

(
−Ψ

[
Ey(1)− Φ

(
U(Ey(1), Ey)

)])
+

∫ 1

t

Ψ
[
Ey(r)− Φ

(
U(Ey(1), Ey)

)]
dr,

(4.3)

where, for simplicity, we have set

Ey(t) :=
∫ t

0

zy(s)ds, zy(s) := p(s)f
(
s, y(g1(s)), y(g2(s)), . . . , y(gn(s)).

Next, we provide sufficient conditions for the existence of solutions of the integral
equation (4.1). Consider the set

K :=
{
x ∈ C(I,R+) : x is concave

}
,

and observe that it is a cone in C. Let x ∈ K. For all t it holds

(Ax)′(t) = Ψ
(
Φ

(
U(Ex(1), Ex)

)
− Ex(t)

)
,

thus (Ax)′ decreases. Moreover we have

(Ax)(1) = −B1

(
Ψ

[
Φ

(
U(Ex(1), Ex)

)
− Ex(1)

])
≥ 0,

(Ax)(0) = B0

(
U

(
Ex(1), Ex

))
≥ 0.

These facts together with Lemma 3.4 ensure that the function (Ax)(·) is nonnegative
and concave; thus Ax ∈ K.

Let σ be the smallest point in I satisfying

Φ
(
U(Ex(1), Ex)

)
= Ex(σ).

It is clear that such a point exists because of Lemma 3.4. Then the maximum of
Ax is achieved at σ and therefore we have

‖Ax‖ = (Ax)(σ). (4.4)

Moreover (4.2) becomes

(Ay)(t) = B0

[
Ey(σ)

)]
+

∫ t

0

Ψ
[ ∫ σ

r

zy(s)ds
]
dr, (4.5)

while (4.3) takes the form

(Ay)(t) = −B1

(
−Ψ

[ ∫ 1

σ

zx(s)ds
])

+
∫ 1

t

Ψ
[ ∫ r

σ

zx(s)ds
)]
dr. (4.6)
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Now consider the boundary-value problem (1.1), (1.3). In this case the problem
is equivalent to the operator equation (4.1), where A is the completely continuous
operator defined by

(Ax)(t) = B0

[
Ψ

(
Ex(1)

)]
+

∫ t

0

Ψ
( ∫ 1

s

zx(s)ds
)
.

For each x ∈ K the image Ax is a nonnegative function and the derivative (Ax)′

is a non-increasing function. Thus it is concave and so A maps K into K. Also
(Ax)(·) is a nondecreasing function, thus we have

‖Ax‖ = (Ax)(1) = B0

[
Ψ

(
Ex(1)

)]
+

∫ 1

0

Ψ
( ∫ 1

s

zx(s)ds
)
.

Finally, let the boundary value problem (1.1), (1.4). In this case the problem is
equivalent to the operator equation Ax = x, where A is the completely continuous
operator defined by

(Ax)(t) = −B1

[
−Ψ(Ex(1))

]
+

∫ 1

t

Ψ(Ex(s))ds.

For each x ∈ K the image (Ax)(·) is a nonnegative function, having its first deriv-
ative non-increasing. Thus it is a concave function and so A maps K into K. Also
(Ax)(·) is a non-increasing function, thus we have

‖Ax‖ = (Ax)(0) = −B1

[
−Ψ(Eu(1))

]
+

∫ 1

0

Ψ(Ex(s))ds.

Next we shall discuss only the problem (1.1)–(1.2), since the other extreme cases
follow with obvious small modifications.

Condition (H3) implies that the function

Q(t) :=
∫ t

α

dr

ψ
(( ∫ t

r
p(s)ds

)−1) +
∫ β

t

dr

ψ
(( ∫ r

t
p(s)ds

)−1) ,
is well defined on the interval J and it takes a positive minimum on it, say, 2m.
(An upper bound of Q is (β−α)/ψ(1/‖p‖1). Keep in mind the monotonicity of the
function ψ.) Note that

Q(α) =
∫ β

α

dr

ψ
(( ∫ r

α
p(s)ds

)−1
) (≥ 2m),

Q(β) =
∫ β

α

dr

ψ
(( ∫ β

r
p(s)ds

)−1
) (≥ 2m).

Let M(u), u ≥ 0 be the function

M(u) := sup{|f(·, v1, v2, . . . , vn)|∞ : 0 ≤ vj ≤ u, j = 1, 2, . . . , n}, u ≥ 0.

