
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 76, pp. 1–32.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

VARIATIONAL METHODS FOR A RESONANT PROBLEM
WITH THE p-LAPLACIAN IN RN

BÉNÉDICTE ALZIARY, JACQUELINE FLECKINGER, PETER TAKÁČ

Abstract. The solvability of the resonant Cauchy problem

−∆pu = λ1m(|x|)|u|p−2u + f(x) in RN ; u ∈ D1,p(RN ),

in the entire Euclidean space RN (N ≥ 1) is investigated as a part of the

Fredholm alternative at the first (smallest) eigenvalue λ1 of the positive p-
Laplacian −∆p on D1,p(RN ) relative to the weight m(|x|). Here, ∆p stands
for the p-Laplacian, m : R+ → R+ is a weight function assumed to be radially

symmetric, m 6≡ 0 in R+, and f : RN → R is a given function satisfying a suit-
able integrability condition. The weight m(r) is assumed to be bounded and to
decay fast enough as r → +∞. Let ϕ1 denote the (positive) eigenfunction as-

sociated with the (simple) eigenvalue λ1 of −∆p. If
∫

RN fϕ1 dx = 0, we show

that problem has at least one solution u in the completion D1,p(RN ) of C1
c (RN )

endowed with the norm (
∫

RN |∇u|p dx)1/p. To establish this existence result,
we employ a saddle point method if 1 < p < 2, and an improved Poincaré

inequality if 2 ≤ p < N . We use weighted Lebesgue and Sobolev spaces with

weights depending on ϕ1. The asymptotic behavior of ϕ1(x) = ϕ1(|x|) as
|x| → ∞ plays a crucial role.

1. Introduction

Spectral problems involving quasilinear degenerate or singular elliptic opera-
tors have been an interesting subject of investigation for quite some time; see e.g.
Drábek [3] or Fuč́ık et al. [10]. In our present work we focus our attention on the
solvability of the Cauchy problem

−∆pu = λm(x) |u|p−2u+ f(x) in RN ; u ∈ D1,p(RN ), (1.1)

in the entire Euclidean space RN (N ≥ 1). Here, ∆p stands for the p-Laplacian
defined by ∆pu ≡ div(|∇u|p−2∇u), 1 < p < N , λ ∈ R is the spectral parameter,
m : RN → R+ is a weight function assumed to be radially symmetric, m 6≡ 0 in RN ,
and f : RN → R is a given function satisfying a suitable integrability condition. We
look for a weak solution to problem (1.1) in the Sobolev space D1,p(RN ) defined to
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be the completion of C1
c (RN ) under the Sobolev norm

‖u‖D1,p(RN )
def=

( ∫
RN

|∇u(x)|p dx
)1/p

.

If the weight m(x) is measurable, bounded and decays at least as fast as |x|−p−δ

as |x| → ∞, with some δ > 0, the Sobolev imbedding D1,p(RN ) ↪→ Lp(RN ;m)
turns out to be compact, where Lp(RN ;m) denotes the weighted Lebesgue space
of all measurable functions u : RN → R with the norm

‖u‖Lp(RN ;m)
def=

( ∫
RN

|u(x)|pm(x) dx
)1/p

<∞.

Hence, the Rayleigh quotient

λ1
def= inf

{∫
RN

|∇u|p dx : u ∈ D1,p(RN ) with
∫

RN

|u|pmdx = 1
}

(1.2)

is positive and gives the first (smallest) eigenvalue λ1 of −∆p relative to the weight
m. Now take f from the dual space D−1,p′(RN ) of D1,p(RN ), p′ = p/(p− 1), with
respect to the standard duality 〈 · , · 〉 induced by the inner product on L2(RN ). If
−∞ < λ < λ1 then the energy functional corresponding to equation (1.1),

Jλ(u) def=
1
p

∫
RN

|∇u|p dx− λ

p

∫
RN

|u|pm(x) dx−
∫

RN

f(x)u dx (1.3)

defined for u ∈ D1,p(RN ), is weakly lower semicontinuous and coercive onD1,p(RN ).
Thus, Jλ possesses a global minimizer which provides a weak solution to equation
(1.1).

The critical case λ = λ1 is much more complicated when p 6= 2 because the
linear Fredholm alternative cannot be applied. First, one has to have sufficient
information on the first eigenvalue λ1; we refer the reader to Fleckinger et al. [8,
Sect. 2 and 3] or Stavrakakis and de Thélin [21]. One has

−∆pϕ1 = λ1m(x) |ϕ1|p−2ϕ1 in RN ; ϕ1 ∈ D1,p(RN ) \ {0}, (1.4)

and the eigenvalue λ1 is simple, by a result due to Anane [1, Théorème 1, p. 727]
and later generalized by Lindqvist [14, Theorem 1.3, p. 157]. Moreover, the
corresponding eigenfunction ϕ1 can be normalized by ‖ϕ1‖Lp(RN ;m) = 1 and ϕ1 > 0
in RN , owing to the strong maximum principle [24, Prop. 3.2.1 and 3.2.2, p. 801]
or [25, Theorem 5, p. 200]. We decompose the unknown function u ∈ D1,p(RN ) as
a direct sum

u = u‖ · ϕ1 + u> where

u‖ =
∫

RN

uϕ1 µ(x) dx ∈ R and
∫

RN

u> ϕ1 µ(x) dx = 0,
(1.5)

with the weight µ(x) given by µ
def= ϕp−2

1 m. It is quite natural that we treat the
two components, u‖ and u>, differently. The linearization of the equation

−∆pu = λ1m(x) |u|p−2u+ f(x) in RN ; u ∈ D1,p(RN ), (1.6)

about u‖ ·ϕ1, and the corresponding “quadratization” of the functional Jλ1 , play an
important role in our approach. We will also see that the orthogonality condition∫

RN

f ϕ1 µdx ≡
∫

RN

f ϕp−1
1 mdx = 0 (1.7)
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for f and ϕ1 relative to the measure µ(x) dx is sufficient, but not necessary for the
solvability of problem (1.6).

Similarly as in Drábek and Holubová [5] for 1 < p < 2, in Fleckinger and
Takáč [9] for 2 ≤ p < ∞, and in Takáč [22, 23] for any 1 < p < ∞, where
the domain Ω ⊂ RN is bounded, we apply the calculus of variations using the
direct sum (1.5) in order to obtain a solution to equation (1.6). We use entirely
different variational methods to treat the two cases 1 < p < 2 and 2 ≤ p < N : In
the former case we apply a saddle point method from [5, 22, 23], whereas in the
latter case we use a minimization method due to [9] which is based on an improved
Poincaré inequality. Our variational methods are different from the standard ones
because the functional Jλ1 needs not satisfy the Palais-Smale condition if f obeys
the orthogonality condition (1.7); cf. del Pino, Drábek and Manásevich [17,
Theorem 1.2(ii), p. 390].

This paper is organized as follows. In Section 2 we mention some elementary
properties of the first eigenfunction ϕ1 and introduce basic function spaces and
notation. Section 3 contains our main results on the solvability of problem (1.6),
Theorem 3.1 for 2 ≤ p < N and Theorem 3.3 for 1 < p < 2 ≤ N , and some
properties of the energy functional Jλ needed to establish the solvability, as well.
Naturally, our approach requires the compactness of several Sobolev imbeddings
in RN with weights (Proposition 3.6) which we prove in Section 4. In Section 5
we establish a few auxiliary results for the quadratization of Jλ1 . We use this
quadratization to verify the improved Poincaré inequality (Lemma 3.7) for 2 ≤ p <
N in Section 6. From this inequality we derive Theorem 3.1 in Section 7. For
1 < p < 2 the quadratization of Jλ1 is employed in a saddle point method to prove
Theorem 3.3 in Section 8. Finally, some asymptotic formulas for the eigenfunction
ϕ1 near infinity are established in the Appendix (Proposition 9.1).

The rate of decay of ϕ1(x) as |x| → ∞ is, in fact, the main cause for our
restriction p < N . The case p ≥ N seems to require a different technique.

2. Preliminaries

We now put our resonant problem (1.6) into a rigorous setting. Set R+ = [0,∞).
For x ∈ RN we denote by r = |x| ≥ 0 the radial variable in RN .

2.1. Hypotheses. We assume 1 < p < N throughout this article unless indicated
otherwise. Furthermore, the weight m is assumed to be radially symmetric, m(x) ≡
m(|x|), x ∈ RN , where m : R+ → R is a Lebesgue measurable function satisfying
the following hypothesis:

(H) There exist constants δ > 0 and C > 0 such that

0 < m(r) ≤ C

(1 + r)p+δ
for almost all 0 ≤ r <∞. (2.1)

Remark 2.1. In fact, in hypothesis (H) above, instead of m(r) > 0 for almost
all 0 ≤ r < ∞, it suffices to assume only m ≥ 0 a.e. in RN and m does not
vanish identically near zero, i.e., for every r0 > 0 we have m 6≡ 0 in (0, r0).
However, if m ≡ 0 on a set S ⊂ R+ of positive Lebesgue measure, then the
weighted spaces Hϕ1 = L2(RN ;ϕp−2

1 m), Lp(RN ;m), etc. defined below become
linear spaces with a seminorm only. Moreover, all functions from their dual spaces
H′

ϕ1
= L2

(
RN ;ϕ2−p

1 m−1
)
, Lp′(RN ;m−1/(p−1)), etc., respectively, must vanish iden-

tically (i.e., almost everywhere) in the “spherical shell” {x ∈ RN : |x| ∈ S}. This
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would make our presentation much less clear; therefore, we have decided to leave
the necessary amendments in our arguments to an interested reader.

2.2. The first eigenfunction ϕ1. Under hypothesis (H), the first eigenvalue λ1 of
−∆p on RN relative to the weight m(|x|) is simple and the eigenfunction ϕ1 asso-
ciated with λ1 is commonly called a “ground state” for the Cauchy problem (1.4).
The simplicity of λ1 forces ϕ1(x) = ϕ1(|x|) radially symmetric in RN . Hence, the
eigenvalue problem (1.4) is equivalent to

− (|ϕ′1|p−2ϕ′1)
′ − N − 1

r
|ϕ′1|p−2ϕ′1 = λ1m(r)ϕp−1

1 for r > 0;

subject to
∫ ∞

0

|ϕ′1(r)|p rN−1 dr <∞ and ϕ1(r) → 0 as r →∞.

It can be further rewritten as

− (rN−1 |ϕ′1|p−2ϕ′1)
′ = λ1m(r) rN−1 ϕp−1

1 for r > 0;

ϕ′1(r) → 0 as r → 0 and ϕ1(r) → 0 as r →∞.
(2.2)

Recalling hypothesis (H), from (2.2) we can deduce the following simple facts.

Lemma 2.2. Let 1 < p < N and let hypothesis H be satisfied. Then the function
r 7→ r

N−1
p−1 ϕ′1(r) : R+ → R is continuous and decreasing, and satisfies ϕ′1(r) < 0 for

all r > 0.

To determine the asymptotic behavior of ϕ1(r) as r →∞, we will investigate the
corresponding nonlinear eigenvalue problem (2.2) in Appendix 9. Higher smooth-
ness of ϕ1 : R+ → (0,∞) can be obtained directly by integrating equation (2.2):
ϕ1 ∈ C1,β(R+) with β = min{1, 1

p−1}. We refer to Manásevich and Takáč [15,
Eq. (33)] for details.

2.3. Notation. The closure and boundary of a set S ⊂ RN are denoted by S

and ∂S, respectively. We denote by B%
def= {x ∈ RN : |x| < %} the ball of radius

0 < % <∞.
All Banach and Hilbert spaces used in this article are real. Given an integer k ≥ 0

and 0 ≤ α ≤ 1, we denote by Ck,α(RN ) the linear space of all k-times continuously
differentiable functions u : RN → R whose all (classical) partial derivatives of order
≤ k are locally α-Hölder continuous on RN . As usual, we abbreviate Ck(RN ) ≡
Ck,0(RN ). The linear subspace of Ck(RN ) consisting of all Ck functions u : RN → R
with compact support is denoted by Ck

c (RN ).
For 1 < p < 2 we denote by Dϕ1 the normed linear space of all functions

u ∈ D1,2(RN ) whose norm

‖u‖Dϕ1

def=
( ∫

RN

|ϕ′1(|x|)|p−2|∇u(x)|2 dx
)1/2

(2.3)

is finite. Hence, the imbedding Dϕ1 ↪→ D1,2(RN ) is continuous. For p = 2 we set
Dϕ1 = D1,2(RN ). Finally, for 2 < p < N we define Dϕ1 to be the completion of
D1,p(RN ) in the norm (2.3). Thus, the imbedding D1,p(RN ) ↪→ Dϕ1 is continuous.

