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GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES
EQUATIONS WITH NONREGULAR FORCE

JIHOON LEE

Abstract. We show that the existence of global strong solutions for the
Navier-Stokes equations with nonregular force is generically true. Similar re-

sults for equations without the nonregular force have been obtained by Fursikov

[5]. Our main tools are the Galerkin method and estimates on its solutions.

1. Introduction

We are interested in the generic solvability for the 3-dimensional Navier-Stokes
equations with nonregular force on the periodic domain T3 × [0,∞).

∂u

∂t
+ (u · ∇)u +∇p = ν∆u + f +

∂g

∂t
, (1.1)

div u = 0, (1.2)

u(x, 0) = u0(x), (1.3)

where u is the fluid velocity vector field, p is the scalar pressure, ν is the positive
viscosity constant and f + ∂g

∂t s the external force. u0 is a given initial data. The
nonregular part is denoted by ∂g

∂t . We assume g ∈ C([0,∞);V 2) which means g(t)
is a continuous function in V 2, where the space V 2 is defined below. Since we only
consider the periodic domain T3 = [0, 2π]3, every function can be regarded as a
periodic vector field with period 2π, i.e., u(x1 +2π, x2, x3) = u(x1, x2, x3), etc. For
this above Navier-Stokes equations with nonregular force, the existence of the weak
solution was shown in [4].

Recently, Flandoli and Romito[3] proved the paths of a martingale suitable weak
solution for the Navier-Stokes equations with nonregular force have a set of singu-
lar points of one-dimensional Hausdorff measure zero. Also the stochastic Navier-
Stokes equations have been intensively studied by many authors (see [1], [2], [6] and
references therein). One of the most important problems in nonlinear partial differ-
ential equations is to show existence of global strong solution for three-dimensional
Navier-Stokes equations or to construct an example of the finite blow-up of the
solution for the three-dimensional Navier-Stokes equations. Although, it is still far
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from being proved the global existence, it is known to be generically true for (1.1)–
(1.3) without the nonregular part ∂g

∂t (see [5] and [7]). In this paper, we show that
generic solvability is still true even with the nonregular force.

We assume f and g are divergence free vector fields for simplicity. In the fol-
lowing, we consider the Banach spaces Lp(0, T ;B) for any Banch spaces B, i.e.
we say f ∈ Lp(0, T ;B) if and only if |f |Lp(0,T ;B) < ∞ (we use the same nota-
tion for the Banach space of 3-dimensional vector fields with the Banach space for
scalar valued function for simplicity). We denote ∪0<T<∞Lp(0, T ;B) is denoted by
Lp

loc(0,∞;B). Let Hm be the usual Sobolev space(see [7]). Following the notation
in [7], we denote the space of L2 divergence-free vector fields by H, the space of
Hm divergence free vector fields by V m (V 1 will be denoted by V for simplicity
and convention). We define the projection operator Pdiv as the projection to the
divergence free vector fields.

Note that {~eie
ik·x | i = 1, 2, 3, k ∈ Z3}, where ~ei is an i-th standard unit vector,

is a complete orthonormal basis for L2. Hence projection operator, Pdiv, is defined
as

Pdiv(~aeik·x) =
(
~a− k ⊗ k

|k|
· ~a

)
eik·x.

Let αi(k) = |Pdiv(~eie
ik·x)|L2 . Hence K =

{
1

αi(k)Pdiv(~eie
ik·x) : k ∈ Z3, i = 1, 2, 3

}
is a complete orthonormal basis for H. Define B(u, v) = −Pdiv(u · ∇)v, Λ2u =
−Pdiv∆u, where Pdiv is the L2 projection operator as above. By projecting (1.1)–
(1.2) to the divergence-free vector field, we obtain

du

dt
+ νΛ2u(t)−B(u, u) = f(t) +

dg(t)
dt

. (1.4)

For the three-dimensional Navier-Stokes equations with regular force, Fursikov[5]
and Temam [7] proved that for any initial data u0 ∈ V , there exists a set F which
is included in L2(0, T ;H) and dense in Lq(0, T ;V ′) with 1 ≤ q < 4

3 (V ′ is the
dual space of V ), such that for every external force f ∈ F , the equations have a
unique strong solution u. Using methods similar to those developed in [4], [5] and
[7], we obtain the following generic existence and uniqueness of the Navier-Stokes
equations with nonregular force.

Theorem 1.1. Assume that the initial data is u0 ∈ V . We also assume that f ∈
L2

loc(0,∞;H). There exist fm ∈ L2
loc(0,∞;H) satisfying fm → f in Lq

loc(0,∞;L6/5)
for all q satisfying 1 ≤ q < 4

3 such that (1.4) corresponding to u0 and fm possesses
a unique strong solution in L∞

loc(0,∞;V ) ∩ L2
loc(0,∞;V 2).

We remark that since L6/5 ⊂ V ′, Theorem 1.1 can be regarded as a slight
generalization of the results in [7].