It is not hard to see that M is a nondecreasing. Our first main result in this section
is the following:

Theorem 4.1. Suppose that conditions (H1)–(H4) are satisfied. Moreover assume
that there are real numbers a, b, c such that 0 < a < b < b

γ < c and satisfying the
following conditions:
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(H6) Let G stand for either the function B0 or B1. Then

G
(
Ψ

(
‖p‖1M(w)

))
+ Ψ

(
‖p‖1M(w)

)
< w,

for w = a and w = c.
(H7) For all t ∈ J and vj ∈ [γ, 1/γ] it holds

mγΨ
(
f(t, bv1, bv2, . . . , bvn)

)
> b, for a.a.t ∈ I.

Then the boundary-value problem (1.1)–(1.2) has at least three positive solutions
x1, x2, x3 with ‖xj‖ ≤ c, for j = 1, 2, 3 and such that

‖x1‖ ≤ a < ‖x2‖ and inf
t∈J

x2(t) < b < inf
t∈J

x3(t).

Proof. We shall show that all conditions of Theorem 3.2 are satisfied. Let x ∈ Kw,
where w ∈ {a, c}. Then we have

f(s, x(g1(s), x(g2(s)), . . . , x(gn(s))) ≤M(w), for a.a.s ∈ I.

Hence

Ex(1) =
∫ 1

0

zx(s)ds ≤ ‖p‖1M(w)

and, because of Lemma 3.4, we get

‖Ax‖ ≤ G
(
Ψ

(
‖p‖1M(w)

))
+ Ψ

(
‖p‖1M(w)

)
< w.

This and the concavity of Ax imply that A maps Kc into Kc and Ka into Ka, hence
condition (ii) of Theorem 3.2 is satisfied.

Consider the nonnegative continuous concave function h defined by

h(x) := inf
t∈J

x(t), x ∈ K.

Since the set K b
γ

contains the constant function y(t) := b/γ and, moreover, it holds
h(y) = b/γ > b, we have

K(h; b,
b

γ
) 6= ∅.

Therefore, the first requirement of condition (i) of Theorem 3.2 is satisfied.
Now, consider any x ∈ K(h; b) ∩K b

γ
; then we have

‖x‖ ≤ b/γ and x(t) ≥ b, t ∈ J.

This implies that for all s ∈ J and j = 1, 2, . . . , n it holds

b

γ
≥ x(gj(s)) ≥ min{gj(s), 1− gj(s)}‖x‖ ≥ γ‖x‖ ≥ γb.

Therefore, from condition (H7), we have

f(s, x(g1(s)), x(g2(s)), . . . , x(gn(s))) ≥ Φ
( b

mγ

)
, for a. a. s ∈ J (4.7)

Now, we claim that

‖Ax‖ > b

γ
. (4.8)

To prove this claim we distinguish three cases:
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Case (i) σ < α. From (4.4), (4.6), (4.7) and (2.1) we obtain

‖Ax‖ ≥
∫ 1

σ

Ψ
( ∫ r

σ

zx(s)ds
)
dr >

∫ β

α

Ψ
(
Φ

( b

mγ

) ∫ r

α

p(s)ds
)
dr

≥
∫ β

α

Ψ
(
Φ

( b

mγψ
(( ∫ r

α
p(s)ds

)−1)))
dr

=
b

mγ
Q(α) ≥ 2b

γ
>
b

γ
.

Case (ii) α ≤ σ ≤ β. From relations (4.4), (4.5), (4.6) and (4.7) we obtain

2‖Ax‖

≥
∫ σ

0

Ψ
( ∫ σ

r

zx(s)ds
)
dr +

∫ 1

σ

Ψ
( ∫ r

σ

zx(s)ds
)
dr

>

∫ σ

α

Ψ
(
Φ

( b

mγ

) ∫ σ

r

p(s)ds
)
dr +

∫ β

σ

Ψ
(
Φ

( b

mγ

) ∫ r

σ

p(s)ds
)
dr

≥
∫ σ

α

Ψ
(
Φ

( b

mγψ
(( ∫ σ

r
p(s)ds

)−1)))
dr +

∫ β

σ

Ψ
(
Φ

( b

mγψ
(( ∫ r

σ
p(s)ds

)−1)))
dr

=
b

mγ
Q(σ) ≥ 2b

γ
.

Case (iii) σ > β. In this case we use relations (4.4) and (4.5) as in case (i) and
obtain (4.8). This proves the claim.