For 1 < p < N we denote by Hϕ1 the weighted Lebesgue space of all measurable
functions u : RN → R with the norm

‖u‖Hϕ1

def=
( ∫

RN

|u|2 ϕp−2
1 mdx

)1/2

<∞
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and with the inner product

(u, v)Hϕ1

def=
∫

RN

u v ϕp−2
1 mdx for u, v ∈ Hϕ1 .

The imbedding Hϕ1 ↪→ Lp(RN ;m) is continuous for 1 < p ≤ 2, and Lp(RN ;m) ↪→
Hϕ1 is continuous for 2 ≤ p < N , by Lemma 4.2. The Hilbert spaces Dϕ1 and Hϕ1

will play an important role throughout this article.
We use the standard inner product in L2(RN ) defined by 〈u, v〉 def=

∫
RN uv dx

for u, v ∈ L2(RN ). This inner product induces a duality between the Lebesgue
spaces Lp(RN ;m) and Lp′(RN ;m−1/(p−1)), where 1 ≤ p <∞ and 1 < p′ ≤ ∞ with
1
p + 1

p′ = 1, and between the Sobolev space D1,p(RN ) and its dual D−1,p′(RN ), as
well. Similarly, D′ϕ1

(H′
ϕ1

, respectively) stands for the dual space of Dϕ1 (Hϕ1).
We keep the same notation also for the duality between the Cartesian products of
such spaces.

2.4. Linearization and quadratic forms. As usual, I is the identity matrix from
RN×N , the tensor product a ⊗ b stands for the (N × N)-matrix T = (aibj)N

i,j=1

whenever a = (ai)N
i=1 and b = (bi)N

i=1 are vectors from RN , and 〈 · , · 〉RN denotes
the Euclidean inner product in RN . We introduce the abbreviation

A(a) def= |a|p−2
(
I + (p− 2)

a⊗ a
|a|2

)
for a ∈ RN \ {0}. (2.4)

We set A(0) def= 0 ∈ RN×N for all 1 < p < ∞. For a 6= 0, A(a) is a positive
definite, symmetric matrix. The spectrum of the matrix |a|2−pA(a) consists of the
eigenvalues 1 and p− 1. For all a,v ∈ RN \ {0} we thus obtain

0 < min{1, p− 1} ≤ 〈A(a)v,v〉RN

|a|p−2|v|2
≤ max{1, p− 1}. (2.5)

The following auxiliary inequalities are Lemma A.2 (p ≥ 2) and Remark A.3
(p < 2) from Takáč [22, p. 235], respectively; their proofs are straightforward.
First, for any 2 ≤ p < ∞, there exists a constant cp > 0, such that for arbitrary
vectors a,b,v ∈ RN we have

cp ·
(

max
0≤s≤1

|a + sb|
)p−2|v|2 ≤

∫ 1

0

〈A(a + sb)v,v〉(1− s) ds

≤ p− 1
2

(
max

0≤s≤1
|a + sb|

)p−2|v|2.
(2.6)

On the other hand, given any 1 < p < 2, there exists a constant cp > 0, such that
for arbitrary vectors a,b,v ∈ RN , with |a|+ |b| > 0, we have

p− 1
2

(
max

0≤s≤1
|a + sb|

)p−2|v|2 ≤
∫ 1

0

〈A(a + sb)v,v〉(1− s) ds

≤ cp ·
(

max
0≤s≤1

|a + sb|
)p−2|v|2.

(2.7)

These inequalities are needed to treat the linearization of −∆p at ϕ1 below.
Next, as in [22, Sect. 1], we rewrite the first and second terms of the energy func-

tional Jλ1 using the integral forms of the first- and second-order Taylor formulas;
we set

F(u) def=
1
p

∫
RN

|∇u|p dx− λ1

p

∫
RN

|u|pmdx, u ∈ D1,p(RN ). (2.8)
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We need to treat the Taylor formulas for p ≥ 2 and 1 < p < 2 separately.
Case p ≥ 2. Let φ ∈ D1,p(RN ) be arbitrary. We take advantage of eq. (1.4) to
obtain J (ϕ1) = 0 and consequently

F(ϕ1 + φ) =
∫ 1

0

d
ds
F(ϕ1 + sφ) ds

=
∫ 1

0

∫
RN

|∇(ϕ1 + sφ)|p−2∇(ϕ1 + sφ) · ∇φdxds

− λ1

∫ 1

0

∫
RN

|ϕ1 + sφ|p−2(ϕ1 + sφ)φm dxds.

(2.9)

Similarly, applying (1.4) once again, i.e., F ′(ϕ1) = 0, we get

F(ϕ1 + φ) = Qφ(φ, φ) (2.10)

where Qφ is the symmetric bilinear form on the Cartesian product [D1,p(RN )]2

defined as follows: Given any fixed φ ∈ D1,p(RN ), we set

Qφ(v, w) def=
∫

RN

〈[ ∫ 1

0

A(∇(ϕ1 + sφ))(1− s) ds
]
∇v, ∇w

〉
RN

dx

− λ1(p− 1)
∫

RN

[ ∫ 1

0

|ϕ1 + sφ|p−2(1− s) ds
]
v wmdx

(2.11)

for all v, w ∈ D1,p(RN ). In particular, when v ≡ w in RN , one obtains the quadratic
form Qφ(v, v). If also φ ≡ 0 then

Q0(v, v) =
1
2

∫
RN

〈A(∇ϕ1)∇v, ∇v〉RN dx− 1
2
λ1(p− 1)

∫
RN

v2 ϕp−2
1 mdx. (2.12)

The imbedding D1,p(RN ) ↪→ Dϕ1 being dense, we extend the domain of the sym-
metric bilinear form Q0 defined by (2.12) to all of Dϕ1 × Dϕ1 ; see e.g. Kato [12,
Chapt. VI, §1.3, p. 313].

Note that, due to the radial symmetry of ϕ1, formula (2.4) yields

A(∇ϕ1) = |ϕ′1(r)|p−2
(
I + (p− 2)

x⊗ x

r2
)

with ∇ϕ1 = ϕ′1(r)
x

r
(2.13)

for every x ∈ RN with r = |x| > 0. Furthermore, our definition (1.2) of λ1 and
eq. (2.10) guarantee Qtφ(φ, φ) ≥ 0 for all t ∈ R \ {0}. Letting t→ 0 we arrive at

Q0(φ, φ) ≥ 0 for all φ ∈ D1,p(RN ). (2.14)

Case 1 < p < 2. Since Dϕ1 ↪→ D1,p(RN ) in this case, given any fixed φ ∈ D1,p(RN ),
we define the symmetric bilinear form Qφ on the Cartesian product Dϕ1 × Dϕ1

by formula (2.11). Notice that the first integral in (2.11) converges absolutely
by inequality (2.7). The absolute convergence of the second integral in (2.11) is
obtained by similar arguments using also the continuity of the imbedding Dϕ1 ↪→
Hϕ1 , by Lemma 4.4.

3. Main results

Recall that 1 < p < N throughout this article unless indicated otherwise.
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3.1. Statements of Theorems. The following two theorems are the main results
of our present article.

Theorem 3.1. Let 2 ≤ p < N . If f ∈ D′ϕ1
satisfies 〈f, ϕ1〉 = 0, then problem (1.6)

possesses a weak solution u ∈ D1,p(RN ).

This is a part of the Fredholm alternative for −∆p at λ1. The proof is given in
Section 7. In a bounded domain Ω ⊂ RN , this theorem is due to Fleckinger and
Takáč [9, Theorem 3.3, p. 958].

The orthogonality condition 〈f, ϕ1〉 = 0 is sufficient, but not necessary to obtain
existence for problem (1.6) provided p 6= 2, according to recent results obtained in
Drábek, Girg and Manásevich [4, Theorem 1.3] for N = 1, in Drábek and
Holubová [5, Theorem 1.1] for any N ≥ 1 and 1 < p < 2, and in Takáč [23,
Theorems 3.1 and 3.5] for any N ≥ 1.

Example 3.2. For 2 ≤ p < N , the hypothesis f ∈ D′ϕ1
is fulfilled, for example,

if f = f1 + f2 where f1 ∈ L2(Bε;m−1) and f1 ≡ 0 in RN \ Bε, and f2 ≡ 0 in
Bε and f2 ∈ L2

(
RN \ Bε; r−N+ N−p

p−1
)

for some 0 < ε ≤ 1. This claim follows
from the imbeddings in Lemma 4.4 combined with the asymptotic formulas in
Proposition 9.1, where H′

ϕ1
= L2

(
RN ;ϕ2−p

1 m−1
)

is the dual space of Hϕ1 , and
L2

(
RN ; |ϕ′1|−pϕ2

1

)
is the dual space of L2

(
RN ; |ϕ′1|pϕ−2

1

)
.

Theorem 3.3. Let N ≥ 2 and 1 < p < 2. Assume that f# ∈ D−1,p′(RN ) satisfies
〈f#, ϕ1〉 = 0 and f# 6≡ 0 in RN . Then there exist two numbers δ ≡ δ(f#) > 0 and
% ≡ %(f#) > 0 such that problem (1.1) with f = f# + ζ mϕp−1

1 has at least one
solution whenever λ ∈ (λ1 − δ, λ1 + δ) and ζ ∈ (−%, %).

The proof of this theorem is given in Section 8.

Remark 3.4. In the situation of Theorem 3.3, if λ ∈ (λ1 − δ, λ1) and ζ ∈ (−%, %),
then problem (1.1) has at least three solutions u1, u2, u3 ∈ D1,p(RN ), such that∫

RN

u2 ϕ
p−1
1 mdx <

∫
RN

u1 ϕ
p−1
1 mdx <

∫
RN

u3 ϕ
p−1
1 mdx,

u1 is a saddle point (which will be obtained in the proof of Theorem 3.3) and u2, u3

are local minimizers for the functional Jλ on D1,p(RN ). The proof of this claim is
given in Section 8, §8.3, after the proof of Theorem 3.3.

Example 3.5. For 1 < p ≤ 2, the hypothesis f ∈ D′ϕ1
is fulfilled if |x| f(x) ∈

Lp′(RN ) with p′ = p/(p − 1), by the imbedding D1,p(RN ) ↪→ Lp(RN ; |x|−p) in
Lemma 4.1.

The proofs of both theorems above hinge on the following imbeddings with
weights.

Proposition 3.6. Let 1 < p < N and let hypothesis (H) be satisfied. Then the
following two imbeddings are compact:

(a) D1,p(RN ) ↪→ Lp(RN ;m);
(b) Dϕ1 ↪→ Hϕ1 .

The proof of this proposition is given in Section 4. The reader is referred to
Berger and Schechter [2, Proof of Theorem 2.4, p. 277], Fleckinger, Gossez,
and de Thélin [6, Lemma 2.3], or Schechter [19, 20] for related imbeddings and
compactness results.
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3.2. Properties of the corresponding energy functional. Weak solutions in
D1,p(RN ) to the Dirichlet boundary value problem (1.6) with f ∈ D−1,p′(RN )
correspond to critical points of the energy functional Jλ1 : D1,p(RN ) → R defined
in (1.3) with λ = λ1. Owing to the imbeddings in Proposition 3.6, all expressions in
(1.3) are meaningful. For the cases 2 ≤ p < N and 1 < p < 2 ≤ N , the geometry of
the functional Jλ1 is completely different; cf. Fleckinger and Takáč [9, Theorem
3.1, p. 957] and Drábek and Holubová [5, Theorem 1.1, p. 184], respectively, in
a bounded domain Ω ⊂ RN .

In the former case, we have the following analogue of the improved Poincaré
inequality from [9, Theorem 3.1, p. 957], which is of independent interest.

Lemma 3.7. Let 2 ≤ p < N and let hypothesis (H) be satisfied. Then there exists
a constant c ≡ c(p,m) > 0 such that the inequality∫

RN

|∇u|p dx− λ1

∫
RN

|u|pm(x) dx

≥ c
(
|u‖|p−2

∫
RN

|∇ϕ1(x)|p−2|∇u>|2 dx+
∫

RN

|∇u>|p dx
) (3.1)

holds for all u ∈ D1,p(RN ).

Here, a function u ∈ D1,p(RN ) is decomposed as the direct sum (1.5). If the
constant c in (3.1) is replaced by zero, one obtains the classical Poincaré inequality;
see e.g. Gilbarg and Trudinger [11, Ineq. (7.44), p. 164]. In analogy with the
case p = 2, the improved Poincaré inequality (3.1) guarantees the solvability of the
Cauchy boundary value problem (1.6) in the special case when f ∈ D′ϕ1

satisfies
〈f, ϕ1〉 = 0.

On the other hand, the “singular” case 1 < p < 2 ≤ N is much different and has
to be treated by a minimax method introduced in Takáč [22, Sect. 7]. It uses the
fact that the functional Jλ1 still remains coercive on

D1,p(RN )> def=
{
u ∈ D1,p(RN ) :

∫
RN

uϕp−1
1 mdx = 0

}
, (3.2)

the complement of lin{ϕ1} in D1,p(RN ) with respect to the direct sum (1.5), viz.
D1,p(RN ) = lin{ϕ1} ⊕D1,p(RN )>.

The following notion introduced in Drábek and Holubová [5, Def. 2.1, p. 185]
is crucial.

Definition 3.8. We say that a continuous functional E : D1,p(RN ) → R has a
simple saddle point geometry if we can find u, v ∈ D1,p(RN ) such that∫

RN

uϕp−1
1 mdx < 0 <

∫
RN

v ϕp−1
1 mdx and

max{E(u), E(v)} < inf
{
E(w) : w ∈ D1,p(RN )>

}
.

Note that on any continuous path θ : [−1, 1] → D1,p(RN ) with θ(−1) = u and
θ(1) = v there is a point w = θ(t0) ∈ D1,p(RN )> for some t0 ∈ [−1, 1]. Hence,
max{E(u), E(v)} < E(w) shows that the function E ◦ θ : [−1, 1] → R attains its
maximum at some t′ ∈ (−1, 1).

The following result is essential; in fact it replaces Lemma 3.7. For a bounded
domain Ω ⊂ RN , it was shown in Drábek and Holubová [5, Lemma 2.1, p. 185].
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Lemma 3.9. Let 1 < p < 2 ≤ N . Assume f ∈ D−1,p′(RN ) with 〈f, ϕ1〉 = 0
and f 6≡ 0 in RN . Then the functional Jλ1 has a simple saddle point geometry.
Moreover, it is unbounded from below on D1,p(RN ).

Its proof will be given in Section 8, §8.1.
For 1 < p < 2 we will obtain a weak solution to problem (1.1) by showing that

the “minimax” (or rather “maximin”) expression

βλ
def= sup

a<τ<b
inf

u>∈D1,p(RN )>
Jλ(τϕ1 + u>) (3.3)

provides a critical value βλ for the energy functional Jλ defined in (1.3). Here a, b
(−∞ < a < 0 < b < ∞) are provided by the simple saddle point geometry of Jλ1

established in Lemma 3.9 above. Formula (3.3) is justified by Lemma 6.2 (§6.1)
whenever −∞ < λ < Λ∞ and f ∈ D−1,p′(RN ). We will provide a simple sufficient
condition for the criticality of βλ in Lemma 8.3 (§8.2). This condition is verified in
the setting of our Theorem 3.3 as a consequence of Lemma 3.9.

4. Proof of Proposition 3.6

To prove this proposition, we need a few preliminary results.

4.1. Some imbeddings with weights. We begin with the classical Hardy in-
equality (Kufner [13, Theorem 5.2, p. 28]) which reads∫

RN

( |u(x)|
|x|

)p dx ≤
( p

N − p

)p
∫

RN

|∇u|p dx, u ∈ D1,p(RN ). (4.1)

In particular, the imbedding D1,p(RN ) ↪→ Lp(RN ; |x|−p) is continuous.
Next, we show the continuity of some more imbeddings.

Lemma 4.1. Let 1 < p < N and let hypothesis (H) be satisfied. Then the following
imbeddings are continuous:

D1,p(RN ) ↪→ Lp(RN ; |x|−p) ↪→ Lp(RN ;m); (4.2)

D1,p(RN ) ↪→ Lp∗(RN ) ↪→ Lp(RN ;m), (4.3)

where p∗ = Np/(N − p) denotes the critical Sobolev exponent.

Proof. The imbedding Lp(RN ; |x|−p) ↪→ Lp(RN ;m) follows from inequality (2.1).
By a classical result (Gilbarg and Trudinger [11, Theorem 7.10, p. 166]), the

imbedding D1,p(RN ) ↪→ Lp∗(RN ) is continuous. Notice that (p/p∗) + (p/N) = 1.
Finally, given an arbitrary function u ∈ C0

c (RN ), we combine the Hölder inequality
with (2.1) to estimate∫

RN

|u|pmdx ≤
( ∫

RN

|u|p
∗
dx

)p/p∗( ∫
RN

mN/p dx
)p/N

≤ C
( ∫

RN

|u|p
∗
dx

)p/p∗( ∫
RN

(1 + |x|)−N(1+ δ
p ) dx

)p/N

.

The continuity of the imbedding Lp∗(RN ) ↪→ Lp(RN ;m) follows because C0
c (RN )

is dense in Lp∗(RN ). �

Lemma 4.2. Let hypothesis (H) be satisfied. Then we have the following imbed-
dings:

(i) Hϕ1 ↪→ Lp(RN ;m) if 1 < p < 2;
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(ii) Hϕ1 = L2(RN ;m) if p = 2;
(iii) Lp(RN ;m) ↪→ Hϕ1 if 2 < p < N .

Proof. We need to distinguish between the cases 1 < p < 2 and 2 < p < N .
Case p < 2. Let u ∈ C0

c (RN ) be arbitrary. We apply Hölder’s inequality again to
estimate∫

RN

|u|pmdx ≤
( ∫

RN

u2 ϕp−2
1 mdx

)p/2( ∫
RN

ϕp
1 mdx

)(2−p)/2

= ‖u‖p
Hϕ1

,

by
∫

RN ϕp
1 mdx = 1. The space C0

c (RN ) being dense in Hϕ1 , the imbedding in
Part (i) follows.

Case p > 2. As above, for u ∈ C0
c (RN ) we estimate∫

RN

u2 ϕp−2
1 mdx ≤

( ∫
RN

|u|pmdx
)2/p( ∫

RN

ϕp
1 mdx

)(p−2)/p

= ‖u‖2Lp(RN ;m).

The lemma is proved. �

Lemma 4.3. Let hypothesis (H) be satisfied. The following imbeddings hold true:
(i) Dϕ1 ↪→ D1,p(RN ) if 1 < p < 2;
(ii) Dϕ1 = D1,2(RN ) if p = 2;
(iii) D1,p(RN ) ↪→ Dϕ1 if 2 < p < N .

Proof. Again, we distinguish between the cases 1 < p < 2 and 2 < p < N .
Case p < 2. Let u ∈ C1

c (RN ) be arbitrary. Hölder’s inequality yields∫
RN

|∇u|p dx =
∫

RN

|∇u|p |ϕ′1(r)|(p−2)p/2 |ϕ′1(r)|−(p−2)p/2 dx

≤
( ∫

RN

|∇u|2 |ϕ′1|p−2 dx
)p/2( ∫

RN

|ϕ′1|p dx
)(2−p)/2

= λ
(2−p)/2
1 ‖u‖p

Dϕ1
,

by
∫

RN |ϕ′1|p dx = λ1. The desired imbedding in Part (i) now follows from the
density of C1

c (RN ) in Dϕ1 .
Case p > 2. Given u ∈ C0

c (RN ), we estimate∫
RN

|∇u|2 |ϕ′1(r)|p−2 dx ≤
( ∫

RN

|∇u|p dx
)2/p( ∫

RN

|ϕ′1|p dx
)(p−2)/p

= λ
(p−2)/p
1 ‖u‖2Dϕ1

.

This proves the lemma. �

Lemma 4.4. Let 1 < p < N and let hypothesis (H) be satisfied. Then both
imbeddings Dϕ1 ↪→ Hϕ1 and Dϕ1 ↪→ L2

(
RN ; |ϕ′1|pϕ−2

1

)
are continuous.

Proof. We need to distinguish between the cases 1 < p < 2 and 2 ≤ p < N .
Case p < 2. Since Dϕ1 ↪→ D1,2(RN ) with ϕ′1(r) r

N−1
p−1 → − N−p

p−1 c as r → ∞,
by (9.4), the linear subspace of Dϕ1 consisting of all functions with compact support
is dense in Dϕ1 . So take an arbitrary function u ∈ Dϕ1 with compact support.
Using u ∈ D1,2(RN ) and the properties of ϕ1, we deduce that both integrals below
converge: ∫

RN

u2 |ϕ′1|p ϕ−2
1 dx <∞ and

∫
RN

u2 ϕp−2
1 mdx <∞.
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Consequently, we are allowed to apply the weak formulation of the eigenvalue prob-
lem (1.4) with the test function u2/ϕ1 ∈ D1,1(RN ) to compute

λ1

∫
RN

u(x)2 ϕ1(r)p−2m(r) dx

=
∫

RN

u(x)2 ϕ1(r)−1(−∆pϕ1) dx

=
∫

RN

|ϕ′1(r)|p−2 ϕ′1(r)
x

r
· ∇

(u2

ϕ1

)
dx

= 2
∫

RN

|ϕ′1|p−2 ϕ′1
∂u

∂r

u

ϕ1
dx−

∫
RN

|ϕ′1|p−2 ϕ′1
∂ϕ1

∂r

( u
ϕ1

)2 dx.

Adding the last integral and estimating the second last one by the Cauchy-Schwarz
inequality, we arrive at

λ1

∫
RN

u2 ϕp−2
1 mdx+

∫
RN

u2 |ϕ′1|p ϕ−2
1 dx

≤ 2
( ∫

RN

|ϕ′1|p−2
(∂u
∂r

)2 dx
)1/2( ∫

RN

u2 |ϕ′1|p ϕ−2
1 dx

)1/2

≤ 2
∫

RN

|ϕ′1|p−2
(∂u
∂r

)2 dx+
1
2

∫
RN

u2 |ϕ′1|p ϕ−2
1 dx,

(4.4)

and therefore,

λ1

∫
RN

u2 ϕp−2
1 mdx+

1
2

∫
RN

u2 |ϕ′1|p ϕ−2
1 dx

≤ 2
∫

RN

|ϕ′1|p−2
(∂u
∂r

)2 dx ≤ 2 ‖u‖2Dϕ1
.

(4.5)

It follows that both imbeddings Dϕ1 ↪→ Hϕ1 and Dϕ1 ↪→ L2
(
RN ; |ϕ′1|pϕ−2

1

)
are

continuous.
Case p ≥ 2. The linear space C1

c (RN ) is dense in both D1,p(RN ) and Dϕ1 , by
definition. So take an arbitrary function u ∈ C1

c (RN ). The same procedure as for
p < 2 above leads us to the inequalities in (4.5). Again, both imbeddings Dϕ1 ↪→
Hϕ1 and Dϕ1 ↪→ L2

(
RN ; |ϕ′1|pϕ−2

1

)
are continuous. The lemma is proved. �

Next we will show that our hypothesis (H) guarantees also the compactness
of both imbeddings D1,p(RN ) ↪→ Lp(RN ;m) and Dϕ1 ↪→ Hϕ1 for 1 < p < N .
In order to prove this compactness, given any % ∈ (0,∞), we introduce a cut-off
function ψ% : R+ → [0, 1] as follows: Take any C1 function ψ1 : R+ → [0, 1] such
that ψ1(r) = 1 for 0 ≤ r ≤ 1, ψ1(r) = 0 for 2 ≤ r <∞, and ψ′1(r) ≤ 0 for 1 ≤ r ≤ 2.
We define ψ%(x) ≡ ψ%(r)

def= ψ1(r/%) for all x ∈ RN and r = |x|. Notice that its
radial derivative ψ′%(r) = (1/%)ψ′1(r/%) satisfies

|ψ′%(r)| ≤ C1 r
−1 for all r ≥ 0, (4.6)

where C1 = 2 · supR+
|ψ′1| < ∞ is a constant. Obviously, ψ%(r) = 1 for 0 ≤ r ≤ %,

ψ%(r) = 0 for 2% ≤ r < ∞, and ψ′%(r) ≤ 0 for % ≤ r ≤ 2%. Now we define

the corresponding cut-off operator T% : L1
loc(RN ) → L1(RN ) by T%u

def= ψ%u for all
u ∈ L1

loc(RN ). These linear operators are uniformly bounded from D1,p(RN ) (Dϕ1 ,
respectively) into itself for all % > 0 sufficiently large as is shown in the following
lemma.
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Lemma 4.5. Let 1 < p < N and let hypothesis (H) be satisfied. Then there exist
constants C2 > 0, C3 > 0 and R1 > 0, such that for all % ≥ R1 we have

‖ψ%u‖D1,p(RN ) ≤ C2 ‖u‖D1,p(RN ) for all u ∈ D1,p(RN ); (4.7)

‖ψ%u‖Dϕ1
≤ C3 ‖u‖Dϕ1

for all u ∈ Dϕ1 . (4.8)

Proof. We give the proof for the case 1 < p < 2 only and leave minor changes for
2 ≤ p < N to the reader. Let % > 0. For an arbitrary function u ∈ D1,p(RN ) we
have

∇(ψ%u) = ψ%(r)∇u(x) + u(x)ψ′%(r) r
−1x for x ∈ RN and r = |x|.