Now by Lemma 3.3 and (4.8) we get

h(Ax) = min
t∈J

(Ax)(t) ≥ min
t∈J

min{t, 1− t}‖Ax‖ ≥ γA > b,

which shows that condition (i) of Theorem 3.2 is true.
Finally, we show that condition (iii) of Theorem 3.2 is satisfied. Indeed, according

to Lemma 3.3, for every x ∈ K(h; b) ∩Kc, with ‖Ax‖ > b
γ , we have

h(Ax) = inf
t∈J

(Ax)(t) ≥ γ‖Ax‖ > b.

Consequently Theorem 3.2 is applicable, with P := K, T := A, a, b the points as
they are defined above and d := b

γ . The proof is complete. �

5. A specific case and an application

Consider a differentiable SML function Φ and the retarded differential equation
of the form

[Φ(x′(t)]′ + f(x(kt)) = 0, (5.1)

with 0 < k ≤ 1, associated with the boundary conditions (1.2).

Theorem 5.1. Assume that f is a nonnegative continuous increasing function such
that f(0) = 0. Assume, also, that for G = B0, or G = B1 it holds

lim sup
w→ζ

f
(
G(w) + w

)
Φ(w)

< 1 (5.2)
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for each ζ = 0 and ζ = +∞ and moreover

sup
w>0

f(w)
Φ(512w)

> 1. (5.3)

If the conditions (H1) and (H5) are satisfied, then there exist real numbers a, b, c,
with a < b < c such that for each k ∈ (0, 1] there are solutions x1, x2, x3 of the
problem (5.1)–(1.2) satisfying the conclusion of Theorem 3.2.

Proof. Fix any k ∈ (0, 1] and consider (5.1) associated, for instance, with the bound-
ary condition (1.2). We are going to apply Theorem 4.1. To do it consider the
interval J := [1/4, 3/4]. Then we obtain

γ = inf
t∈J

min{t, 1− t, kt, 1− kt} =
1
4

and m =
1
32
.

By (5.3) there exists b0 > 0 such that

f(b0) > Φ(512b0). (5.4)

Define b := 4b0. From (5.2) it follows that there are a′, c′ with

0 < a′ < Ψ(f(b)) < Ψ(f(4b)) < c′

and such that
f(G(w) + w) < Φ(w), w ∈ {a′, c′}.

Let a, c be the positive real numbers satisfying f(a) = Φ(a′) and f(c) = Φ(c′).
Then we have 0 < a < b < 4b < c and moreover

G(Ψ(f(w))) + Ψ(f(w)) < w, w ∈ {a, c},
which means that condition (H6) is satisfied, since in (5.1) we have p(t) = 1 and
M(u) = f(u). Also from (5.4) it follows that, for all v ∈ [1/4, 4], it holds

f(bv) ≥ f(
b

4
) = f(b0) > Φ(512b0) = Φ(

b

mγ
).

Therefore, Theorem 4.1 applies and the result follows. �

An application. Consider the retarded differential equation

[Φ(x′(t))]′ +
µ∑

j=0

αjx
τj (kt) = 0, (5.5)

where k ∈ (0, 1], 0 < τ0 < τ1 < · · · < τµ and

Φ(u) =

{∑ξ
j=0 γj |u|rju, if |u| ≤ 1,( ∑ξ

j=0 γj

)
|u|ρu, if |u| > 1.

Here µ, ξ are positive integers, 0 < r0 < r1 < · · · < rξ, 0 < ρ and all the coefficients
are nonnegative real numbers with γ0 6= 0. Associate Eq. (5.5) with the boundary
conditions

x(0)−
ν∑

j=0

βj |x′(0)|ηjx′(0) = 0, x(1) + ex′(1) = 0,

where ν is a positive integer and βj ≥ 0, with βν > 0 and 0 < η0 < η1 < · · · < ην .
Assume that the inequalities r0 + 1 < τ0, (ην + 1)τµ < ρ+ 1 and

µ∑
j=0

αj >
( ξ∑

j=0

γj

)
(512)ρ+1
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are true. Then it is not hard to see that Theorem 5.1 is applicable. (In this case
the constant b0 in the proof of Theorem 5.1 is taken equal to 1.) It is noteworthy
that the functions

B0(u) :=
ν∑

j=0

βj |u|ηju and B1(u) := eu

are not sublinear, thus the results of [21] cannot be applied, even if the leading
factor Φ has the classical form |u|p−2u of the p-Laplacian.
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