Therefore, by the Minkowski inequality followed by (4.6) and the Hardy inequality
(4.1), we have

‖ψ%u‖D1,p(RN ) =
( ∫

RN

|∇(ψ%u)|p dx
)1/p

≤
( ∫

RN

|ψ%|p|∇u|p dx
)1/p

+
( ∫

RN

|ψ′%|p|u|p dx
)1/p

≤ ‖u‖D1,p(RN ) + C1

( ∫
RN

|u(x)|p |x|−p dx
)1/p

≤ C2 ‖u‖D1,p(RN ),

(4.9)

where C2 = 1 + pC1/(N − p). This proves (4.7).
Similarly, for every u ∈ Dϕ1 we have

‖ψ%u‖Dϕ1
=

( ∫
RN

|ϕ′1|p−2|∇(ψ%u)|2 dx
)1/2

≤
( ∫

RN

|ϕ′1|p−2|ψ%|2|∇u|2 dx
)1/2

+
( ∫

RN

|ϕ′1|p−2|ψ′%|2u2 dx
)1/2

≤ ‖u‖Dϕ1
+

( ∫
RN

|ϕ′1|p−2|ψ′%|2u2 dx
)1/2

.

(4.10)
The last integral is estimated as follows. Using the limit formula (9.21) we have

ϕ−1
1 |ϕ′1| ≥

N − p

2(p− 1)r
for all r ≥ R1, (4.11)

where R1 > 0 is a sufficiently large constant. We combine this inequality with (4.6)
to conclude that

|ψ′%(r)| ≤ C4 ϕ
−1
1 |ϕ′1| for all r ≥ R1, (4.12)

where C4 = 2(p − 1)C1/(N − p). Applying this estimate to the last integral in
(4.10), and recalling ψ′%(r) = 0 whenever 0 ≤ r ≤ %, for every % ≥ R1 we get

‖ψ%u‖Dϕ1
≤ ‖u‖Dϕ1

+ C4

( ∫
RN

|ϕ′1|p|ϕ1|−2u2 dx
)1/2

.

Finally, we invoke inequality (4.5) to estimate the last integral. The desired estimate
(4.8) follows with the constant C3 > 0 given by C3 = 1 + 2C4. �

Denoting by J (Jϕ1 , respectively) the continuous imbedding
D1,p(RN ) ↪→ Lp(RN ;m) (Dϕ1 ↪→ Hϕ1), we now show that the operators

JT% : D1,p(RN ) → Lp(RN ;m) (Jϕ1T% : Dϕ1 → Hϕ1)
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converge to J (Jϕ1) in the uniform operator topology as %→∞.

Lemma 4.6. Let 1 < p < N and let hypothesis (H) be satisfied. Then, as %→∞,
we have

‖(1− ψ%)u‖Lp(RN ;m) → 0 uniformly for ‖u‖D1,p(RN ) ≤ 1; (4.13)

‖(1− ψ%)u‖Hϕ1
→ 0 uniformly for ‖u‖Dϕ1

≤ 1. (4.14)

Proof. From hypothesis (H) we get

m(r) rp ≤ C rp

(1 + r)p+δ
<

C

(1 + r)δ
for all r > 0.

Hence, for any % > 0,∫
|x|≥%

|u|pmdx ≤ C

(1 + %)δ

∫
|x|≥%

|u|p |x|−p dx

≤ C

(1 + %)δ

( p

N − p

)p‖u‖p
D1,p(RN )

,

by the Hardy inequality (4.1). Letting %→∞ we obtain the convergence (4.13).
Similarly as above, we combine hypothesis (H) and inequality (4.11) to compare

the weights

ϕ1(r)p−2m(r)
|ϕ′1(r)|p ϕ1(r)−2

≤ C5 r
p

(1 + r)p+δ
<

C5

(1 + r)δ
for all r ≥ R1,

where

C5 =
(2(p− 1)
N − p

)p
C.

We use this inequality to estimate the second integral on the left-hand side in (4.5),
thus arriving at

λ1

∫
RN

u2 ϕp−2
1 mdx+

(1 + %)δ

2C5

∫
|x|≥%

u2 ϕp−2
1 mdx ≤ 2 ‖u‖2Dϕ1

for every % ≥ R1. Letting %→∞ we obtain the conclusion (4.14) immediately. �

4.2. Rest of the proof of Proposition 3.6. According to Lemmas 4.1 and 4.4,
it remains to show that the imbeddings D1,p(RN ) ↪→ Lp(RN ;m) and Dϕ1 ↪→ Hϕ1

are compact. We take advantage of the well-known approximation theorem (see
Kato [12, Chapt. III, §4.2, p. 158]) which states that the set of all compact linear
operators S : X → Y , where X and Y are Banach spaces, is a Banach space. In
our setting this means that, by Lemma 4.6, it suffices to show that the operators

JT% : D1,p(RN ) → Lp(RN ;m) and Jϕ1T% : Dϕ1 → Hϕ1 ,

respectively, are compact for each % > 0 large enough.
Recall Br = {x ∈ RN : |x| < r} for 0 < r < ∞. A function u ∈ L2(Br) or

u ∈ L2(RN \ Br;m), respectively, is naturally extended to all of RN by setting
u(x) = 0 for all x ∈ RN \Br or for all x ∈ Br. We observe that

W 1,p
0 (Br) = {u ∈ D1,p(RN ) : u = 0 almost everywhere in RN \Br}

and set

Dϕ1(Br)
def= {u ∈ Dϕ1 : u = 0 almost everywhere in RN \Br}.
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Clearly, W 1,p
0 (Br) is a closed linear subspace of D1,p(RN ) and the same is true of

Dϕ1(Br) in Dϕ1 .
Proof of Part (a). By Lemma 4.5, the cut-off operators

T% : D1,p(RN ) →W 1,p
0 (B2%) ⊂ D1,p(RN )

are uniformly bounded for all % ≥ R1. Furthermore, the imbedding W 1,p
0 (B2%) ↪→

Lp(B2%) being compact by Rellich’s theorem, and Lp(B2%) ↪→ Lp(RN ;m) being
continuous by (2.1), we conclude that JT% : D1,p(RN ) → Lp(RN ;m) is compact as
well, whenever % ≥ R1.
Proof of Part (b). We need to treat the two cases 1 < p < 2 and 2 ≤ p < N
separately.
Case p < 2. By Lemma 4.5, the operators T% : Dϕ1 → Dϕ1(B2%) ⊂ Dϕ1 are
uniformly bounded for all % ≥ R1. Furthermore, the imbedding Dϕ1(B2%) ↪→
W 1,2

0 (B2%) is continuous by γ1
def= inf(0,∞) |ϕ′1|p−2 > 0. Finally, the imbedding

W 1,2
0 (B2%) ↪→ L2(B2%) being compact by Rellich’s theorem, and L2(B2%) ↪→ Hϕ1

being continuous by (2.1), we conclude that Jϕ1T% : Dϕ1 → Hϕ1 is compact as well,
whenever % ≥ R1.
Case p ≥ 2. First, taking an arbitrary function u ∈ C1(RN ) with compact support,
we derive inequalities (4.4) and (4.5). In particular, inequalities in (4.4) entail

λ1

∫
RN

u2 ϕp−2
1 mdx ≤ 2

( ∫
RN

|ϕ′1|p−2
(∂u
∂r

)2 dx
)1/2( ∫

RN

u2 |ϕ′1|p ϕ−2
1 dx

)1/2

≤ 2 ‖u‖Dϕ1

( ∫
RN

u2 |ϕ′1|p ϕ−2
1 dx

)1/2

.

(4.15)
We need to show that, besides inequalities (4.5), we have also

∫
BR

|ϕ′1|p ϕ−2
1 u2 dx ≤ 9 · log

(
ϕ1(0)
ϕ1(R)

)
· ‖u‖2Dϕ1

for every R > 0. (4.16)

To this end, fix any x′ ∈ RN with |x′| = 1, and take x = rx′ with 0 ≤ r ≤ R.
We use eq. (2.2) to compute

rN−1 |ϕ′1(r)|p−1 ϕ1(r)−1 u(rx′)2 = −
(
rN−1 |ϕ′1|p−2ϕ′1

)
ϕ−1

1 u2

= −
∫ r

0

∂

∂s

[
sN−1 |ϕ′1(s)|p−2ϕ1(s)′ ϕ1(s)−1 u(sx′)2

]
ds

= λ1

∫ r

0

m(s) sN−1 ϕ1(s)p−2 u(sx′)2 ds

+
∫ r

0

sN−1 |ϕ′1(s)|p ϕ1(s)−2 u(sx′)2 ds

+ 2
∫ r

0

sN−1 |ϕ′1(s)|p−1 ϕ1(s)−1 u(sx′)
∂u

∂s
(sx′) ds.
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Estimating the last integral by the Cauchy-Schwarz inequality, we have

rN−1 |ϕ′1(r)|p−1 ϕ1(r)−1 u(rx′)2 ≤ λ1

∫ r

0

m(s)ϕ1(s)p−2 u(sx′)2 sN−1 ds

+ 2
∫ r

0

|ϕ′1(s)|p ϕ1(s)−2 u(sx′)2 sN−1 ds

+
∫ r

0

|ϕ′1(s)|p−2

(
∂u

∂s
(sx′)

)2

sN−1 ds.

Next, setting y = sx′, we integrate this inequality with respect to x′ over the unit
sphere S1 = ∂B1 ⊂ RN endowed with the surface measure σ to get

rN−1 |ϕ′1(r)|p−1 ϕ1(r)−1

∫
S1

u(rx′)2 dσ(x′)

≤ λ1

∫
Br

u2 ϕp−2
1 mdy + 2

∫
Br

u2 |ϕ′1|p ϕ−2
1 dy

+
∫

Br

|ϕ′1|p−2
(∂u
∂s

)2 dy ≤ 8 ‖u‖2Dϕ1
+ ‖u‖2Dϕ1

= 9 ‖u‖2Dϕ1
,

(4.17)

by ineq. (4.5). Finally, upon multiplication by −ϕ′1/ϕ1 followed by integration over
0 ≤ r ≤ R, we arrive at the desired inequality (4.16).

Again, by Lemma 4.5, the operators T% : Dϕ1 → Dϕ1(B2%) ⊂ Dϕ1 are uniformly
bounded for all % ≥ R1. In order to show that JT% : Dϕ1 → Hϕ1 is compact, it
suffices to verify that the imbedding Dϕ1(B2%) ↪→ Hϕ1 is compact. So let % ≥ R1

be fixed.
Consider an arbitrary bounded sequence {un}∞n=1 in the Hilbert space Dϕ1(B2%).

Hence, there exists a weakly convergent subsequence denoted again by {un}∞n=1,
i.e., un ⇀ u in Dϕ1(B2%) as n → ∞. Replacing un − u by un, we may assume
un ⇀ 0 weakly in Dϕ1(B2%). In addition, we may assume ‖un‖Dϕ1

≤ 1 for all
n = 1, 2, . . . . Next, we show that un → 0 strongly in L2

(
B2%; |ϕ′1|pϕ−2

1

)
. Choose

ε > 0. Fix R0 > 0 small enough, such that

9 · log
( ϕ1(0)
ϕ1(R0)

)
≤ ε

2
,

by limr→0 ϕ1(r) = ϕ1(0) > 0. Hence, inequality (4.16) entails∫
BR0

|ϕ′1|p ϕ−2
1 u2

n dx ≤ ε

2
for n = 1, 2, . . . . (4.18)

Since γ2
def= inf [R0,2%] |ϕ′1|p−2 > 0, by Lemma 2.2, the sequence {un}∞n=1 is

bounded in the Sobolev space W 1,2(B2% \ BR0), by inequalities (4.5). The imbed-
ding W 1,2(B2% \ BR0) ↪→ L2(B2% \ BR0) being compact by Rellich’s theorem, we
conclude that un → 0 strongly in L2(B2% \BR0). Consequently, there is an integer
n0 ≥ 1 large enough, such that∫

B2%\BR0

|ϕ′1|p ϕ−2
1 u2

n dx ≤ ε

2
for every n ≥ n0. (4.19)

We combine estimates (4.18) and (4.19) to obtain∫
B2%

|ϕ′1|p ϕ−2
1 u2

n dx ≤ ε for every n ≥ n0.
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This means that un → 0 strongly in L2
(
B2%; |ϕ′1|pϕ−2

1

)
. Finally, from inequality

(4.15) we deduce un → 0 strongly also in Hϕ1 . Hence, the imbedding Dϕ1(B2%) ↪→
Hϕ1 is compact as claimed.

We have completed the proof of Proposition 3.6.

5. Properties of the quadratization at ϕ1

In this section we state a few analog results to those in Takáč [22, Sect. 4] that
are employed later in the proofs of Theorem 3.1 and Lemma 3.7.

Note that inequality (2.5) entails

min{1, p− 1}‖v‖2Dϕ1
≤

∫
RN

〈A(∇ϕ1)∇v,∇v〉RN dx ≤ max{1, p− 1}‖v‖2Dϕ1
(5.1)

for v ∈ Dϕ1 . Several important properties of Dϕ1 are established below. The
following result is obvious.

Lemma 5.1. We have Q0(ϕ1, ϕ1) = 0 and 0 ≤ Q0(v, v) <∞ for all v ∈ Dϕ1 .

We denote by Aϕ1 the Lax-Milgram representation of the symmetric bilinear
form 2 · Q0 on Dϕ1 × Dϕ1 (see [12, Chapt. VI, Eq. (2.3), p. 323]). In our setting
this means that Aϕ1 : Dϕ1 → D′ϕ1

is a bounded linear operator such that

〈Aϕ1v, w〉 = 2 · Q0(v, w) for all v, w ∈ Dϕ1 . (5.2)

Identifying the dual space of D′ϕ1
with Dϕ1 (see Yosida [26, Theorem IV.8.2,

p. 113]), we find that Aϕ1 is selfadjoint in the following sense:

〈Aϕ1v, w〉 = 〈v,Aϕ1w〉 for all v, w ∈ Dϕ1 .

Note that our definition of Q0 yields Aϕ1ϕ1 = 0. Since the imbedding Dϕ1 ↪→ Hϕ1

is compact, the null space of Aϕ1 denoted by

ker(Aϕ1) = {v ∈ dom(Aϕ1) : Aϕ1v = 0}

is finite-dimensional, by the Riesz-Schauder theorem [12, Theorem III.6.29, p. 187].
Lemma 5.1 provides another variational formula for λ1, namely,

λ1 = inf
{∫

RN 〈A(∇ϕ1)∇u,∇u〉RN dx

(p− 1)
∫

RN |u|2 ϕp−2
1 mdx

: 0 6≡ u ∈ Dϕ1

}
, (5.3)

cf. eq. (1.2). This is a generalized Rayleigh quotient formula for the first (smallest)
eigenvalue of the selfadjoint operator (p−1)−1Aϕ1 +λ1ϕ

p−2
1 m : Dϕ1 → D′ϕ1

, where
Aϕ1 has been defined in (5.2). The following result determines all minimizers
for (5.3):

Proposition 5.2. Let 1 < p < N and let hypothesis (H) be satisfied. Then a
function u ∈ Dϕ1 satisfies Q0(u, u) = 0 if and only if u = κϕ1 for some constant
κ ∈ R.

The analogue of this proposition for a bounded domain Ω ⊂ RN with a suffi-
ciently regular boundary ∂Ω is due to Takáč [22, Prop. 4.4, p. 202]. Our proof of
Proposition 5.2 below is a simplification of that given in [22].

Proof. Proof of Proposition 5.2 Recall that the embedding Dϕ1 ↪→ Hϕ1 is compact,
by Proposition 3.6(b). Let u be any (nontrivial) minimizer for λ1 in (5.3). If u
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changes sign in RN , denote u+ = max{u, 0} and u− = max{−u, 0}. Then we have,
using Gilbarg and Trudinger [11, Theorem 7.8, p. 153],

λ1 =

∫
RN (u+)2 ϕp−2

1 mdx∫
RN u2 ϕp−2

1 mdx
·
∫

RN 〈A(∇ϕ1)∇u+,∇u+〉RN dx

(p− 1)
∫

RN (u+)2 ϕp−2
1 mdx

+

∫
RN (u−)2 ϕp−2

1 mdx∫
RN u2 ϕp−2

1 mdx
·
∫

RN 〈A(∇ϕ1)∇u−,∇u−〉RN dx

(p− 1)
∫

RN (u−)2 ϕp−2
1 mdx

≥
(∫

RN (u+)2 ϕp−2
1 mdx∫

RN u2 ϕp−2
1 mdx

+

∫
RN (u−)2 ϕp−2

1 mdx∫
RN u2 ϕp−2

1 mdx

)
λ1 = λ1.

Consequently, both u+ and u− are (nontrivial) minimizers for λ1.
Next, we show that if u ∈ ker(Aϕ1) then u is a constant multiple of ϕ1. Since

ϕ1 satisfies (1.4), it is of class C∞ in RN \ {0}, by classical regularity theory
[11, Theorem 8.10, p. 186]. Now, for each γ ∈ R fixed, consider the function
vγ

def= u − γϕ1 in RN . Then both v+
γ and v−γ belong to ker(Aϕ1) and thus satisfy

the equation

−∇ ·
(
A(∇ϕ1)∇v±γ

)
= λ1(p− 1)ϕp−2

1 mv±γ ≥ 0 in RN \ {0}. (5.4)

Again, we have v±γ ∈ C∞(RN \ {0}). So we may apply the strong maximum
principle [11, Theorem 3.5, p. 35] to eq. (5.4) to conclude that either v+

γ ≡ 0 in
RN \ {0}, or else v+

γ > 0 throughout RN \ {0}, and similarly for v−γ . This means
that sign(u−γϕ1) ≡ const in RN \{0}. Moving γ from −∞ to +∞, we get u ≡ κϕ1

in RN \ {0} for some constant κ ∈ R. This means u = κϕ1 in Dϕ1 , as claimed. �

6. An improved Poincaré inequality (2 ≤ p < N)

We need a few more technical tools from Fleckinger and Takáč [9, Sect. 5]
to prove Lemma 3.7. Although our present situation requires only a few changes in
the space setting in [9], we provide complete proofs of all results for the convenience
of the reader.

Remark 6.1. Except when u‖ = 0, we may replace u ∈ D1,p(RN ) by v = u/u‖ in
inequality (3.1) and thus restate it equivalently as follows, for all v> ∈ D1,p(RN )
with

∫
RN v> ϕp−1

1 mdx = 0:

Qv>(v>, v>) = F(ϕ1 + v>) ≥ c

p

(
‖v>‖2Dϕ1

+ ‖v>‖p
D1,p(RN )

)
. (6.1)

This remark indicates that our proof of inequality (3.1) should distinguish be-
tween the cases when the ratio ‖u>‖D1,p(RN )/|u‖| is bounded away from zero by a
constant γ > 0, say,

‖u>‖D1,p(RN )/|u‖| ≥ γ,

and when it is sufficiently small, say,

‖u>‖D1,p(RN )/|u‖| ≤ γ

where γ > 0 is small enough. The former case is treated in a standard way analogous
to (1.2), whereas the latter case requires a more sophisticated approach based on
the second-order Taylor formula (2.11) applied to the expression Qv>(v>, v>) on
the left-hand side in (6.1) where v = u/u‖. For either of these cases we need a
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separate auxiliary result: We derive two formulas for Rayleigh quotients outside
and inside an arbitrarily small cone around the axis spanned by ϕ1, respectively.

6.1. Minimization outside a cone around ϕ1. We allow 1 < p < N throughout
this paragraph. Given any number 0 < γ <∞, we set

Cγ
def=

{
u ∈ D1,p(RN ) : ‖u>‖D1,p(RN ) ≤ γ|u‖|

}
,

C′γ
def=

{
u ∈ D1,p(RN ) : ‖u>‖D1,p(RN ) ≥ γ|u‖|

}
.

Note that Cγ is a closed cone in D1,p(RN ) and C′γ is the closure of Cc
γ , the comple-

ment of Cγ in D1,p(RN ). We consider also the hyperplane

C′∞
def=

{
u ∈ D1,p(RN ) : u‖ = 0

}
=

⋂
0<γ<∞

C′γ .

For 0 < γ ≤ ∞ we define

Λγ
def= inf

{ ∫
RN |∇u|p dx∫
RN |u|pmdx

: u ∈ C′γ \ {0}
}
. (6.2)

The next result is an analogue of [9, Lemma 5.1, p. 963] proved for a bounded
domain Ω ⊂ RN .

Lemma 6.2. Let 1 < p < N and 0 < γ ≤ ∞. Then we have Λγ > λ1.

Proof. Assume the contrary, that is, Λγ = λ1 for some 0 < γ < ∞. Pick a
minimizing sequence {un}∞n=1 in C′γ such that∫

RN

|un|pmdx = 1 and
∫

RN

|∇un|p dx→ λ1 as n→∞.

Since D1,p(RN ) is a reflexive Banach space, the minimizing sequence contains a
weakly convergent subsequence in D1,p(RN ) which we denote by {un}∞n=1 again.
Consequently, un → u strongly in Lp(RN ;m), by Proposition 3.6(a), and ∇un ⇀
∇u weakly in [Lp(RN )]N as n→∞. We deduce that

∫
RN |u|pmdx = 1 and

λ
1/p
1 ≤ ‖∇u‖Lp(RN ) ≤ lim inf

n→∞
‖∇un‖Lp(RN ) = λ

1/p
1 .

As the standard norm on the space D1,p(RN ) is uniformly convex, by Clarkson’s
inequalities, we must have un → u strongly in D1,p(RN ), by the proof of Milman’s
theorem (see Yosida [26, Theorem V.2.2, p. 127]). This means that

u‖n =
∫

RN

un ϕ
p−1
1 mdx→ u‖ =

∫
RN

uϕp−1
1 mdx,

u>n = un − u‖nϕ1 → u> = u− u‖ϕ1 strongly in D1,p(RN ),

as n→∞. The set C′γ being closed in D1,p(RN ), we thus have u ∈ C′γ .

On the other hand, from ‖u‖Lp(RN ;m) = 1 and ‖∇u‖Lp(RN ) = λ
1/p
1 , combined

with the simplicity of the first eigenvalue λ1, one deduces that u = ±ϕ1, a contra-
diction to u ∈ C′γ . The lemma is proved. �
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6.2. Minimization inside a cone around ϕ1. For φ ∈ D1,p(RN ), φ 6≡ 0 in RN ,
let us define

Λ̃ def= lim inf
‖φ‖D1,p(RN )→0

〈φ,ϕp−1
1 m〉=0

∫
RN

〈[∫ 1

0
A (∇(ϕ1 + sφ)) (1− s) ds

]
∇φ, ∇φ

〉
RN

dx∫
RN

[∫ 1

0
|ϕ1 + sφ|p−2(1− s) ds

]
|φ|2mdx

(6.3)

with the abbreviation (2.4). Using the quadratic form Qφ defined in (2.11), we
notice that

Λ̃− λ1(p− 1) = lim inf
‖φ‖D1,p(RN )→0

〈φ,ϕp−1
1 m〉=0

Qφ(φ, φ)∫
RN

[∫ 1

0
|ϕ1 + sφ|p−2(1− s) ds

]
|φ|2mdx

≥ 0.

The next result parallels [9, Lemma 5.2, p. 964] shown for a bounded domain
Ω ⊂ RN .

Lemma 6.3. Let 2 ≤ p < N . We have Λ̃ > λ1(p− 1).

Before giving the proof of this inequality, we first recall that the kernels of the
quadratic forms Qφ(v, v) and Q0(v, v) defined in (2.11) and (2.12), respectively, can
be compared by inequalities (2.6) for p ≥ 2, and (2.7) for p < 2, so that we can use
the Hilbert space Dϕ1 not only for Q0 but also for Qφ.

Next, we introduce the following notations where t ∈ R and φ ∈ D1,p(RN ):

P0(t, φ) def=
∫

RN

[ ∫ 1

0

|ϕ1 + stφ|p−2(1− s) ds
]
φ2mdx,

P1(t, φ) def=
∫

RN

〈[ ∫ 1

0

A(∇(ϕ1 + stφ))(1− s) ds
]
∇φ, ∇φ

〉
RN

dx.

Hence, equation (6.3) takes the form

Λ̃ = lim inf
‖φ‖D1,p(RN )→0

〈φ,ϕp−1
1 m〉=0

P1(t, φ)
P0(t, φ)

with any fixed t ∈ R \ {0}.

Furthermore, due to inequalities (2.6), the expressions P0(t, φ) and P1(t, φ), respec-
tively, are equivalent to

N0(t, φ) def=
∫

RN

(
ϕp−2

1 + |t|p−2|φ|p−2
)
φ2mdx

=
∫

RN

ϕp−2
1 φ2mdx+ |t|p−2‖φ‖p

Lp(RN ;m)

and

N1(t, φ) def=
∫

RN

(
|∇ϕ1|p−2 + |t|p−2|∇φ|p−2

)
|∇φ|2 dx

= ‖φ‖2Dϕ1
+ |t|p−2‖φ‖p

D1,p(RN )
,

that is, there are two constants c1, c2 > 0 independent from t and φ such that

c1Ni(t, φ) ≤ Pi(t, φ) ≤ c2Ni(t, φ); i = 0, 1. (6.4)
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Proof of Lemma 6.3. On the contrary, assume that Λ̃ ≤ λ1(p − 1). Pick a mini-
mizing sequence {φn}∞n=1 in D1,p(RN ) such that φn 6≡ 0 in RN , 〈φn, ϕ

p−1
1 m〉 = 0,

‖φn‖D1,p(RN ) → 0, and

P1(1, φn)
P0(1, φn)

−→ Λ̃ ≤ λ1(p− 1) as n→∞.

Next, set tn = P0(1, φn)1/2 and Vn = φn/tn for n = 1, 2, . . . . Hence, we have
tn → 0, P0(tn, Vn) = 1, and P1(tn, Vn) → Λ̃ as n→∞. Inequalities (6.4) guarantee
that both sequences ‖Vn‖Dϕ1

and t
1−(2/p)
n ‖Vn‖D1,p(RN ) are bounded, and so we

may extract a subsequence denoted again by {Vn}∞n=1 such that Vn ⇀ V weakly
in Dϕ1 and t

1−(2/p)
n Vn ⇀ z weakly in D1,p(RN ) as n → ∞. Using the imbedding

D1,p(RN ) ↪→ Dϕ1 , we get z ≡ 0 in RN . Furthermore, both imbeddingsD1,p(RN ) ↪→
Lp(RN ;m) and Dϕ1 ↪→ Hϕ1 being compact by Proposition 3.6, we have also Vn →
V strongly in Hϕ1 and t

1−(2/p)
n Vn → 0 strongly in Lp(RN ;m). It follows that

〈V, ϕp−1
1 m〉 = 0 and

P0(0, V ) =
1
2

∫
RN

ϕp−2
1 V 2 dx = 1,

P1(0, V ) =
1
2
〈A(∇ϕ1)∇V, ∇V 〉 ≤ Λ̃ ≤ λ1(p− 1).

Consequently, Proposition 5.2 forces V = κϕ1 in RN , where κ ∈ R is a constant,
κ 6= 0 by P0(0, V ) = 1. But this is a contradiction to 〈V, ϕp−1

1 m〉 = 0. We conclude
that Λ̃ > λ1(p− 1) as claimed. �

6.3. Proof of Lemma 3.7. If u ∈ D1,p(RN ) satisfies 〈u, ϕ1〉 = 0, then equa-
tion (6.2) implies∫

RN

|∇u|p dx− λ1

∫
RN

|u|pmdx ≥
(
1− λ1

Λ∞

) ∫
RN

|∇u|p dx

=
(
1− λ1

Λ∞

) ∫
RN

|∇u>|p dx
(6.5)

where λ1/Λ∞ < 1 by Lemma 6.2. Thus, we may assume 〈u, ϕ1〉 6= 0 and so we need
to prove only inequality (6.1). We will apply Lemmas 6.2 and 6.3 to the following
two cases, respectively.
Case ‖v>‖D1,p(RN ) ≥ γ: Here, γ > 0 is an arbitrary, but fixed number. In analogy
with inequality (6.5) above, we have∫

RN

|∇ϕ1 +∇v>|p dx− λ1

∫
RN

|ϕ1 + v>|pmdx

≥
(
1− λ1

Λγ

) ∫
RN

|∇ϕ1 +∇v>|p dx ≥ cγ

∫
RN

|∇v>|p dx
(6.6)

for all v> ∈ D1,p(RN ) such that 〈v>, ϕp−1
1 m〉 = 0 and ‖v>‖D1,p(RN ) ≥ γ, where

cγ > 0 is a constant independent from v>. The last inequality follows from the
boundedness of the orthogonal projections u 7→ u‖ · ϕ1 and u 7→ u> in D1,p(RN ).
Recalling the imbedding D1,p(RN ) ↪→ Dϕ1 , we deduce from (6.6) that inequal-
ity (6.1) is valid provided ‖v>‖D1,p(RN ) ≥ γ.
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Case ‖v>‖D1,p(RN ) ≤ γ: Here, γ > 0 is sufficiently small. According to equa-
tion (6.3) and Lemma 6.3 we have

Qv>(v>, v>) = P1(1, v>)− λ1(p− 1)P0(1, v>)

≥
(
1− λ1(p− 1)

Λ̃

)
P1(1, v>)

≥ c̃ · N1(1, v>)

(6.7)

for all v> ∈ D1,p(RN ) such that 〈v>, ϕp−1
1 m〉 = 0 and ‖v>‖D1,p(RN ) ≤ γ, where γ >

0 is sufficiently small and c̃ > 0 is a constant independent from v>. Recall that the
expressions Pi(1, v>) and Ni(1, v>) (i = 0, 1) have been defined after Lemma 6.3.
From (6.7) we deduce that inequality (6.1) is valid also when ‖v>‖D1,p(RN ) ≤ γ.

Remark 6.4. Assume 2 < p < N and let f ∈ D′ϕ1
satisfy 〈f, ϕ1〉 = 0. Recall that

D1,p(RN ) ↪→ Dϕ1 . Although the functional Jλ1 , defined in (1.3) with λ = λ1, is no
longer coercive on D1,p(RN ), it is still not only bounded from below, but also “very
close” to being coercive on the weighted Sobolev space Dϕ1 , as a direct consequence
of improved Poincaré’s inequality (3.1). This property of Jλ1 will be used in the
next section to prove the existence theorem (Theorem 3.1) for problem (1.6).

7. Proof of Theorem 3.1

Our proof of Theorem 3.1 combines the improved Poincaré inequality (3.1) with
a generalized Rayleigh quotient formula. To this end, we may assume that f ∈ D′ϕ1

satisfies f 6≡ 0 in RN and 〈f, ϕ1〉 = 0. Define the number Mf , for 0 ≤Mf ≤ ∞, by

Mf
def= sup

v∈D1,p(RN )
v 6∈{κϕ1 : κ∈R}

|〈f, v〉|p∫
RN |∇v|p dx− λ1

∫
RN |v|pmdx

. (7.1)

Clearly, Mf > 0. Moreover, inequality (3.1) entails

|〈f, v〉|p ≤ ‖f‖p

D−1,p′ (RN )
‖v>‖p

D1,p(RN )
≤ Cf

( ∫
RN

|∇v|p dx− λ1

∫
RN

|v|pmdx
)

for all v ∈ D1,p(RN ), where Cf = c−1 ‖f‖p

D−1,p′ (RN )
is a constant. This shows that

Mf ≤ Cf <∞. In a similar way we arrive at

|v‖|p−2 |〈f, v〉|2 ≤ |v‖|p−2
(
‖f‖D′ϕ1

)2

‖v>‖2Dϕ1

≤ C ′f

( ∫
RN

|∇v|p dx− λ1

∫
RN

|v|pmdx
)

for all v ∈ D1,p(RN ),

(7.2)

where C ′f = c−1(‖f‖D′ϕ1
)2 is a constant, and ‖ · ‖D′ϕ1

stands for the dual norm on
D′ϕ1

. ¿From (7.1) and inequality (7.2) we can draw the following conclusion: If
v ∈ D1,p(RN ) is such that v> 6≡ 0 in RN and

|〈f, v〉|p∫
RN |∇v|p dx− λ1

∫
RN |v|pmdx

≥ 1
2
Mf ,

then 〈f, v〉 6= 0 and

|v‖|p−2 ≤ 2(C ′f/Mf ) |〈f, v〉|p−2 ≤ (C ′′f )p−2 ‖v>‖p−2
D1,p(RN )

,
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where C ′′f = [2(C ′f/Mf )]1/(p−2) ‖f‖D−1,p′ (RN ) is a constant, i.e.,

|v‖| ≤ C ′′f ‖v>‖D1,p(RN ). (7.3)

Next, take any maximizing sequence {vn}∞n=1 in D1,p(RN ) for the generalized
Rayleigh quotient (7.1), that is, v>n 6≡ 0 in RN and

|〈f, vn〉|p∫
RN |∇vn|p dx− λ1

∫
RN |vn|pmdx

−→Mf as n→∞. (7.4)

Since both, the numerator and the denominator are p-homogeneous, we may assume
‖vn‖D1,p(RN ) = 1 for all n ≥ 1. The Sobolev space D1,p(RN ) being reflexive, we
may pass to a convergent subsequence vn ⇀ w weakly in D1,p(RN ); hence, also
vn → w strongly in Lp(RN ;m), by Proposition 3.6(a), and 〈f, vn〉 → 〈f, w〉 as
n→∞. We insert these limits into (7.4) to obtain∫

RN

|∇w|p dx− λ1

∫
RN

|w|pmdx ≤ 1− λ1

∫
RN

|w|pmdx = M−1
f |〈f, w〉|p. (7.5)

In particular, we have w 6≡ 0 in RN , therefore also w> 6≡ 0 by (7.3), and conse-
quently |〈f, w〉| 6= 0 by (7.5). We combine (7.1) with (7.5) to get

∫
RN |∇w|p dx = 1.

Hence, the supremum Mf in (7.1) is attained at w in place of v.
Finally, we can apply the calculus of variations to the inequality∫

RN

|∇v|p dx− λ1

∫
RN

|v|pmdx−M−1
f |〈f, v〉|p ≥ 0 for v ∈ D1,p(RN )

to derive

−∆pw − λ1m |w|p−2w = M−1
f |〈f, w〉|p−2〈f, w〉 · f(x) in RN .

It follows that u def= M
1/(p−1)
f 〈f, w〉−1 · w is a weak solution of problem (1.6).

Theorem 3.1 is proved.

8. Proof of Theorem 3.3

In contrast to the case 2 ≤ p < N in Section 6, Remark 6.4, for 1 < p < 2
the functional Jλ1 will turn out to be unbounded from below on D1,p(RN ) along
curves “close” to ±τϕ1 as τ → +∞, even though it still remains coercive on the
complement D1,p(RN )> of lin{ϕ1} in D1,p(RN ) defined in (3.2). Again, we take
advantage of the direct sum D1,p(RN ) = lin{ϕ1} ⊕ D1,p(RN )> defined in (1.5).
These facts show that the functional Jλ1 has a simple saddle point geometry. Such
a scenario is typically suitable for a saddle point theorem which guarantees the
existence of a critical point for Jλ1 by means of a minimax formula for a critical
value of Jλ1 . Here we make use of a “very direct” minimax method introduced
in Takáč [22, Sect. 7] which does not require any Palais-Smale condition. In this
section we adapt this method to our setting. In a closely related work Drábek and
Holubová [5, Theorem 1.1] applied the saddle point theorem from Rabinowitz
[18, Theorem 4.6, p. 24] to establish an existence result for problem (1.6) when
Ω ⊂ RN is a bounded domain and 1 < p < 2.

As we allow the function f ∈ D−1,p′(RN ) in the energy functional (1.3) to vary,
we write Jλ(u) ≡ Jλ(u; f).
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8.1. Simple saddle point geometry. For λ = λ1 it will be convenient to use the
notation

Ef (u) def= Jλ1(u; f) for u ∈ D1,p(RN ).

Proof of Lemma 3.9. We infer from Lemma 6.2 that Λ∞ > λ1 in formula (6.2).
This shows that the functional Ef is coercive on C′∞ = D1,p(RN )>. Hence, be-
ing also weakly lower semicontinuous, Ef possesses a global minimizer u>0 over
D1,p(RN )>,

Ef (u>0 ) = inf
w∈D1,p(RN )>

Ef (w) > −∞.

Now let us look for the functions u and v, respectively, in Definition 3.8 in the
forms of

u± = ±τϕ1 + τ1−(p/2)φ with τ ∈ (0,∞) sufficiently large, (8.1)

where φ ∈ C1
c (RN ) is a function chosen as follows:

(Φ) 〈f, φ〉 = 1 and 0 6∈ K where

K = supp(φ) def= {x ∈ RN : φ(x) 6= 0} (⊂ RN )

denotes the support of φ.
The existence of φ is verified as follows. Since f ∈ D−1,p′(RN ) satisfies f 6≡ 0

in RN , there is a function φ0 ∈ C1
c (RN ) such that 〈f, φ0〉 = 1. On the contrary

to (Φ), suppose that the support K0 = supp(φ0) of φ0 always contains 0 ∈ RN .
This is equivalent to saying that 〈f, φ〉 = 0 whenever φ ∈ C1

c (RN ) is such that
0 6∈ supp(φ). Now choose a C1 function ψ : R+ → [0, 1] such that ψ(r) = 1 if
0 ≤ r ≤ 1, 0 ≤ ψ(r) ≤ 1 if 1 ≤ r ≤ 2, and ψ(r) = 0 if 2 ≤ r < ∞. Define
ψn(x) def= ψ(n|x|) for all x ∈ RN ; n = 1, 2, . . . . Then 0 6∈ supp((1 − ψn)φ0)
which yields 〈f, (1 − ψn)φ0〉 = 0. Hence 〈f, ψnφ0〉 = 〈f, φ0〉 = 1. However, this is
contradicted by ‖ψnφ0‖D1,p(RN ) → 0 as n→∞, which follows easily from

‖∇(ψnφ0)‖Lp(RN ) ≤ ‖φ0‖L∞(RN )‖∇ψn‖Lp(RN ) + ‖∇φ0‖L∞(RN )‖ψn‖Lp(RN )

with both

‖∇ψn‖Lp(RN ) = n1−(N/p)‖∇ψ‖Lp(RN ) → 0,

‖ψn‖Lp(RN ) = n−(N/p)‖ψ‖Lp(RN ) → 0

as n→∞, by 1 < p < 2 ≤ N .
So let φ ∈ C1

c (RN ) satisfy condition (Φ). For τ ∈ (0,∞) we compute∫
RN

u± ϕ
p−1
1 mdx = ±τ + τ1−(p/2)

∫
RN

φϕp−1
1 mdx, (8.2)

by
∫

RN ϕp
1 mdx = 1. It follows that∫

RN

u− ϕ
p−1
1 mdx < 0 <

∫
RN

u+ ϕ
p−1
1 mdx for all τ > 0 large enough.

Next we use eqs. (2.10) and (2.11) together with 〈f, ϕ1〉 = 0 to obtain

Ef (u±) = Jλ1(±τϕ1 + τ1−(p/2)φ) =

Q±τ−p/2φ(φ, φ)− τ1−(p/2) 〈f, φ〉 = Q±τ−p/2φ(φ, φ)− τ1−(p/2).
(8.3)

We recall that the quadratic forms Q±τ−p/2φ are given by formula (2.11). Since
infK |∇ϕ1| > 0, infK ϕ1 > 0, and φ is supported in K ⊂ RN \ {0}, we conclude
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that both summands in Q±τ−p/2φ(φ, φ) are bounded independently from τ ≥ τ0,
provided τ0 ∈ (0,∞) is large enough. Finally, from (8.3) we deduce that Ef (u±) →
−∞ as τ → +∞. The conclusion of the lemma follows. �

8.2. A minimax method. We allow 1 < p < N throughout the entire paragraph
even though we apply the results to the minimax expression in (3.3) only for p < 2.

We assume that 0 ≤ λ ≤ Λ∞ − η and f ∈ D−1,p′(RN ). Here, η is an arbitrary,
but fixed number with 0 < η < Λ∞ − λ1. Furthermore, in view of Lemma 6.2 with
γ = γη, we find a constant 0 < γη <∞ large enough, so that Λγη ≥ Λ∞ − 1

2η, and
set

c =
1
2

(
1− (Λ∞ − η)Λ−1

γη

)
> 0.

Note that for any fixed τ ∈ R the functional u> 7→ Jλ(τϕ1 + u>) is coercive on
the (closed linear) subspace D1,p(RN )> of D1,p(RN ). This claim follows from the
following inequalities which are valid whenever |τ | ≤ T ≤ γ−1

η ‖u>‖D1,p(RN ), for any
fixed T ∈ (0,∞):∫

RN

|∇(τϕ1 + u>)|p dx− (Λ∞ − η)
∫

RN

|(τϕ1 + u>)|pmdx

≥
(
1− Λ∞ − η

Λγη

) ∫
RN

|∇(τϕ1 + u>)|p dx

≥
(
1− Λ∞ − η

Λγη

) ∣∣‖∇u>‖Lp(RN ) − |τ | · ‖∇ϕ1‖Lp(RN )

∣∣p
≥ c ‖∇u>‖p

Lp(RN )
− cT ,

(8.4)

with another constant 0 < cT < ∞ depending solely on T . The first inequality
in (8.4) is easily derived from formula (6.2). Consequently, any global minimizer
u>τ for the functional u> 7→ Jλ(τϕ1 + u>) on D1,p(RN )> satisfies the estimate
‖u>τ ‖D1,p(RN ) ≤ CT <∞, where CT is a constant independent from λ ∈ [0,Λ∞−η]
and τ ∈ [−T, T ]. Such a global minimizer always exists and verifies the Euler-
Lagrange equation

−∆p(τϕ1 + u>τ )− λm(x) |τϕ1 + u>τ |p−2(τϕ1 + u>τ )

= f>(x) + ζτ ·m(x)ϕ1(x)p−1 in RN ,
(8.5)

with a Lagrange multiplier ζτ ∈ R. Thus, we may define

jλ(τ) def= min
u>∈D1,p(RN )>

Jλ(τϕ1 + u>). (8.6)

In the rest of our proof of Theorem 3.3 in §8.3 we will show that for 1 < p < 2 the
function jλ : R → R attains a local maximum under the conditions of Theorem 3.3.

In analogy with the notation Jλ(u) ≡ Jλ(u; f), we write also jλ(τ) ≡ jλ(τ ; f) if
f ∈ D−1,p′(RN ) varies, to avoid possible confusion.

Lemma 8.1. Let 1 < p < N . The mapping

(τ, λ, f) 7→ jλ(τ ; f) : R× [0,Λ∞ − η]×D−1,p′(RN ) → R (8.7)

is continuous. In particular, if 0 < T <∞ and K is a compact set in D−1,p′(RN ),
then {

jλ( · ; f) : [−T, T ] → R : (λ, f) ∈ [0,Λ∞ − η]×K
}

(8.8)
is a family of (uniformly) equicontinuous functions.
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Proof. Let τn → τ0 in R, µn → µ0 in [0,Λ∞ − η], and fn → f0 in D−1,p′(RN )
as n → ∞. Suppose that jµn(τn; fn) does not converge to jµ0(τ0; f0) as n → ∞.
Passing to a subsequence if necessary, we may assume

lim inf
n→∞

|jµn(τn; fn)− jµ0(τ0; f0)| > 0. (8.9)

Consider any global minimizer u>n for the functional u> 7→ Jµn(τnϕ1 + u>; fn)
on D1,p(RN )>; n = 1, 2, . . . . The sequence {u>n }∞n=1 is bounded in D1,p(RN ), by
ineq. (8.4), and hence, it contains a weakly convergent subsequence (indexed by n
again) u>n ⇀ w> in D1,p(RN )> as n → ∞. ¿From the weak lower semicontinuity
of Jλ on D1,p(RN ) we obtain

lim inf
n→∞

jµn
(τn; fn) = lim inf

n→∞
Jµn

(τnϕ1 + u>n ; fn)

≥ Jµ0(τ0ϕ1 + w>; f0) ≥ jµ0(τ0; f0).
(8.10)

On the other hand, if u>0 is any global minimizer for the functional u> 7→ Jµ0(τ0ϕ1+
u>; f0) on D1,p(RN )>, then one has

lim sup
n→∞

jµn(τn; fn) ≤ lim
n→∞

Jµn(τnϕ1 + u>0 ; fn)

= Jµ0(τ0ϕ1 + u>0 ; f0) = jµ0(τ0; f0).
(8.11)

We combine inequalities (8.10) and (8.11) to get

lim
n→∞

jµn(τn; fn) = jµ0(τ0; f0)

which contradicts (8.9). The continuity of (τ, λ, f) 7→ jλ(τ ; f) is proved.
Finally, the equicontinuity of the family (8.8) is a consequence of the uniform

continuity of the mapping (8.7) on the compact set [−T, T ]× [0,Λ∞ − η]×K. �

Remark 8.2. We claim that in the proof of Lemma 8.1, w> is a global minimizer for
the functional u> 7→ Jµ0(τ0ϕ1 +u>; f0) on D1,p(RN )> and we have also u>n → w>

strongly in D1,p(RN ) as n→∞. First of all, (8.10) and (8.11) imply

jµn(τn; fn) = Jµn(τnϕ1 + u>n ; fn) → Jµ0(τ0ϕ1 + w>; f0) = jµ0(τ0; f0).

Combining this result with τn → τ0, µn → µ0, fn → f0 in D−1,p′(RN ), u>n ⇀ w>

weakly in D1,p(RN ), and u>n → w> strongly in Lp(RN ;m), we arrive at∥∥τnϕ1 + u>n
∥∥

D1,p(RN )
→

∥∥τ0ϕ1 + w>
∥∥

D1,p(RN )
as n→∞.

Thus, the uniform convexity of the standard norm on D1,p(RN ) forces τnϕ1+u>n →
τ0ϕ1 + w> strongly in D1,p(RN ). Our claim now follows as τn → τ0.

Obviously, if the function jλ : R → R has a local minimum at some point τ0 ∈ R,
and u>0 is a global minimizer for the functional u> 7→ Jλ(τ0ϕ1+u>) on D1,p(RN )>,
then u0 = τ0ϕ1 + u>0 is a local minimizer for Jλ on D1,p(RN ) and thus a weak
solution to problem (1.1). Our next lemma displays a similar result if jλ has a local
maximum at τ0 ∈ R; it claims that βλ in (3.3) is a critical value of Jλ.

Lemma 8.3. Let 0 ≤ λ ≤ Λ∞− η and f ∈ D−1,p′(RN ). Assume that the function
jλ : R → R attains a local maximum βλ at some point τ0 ∈ R. Then there exists
u>0 ∈ D1,p(RN )> such that u>0 is a global minimizer for the functional u> 7→
Jλ(τ0ϕ1 + u>) on D1,p(RN )>, u0 = τ0ϕ1 + u>0 is a critical point for Jλ, and
Jλ(u0) = βλ.
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Proof. Given an arbitrary numerical sequence {τn}∞n=1 with τn → τ0 in R as n→∞
and τn 6= τ0 for all n ≥ 1, we can deduce from Remark 8.2 that this sequence
contains a subsequence denoted again by {τn}∞n=1, such that for each n = 0, 1, 2, . . . ,
u>n is a global minimizer for the functional u> 7→ Jλ(τnϕ1 + u>) and u>n → u>0
strongly in D1,p(RN ) as n→∞. It follows that

Jλ(τnϕ1 + u>n )− Jλ(τ0ϕ1 + u>n ) ≤ Jλ(τnϕ1 + u>n )− Jλ(τ0ϕ1 + u>0 )

= jλ(τn)− jλ(τ0) ≤ 0
(8.12)

for all integers n ≥ 1 sufficiently large; again, we may assume it for all n ≥ 1.
On the other hand, denoting

φn(s) def= τ0ϕ1 + u>n + s(τn − τ0)ϕ1 for 0 ≤ s ≤ 1; n ≥ 1,

we have

Jλ(τnϕ1 + u>n )− Jλ(τ0ϕ1 + u>n ) = (τn − τ0)
∫ 1

0
〈J ′

λ(φn(s)), ϕ1〉 ds

where

〈J ′
λ(φn(s)), ϕ1〉 =

∫
RN

|∇φn(s)|p−2∇φn(s) · ∇ϕ1 dx

− λ

∫
RN

|φn(s)|p−2 φn(s)ϕ1mdx−
∫

RN

fϕ1 dx.

Since φn(s) → u0 = τ0ϕ1 + u>0 strongly in D1,p(RN ) and uniformly for 0 ≤ s ≤ 1,
we arrive at

(τn − τ0)−1
[
Jλ(τnϕ1 + u>n )− Jλ(τ0ϕ1 + u>n )

]
−→ 〈J ′

λ(u0), ϕ1〉 = ζ0 ‖ϕ1‖Lp(RN ;m) = ζ0 as n→∞,
(8.13)

where

〈J ′
λ(u0), ϕ1〉 =

∫
RN

|∇u0|p−2∇u0 · ∇ϕ1 dx

− λ

∫
RN

|u0|p−2u0ϕ1mdx−
∫

RN

fϕ1 dx

and ζ0 ∈ R is the Lagrange multiplier given by J ′
λ(u0) = ζ0mϕp−1

1 .
Finally, if we choose τn such that the sign of (τn − τ0) does not change for all

n = 1, 2, . . . , then (8.12) and (8.13) yield ζ0 ≤ 0 if sgn(τn − τ0) = 1, and ζ0 ≥ 0 if
sgn(τn − τ0) = −1. Since both alternatives are possible, we conclude that ζ0 = 0
which shows J ′

λ(u0) = 0, i.e., u0 is a weak solution to problem (1.6) as desired. In
particular, Jλ(u0) is a critical value of Jλ. �

Remark 8.4. As an easy consequence of (8.12), (8.13) in the proof of Lemma 8.3,
we conclude that the function jλ : R → R is differentiable at τ0 with j′λ(τ0) = 0.

8.3. Rest of the proof of Theorem 3.3. We deduce from Lemma 3.9 that there
exist a, b ∈ R such that a < 0 < b and

max{jλ1(a; f
#), jλ1(b; f

#)} < jλ1(0; f#).

The “continuity” Lemma 8.1 shows that there exist numbers δ ≡ δ(f#) > 0 and
% ≡ %(f#) > 0 such that also with f = f# + ζ mϕp−1

1 we have

max{jλ(a; f), jλ(b; f)} < jλ(0; f)
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for all λ ∈ (λ1 − δ, λ1 + δ) and all ζ ∈ (−%, %). Now we can apply Lemma 8.3 to
conclude that the functional Jλ( · ; f) possesses a critical point u1 = τ1ϕ1 + u>1 ,
with some τ1 ∈ (a, b) and u>1 ∈ D1,p(RN )>. This proves Theorem 3.3.

Proof of Remark 3.4. If λ < λ1 then we have jλ(τ ; f) → +∞ as |τ | → ∞. Conse-
quently, for λ ∈ (λ1− δ, λ1) and ζ ∈ (−%, %), the continuous function jλ( · ; f) : R →
R possesses also a local minimizer in each of the intervals (−∞, τ1) and (τ1,∞), say,
τ2 and τ3, respectively. Our definition of jλ( · ; f) now shows that u2 = τ2ϕ1+u>2 and
u3 = τ3ϕ1 + u>3 are local minimizers for Jλ( · ; f), with some u>2 , u

>
3 ∈ D1,p(RN )>,

as claimed. �

9. Appendix: Asymptotics of the eigenfunction ϕ1

To determine the asymptotic behavior of the first eigenfunction ϕ1 of the p-
Laplacian ∆p on RN subject to a weight m(|x|), for 1 < p < N , we consider a
strictly positive, radially symmetric function u : RN → (0,∞) of class C1, u(x) ≡
u(r) with r ≡ |x|, x ∈ RN , which satisfies the following partial differential equation
(in the sense of distributions on RN ):

−∆pu = m(|x|)up−1 for x ∈ RN ; u(|x|) → 0 as |x| → ∞. (9.1)

We weaken the strict positivity in hypothesis (H) on the weight m as follows:
(H’) There exist constants δ > 0 and C > 0 such that

0 ≤ m(r) ≤ C

(1 + r)p+δ
for almost all 0 ≤ r <∞, (9.2)

and m 6≡ 0 in R+.
Under this hypothesis, we are able to establish the following asymptotic behavior
of u(r) and u′(r) as r →∞.

Proposition 9.1. There exists a constant c > 0 such that

lim
r→∞

(
u(r) r

N−p
p−1

)
= c, (9.3)

lim
r→∞

(
u′(r) r

N−1
p−1

)
= −N−p

p−1 c. (9.4)

For the related Cauchy problem,

−∆pu(|x|) = f(u(|x|)) for x ∈ RN ; u(|x|) → 0 as |x| → ∞, (9.5)

with f(u) ≥ 0 for u > 0 sufficiently small, the inequalities

u(r) r
N−p
p−1 ≥ c1 > 0 and − u′(r) r

N−1
p−1 ≥ c2 > 0

for all sufficiently large r > 0 (with some constants c1 and c2) have been established
in the work of Ni and Serrin [16, Theorem 6.1]. Their method of proof applies
also to our case. For the inequality

−∆pu ≤ m(|x|)up−1 for x ∈ RN ; u(x) → 0 as |x| → ∞, (9.6)

with u(x) not necessarily radially symmetric, u(x) > 0, but with the weight m(r)
decaying at infinity faster than ours, an upper estimate on the decay of u at infinity
can be found in Fleckinger, Harrell and de Thélin [7, Theorem IV.2].

In the proof of Proposition 9.1 we need a few auxiliary results.
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The Cauchy problem (9.1) is equivalent to

− (|u′|p−2u′)′ − N − 1
r

|u′|p−2u′ = m(r)up−1 for r > 0;

u′(r) → 0 as r → 0 and u(r) → 0 as r →∞.
(9.7)

This problem can be rewritten as

− (rN−1 |u′|p−2u′)′ = m(r) rN−1 up−1 for r > 0;

u′(r) → 0 as r → 0 and u(r) → 0 as r →∞.
(9.8)

We reduce this second-order differential equation to a first-order equation by intro-
ducing the Riccati-type transformation

U(r) def= − rp−1
∣∣∣u′(r)
u(r)

∣∣∣p−2u′(r)
u(r)

for r > 0, U(0) def= 0. (9.9)

By (9.8), the function r 7→ r
N−1
p−1 u′(r) is nonincreasing for 0 < r <∞ which implies

u′(r) ≤ 0 for all r > 0, and therefore also U(r) ≥ 0. Hence, for r > 0,

U ′(r) = −(p− 1)rp−2
∣∣u′
u

∣∣p−2u′

u
− (p− 1)rp−1

∣∣u′
u

∣∣p−2[u′′
u
−

(u′
u

)2]
=
p− 1
r

U(r)− rp−1 (|u′|p−2u′)′

|u|p−2u
+
p− 1
r

U(r)
p

p−1 .

Inserting the second derivative expression from equation (9.7), we arrive at

U ′(r) = −N − p

r
U(r) +

p− 1
r

U(r)
p

p−1 +m(r) rp−1.

This is a differential equation for the unknown function U which we rewrite as

U ′(r) =
p− 1
r

U(r)
(
U(r)

1
p−1 − N − p

p− 1

)
+m(r) rp−1 for r > 0. (9.10)

An upper bound for U(r) is obtained first:

Lemma 9.2. We have

U(r) ≤ cN,p
def=

(N − p

p− 1
)p−1 for all r ≥ 0. (9.11)

Proof. Clearly, by (9.9), the function U : R+ → R is continuous and, by (9.10), it
is differentiable almost everywhere with the derivative U ′ being locally bounded.
Now, in contradiction with (9.11), suppose that there exists a number r0 ≥ 0 such
that U(r0) > cN,p. Let

r1
def= sup{r′ : r′ ≥ r0 and U(r) > cN,p for all r0 ≤ r ≤ r′}.

Next we show that r1 = ∞. Indeed, equation (9.10) with U(r) > cN,p and m(r) ≥ 0
for r0 ≤ r < r1 implies U ′(r) > 0. This shows that the function U(r) is strictly
increasing for r0 ≤ r < r1. Consequently, r1 < ∞ would yield U(r1) = cN,p <
U(r0) < U(r1) which is impossible.

Hence, there is a constant γ > 0 such that the expression inside the parenthesis
in eq. (9.10) satisfies

U(r)
1

p−1 − N − p

p− 1
≥ γ U(r)

1
p−1 for all r ≥ r0.
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Applying this inequality to equation (9.10) we obtain

U ′(r) ≥ p− 1
r

γ U(r)
p

p−1 for all r ≥ r0.

We integrate this inequality over the interval [r0, r] to get

U(r0)−
1

p−1 − U(r)−
1

p−1 ≥ γ log(r/r0) for all r ≥ r0.

Recalling U(r) > 0 and letting r → ∞, we arrive at U(r0)−
1

p−1 ≥ +∞, which is a
contradiction. Inequality (9.11) is proved. �

Define the function

a(r) def=
p− 1
r

(N − p

p− 1
− U(r)

1
p−1

)
for r > 0. (9.12)

Note that a(r) ≥ 0 by Lemma 9.2, and

a(r) =
N − p

r
+ (p− 1)

u′(r)
u(r)

= (p− 1)
d
dr

log
(
u(r) r

N−p
p−1

)
.

We substitute this function into eq. (9.10) and use integrating factor to integrate
it over any interval [r0, r] with r0 > 0 fixed and r ≥ r0. We thus obtain

U(r)− U(r0) e
−

∫ r
r0

a(s) ds =
∫ r

r0

m(s) sp−1 e−
∫ r

s
a(t) dt ds. (9.13)

Furthermore, we introduce the abbreviation

A(r) def=
∫ r

r0

a(s) ds = (p− 1) log
u(r) r

N−p
p−1

u(r0) r
N−p
p−1

0

for r ≥ r0. (9.14)

Lemma 9.3. We have a(r) ≥ 0 for all r > 0 and∫ ∞

r0

a(r) dr <∞ for every r0 > 0. (9.15)

Proof. The function A(r) is nondecreasing for r0 ≤ r < ∞. Now, suppose that
limr→∞A(r) = +∞. From equation (9.13) we deduce

0 ≤ U(r)− U(r0) e−A(r) ≤
∫ ∞

r0

m(s) sp−1 e−(A(r)−A(s)) ds for r ≥ r0. (9.16)

Due to our hypothesis (H’), we are allowed to apply Lebesgue’s dominated conver-
gence theorem to the last integral to obtain, as r →∞, 0 ≤ limr→∞ U(r) ≤ 0, i.e.,
limr→∞ U(r) = 0.

This shows that, given any number η such that 0 < η < N − p, there exists a
number rη ≥ r0 such that

a(r) =
p− 1
r

(N − p

p− 1
− U(r)

1
p−1

)
≥ N − p− η

r
for all r ≥ rη.

Since r0 is arbitrary, r0 > 0, we may take r0 = rη. Upon integration, we get

A(r) ≥ (N − p− η)
∫ r

r0

ds
s

= log
(
(r/r0)N−p−η

)
for all r ≥ r0. (9.17)
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We apply inequalities (9.2) and (9.17) to equation (9.13) to obtain for all r ≥ 0,

U(r) ≤ U(r0)
( r
r0

)−(N−p−η) + C

∫ r

r0

sp−1

(1 + s)p+δ

(r
s

)−(N−p−η) ds

≤ U(r0)
( r
r0

)−(N−p−η) +
C r−(N−p−η)

N − p− η − δ

(
rN−p−η−δ − rN−p−η−δ

0

)
.

(9.18)

Note that in inequality (9.2), the constant δ > 0 may be chosen arbitrarily small;
we choose it such that 0 < δ < N − p− η. Hence, (9.18) yields

U(r) ≤ C0 r
−δ for all r ≥ r0,

where C0 > 0 is a constant. With our definition of U we have equivalently

−u
′(r)
u(r)

≤ C
1

p−1
0 r−1− δ

p−1 for all r ≥ r0.

Upon integration we get

− log
u(r)
u(r0)

≤ C ′0
(
r
− δ

p−1
0 − r−

δ
p−1

)
for all r ≥ r0,

where C ′0 > 0 is a constant. Recalling u(r) → 0 as r → ∞, we arrive at +∞ ≤
C ′0 r

− δ
p−1

0 which is absurd. The proof of the lemma is complete. �

Finally, we determine the limit of the function U at infinity.

Lemma 9.4. We have

lim
r→∞

U(r) = cN,p =
(N − p

p− 1
)p−1

. (9.19)

Proof. The limit

A(∞) def= lim
r→∞

A(r) =
∫ ∞

r0

a(r) dr

exists and satisfies 0 ≤ A(∞) < ∞, by (9.14) and (9.15). We apply this fact and
hypothesis (H’) to equation (9.13) to obtain the existence of the limit

U(∞) def= lim
r→∞

U(r) = U(r0) e−A(∞) +
∫ ∞

r0

m(s) sp−1 e−(A(∞)−A(s)) ds, (9.20)

using Lebesgue’s dominated convergence theorem. We have U(∞) ≤ cN,p by (9.11).
However, if U(∞) < cN,p then there exist constants γ > 0 and r1 ≥ r0 such that

a(r) =
p− 1
r

(N − p

p− 1
− U(r)

1
p−1

)
≥ γ

r
for all r ≥ r1.

But this inequality contradicts (9.15). We have proved (9.19). �

Finally, we are ready to derive formulas (9.3) and (9.4).

Proof of Proposition 9.1. We combine (9.14) and (9.15) to conclude that the limit

c0
def= lim

r→∞
log

(
u(r) r

N−p
p−1

/
u(r0) r

N−p
p−1

0

)
exists and satisfies 0 ≤ c0 <∞. The desired formula (9.3) follows immediately with

c
def= ec0 u(r0) r

N−p
p−1

0 > 0. The convergence formula (9.19) reads

− r
u′(r)
u(r)

−→ N − p

p− 1
as r →∞. (9.21)
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We combine this result with (9.3) to get (9.4). The proposition is proved. �
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