2. Proof of main Theorem

For the proof of Theorem 1.1, we use the methods developed in [4], [5], and [7].
First, we consider the following Galerkin approximation of the system (1.1)–(1.2).

dum

dt
+ νΛ2um − PmB(um, um) = Pmf + Pm

dg

dt
,

um(0) = Pmu0.
(2.1)
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The projection onto the space spanned by { 1
αi(k)Pdiv(~eie

ik·x) | |k| ≤ m} is denoted
by Pm. Note that (2.1) is equivalent to the integral equation

um(t) + ν

∫ t

0

Λ2um(s)ds−
∫ t

0

PmB(um(s), um(s))ds

= um(0) +
∫ t

0

Pmf(s)ds + Pmg(t).
(2.2)

Using contraction mapping argument, we can show, local in time, existence of
solution um for (2.2). Following the argument given in [4], we consider the following
auxiliary equation for given z0 ∈ V .

zm(t) + ν

∫ t

0

Λ2zm(s)ds = Pmz0 + Pmg(t), t ≥ 0. (2.3)

This equation has a unique solution, which is continuous with values in V and
global in time. We show zm converges in C([0,∞);V ) ∩ L2

loc(0,∞;V 2). (2.3) is
equivalent to

zm(t) = e−νtΛ2
Pmz0 + Pmg(t)− ν

∫ t

0

Λ2e−ν(t−s)Λ2
Pmg(s)ds.

Note that for c(γ) = maxx≥0 x2γe−x, we have

‖Λ2γe−tΛ2
‖L(H) ≤ c(γ)

e−
t
2 λ1

tγ
, (2.4)

where ‖F‖L(H) = sup‖f‖H≤1 ‖F (f)‖H and λ1 is the smallest eigenvalue of Λ2.
Hence

Λzm(t) = e−νtΛ2
ΛPmz0 + ΛPmg − ν

∫ t

0

Λ2−2εe−ν(t−s)Λ2
Λ1+2εPmg(s)ds

is a continuous function in H. Since zm ∈ C([0,∞);V ), it follows that zm converges
in C([0,∞);V ). We let z be the limit of zm. Set

ρm(t) = e−νtΛ2
Pmz0 −

∫ t

0

νΛ2e−ν(t−s)Λ2
Pmg(s)ds.

Then ρm satisfies the linear equation
dρm

dt
+ νΛ2ρm = −νΛ2Pmg, ρm(0) = Pmz0.

It follows that
d

dt
|Λρm|2L2 + ν|Λ2ρm|2L2 ≤ ν|Λ2Pmg|2L2 .

Therefore, integrating we have

ν

∫ t

0

|Λ2ρm(s)|2L2ds ≤ |ΛPmz0|2L2 + ν

∫ t

0

|Λ2Pmg(s)|2L2ds.

By taking subsequence, ρm converges in L2loc(0,∞;V 2). Let ρ be the limit of ρm.
Since we have g ∈ L2

loc(0,∞;V 2), we have zm = ρm + Pmg converges to z := ρ + g
in L2loc(0,∞;V 2). Now define ũm = um − zm. Let ũm satisfy the equations

dũm

dt
+ νΛ2ũm − PmB(ũm + zm, ũm + zm) = Pmf, t ∈ [0,∞), (2.5)

ũm(0) = um(0)− Pmz0. (2.6)
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In [4], the boundedness of ũm in L∞(0, T ;L2) ∩ L2(0, T ;V ) is shown, i.e.,

|ũm(t)|2L2 + ν

∫ t

0

|Λũm(s)|2L2ds

≤ |ũm(0)|2L2 + C

∫ t

0

|ũm|2L2 |zm|8L4 + |zm|4L4 + |zm|2L2 + |Pmf |2V ′ds.

Thus νΛ2ũm ∈ L2
loc(0,∞;V ′) ⊂ L

4/3
loc (0,∞;V ′). Note that

‖ũm · ∇ũm‖V ′ ≤ C‖ũm‖1/2
L2 ‖ũm‖3/2

V ′ ,

‖ũm · ∇zm‖V ′ ≤ C‖ũm‖L2‖zm‖1/2
V ‖zm‖1/2

V 2 ,

‖z̃m · ∇ũm‖V ′ ≤ C‖zm‖1/2
L2 ‖zm‖1/2

V ‖ũm‖V ,

‖zm · ∇zm‖V ′ ≤ C‖zm‖1/2
L2 ‖zm‖3/2

V .

Hence, we have PmB(ũm + zm, ũm + zm) ∈ L
4/3
loc (0,∞;V ′). Thus we conclude that

∂ũm

∂t is bounded in L
4/3
loc (0,∞;V ′). Since {ũm} is bounded in W 1, 4

3 loc([0,∞);V ′),
we have ũm converges strongly in L2loc(0,∞;H). Thus there exists u such that
um converges to u in L2(0, T ;V 1−ε) and L

1
ε (0, T ;H) for any small ε > 0. Since um

is a finite Galerkin approximation, we have |um|V m ≤ C(m)|um|L2 . Hence um is in
L∞(0, T ;V ) ∩ L2(0, T ;V 2). Thus we have showed the following lemma.

Lemma 2.1. If u0 ∈ H, then um converges in L2(0, T ;V 1−ε) and L
1
ε (0, T ;H)

for any small ε > 0 as m → ∞. The sequence um is bounded in L∞(0, T ;H) ∩
L2(0, T ;V ). Furthermore, um is in L∞

loc(0,∞;V ) ∩ L2
loc(0,∞;V 2).

To proceed further, we consider the linear equations

∂vm

∂t
+ νΛ2vm = (I − Pm)f + (I − Pm)

∂g

∂t
,

vm(0) = (I − Pm)u0,
(2.7)

where I−Pm is the projection onto the space spanned by { 1
αi(k)Pdiv(~eie

ik·x) | |k| >
m}.

Lemma 2.2. If u0 ∈ H, then there exist a unique solution vm of (2.7) in the space
L2(0, T ;V ) ∩ L∞(0, T ;H) and vm → 0 in L2(0, T ;V ) ∩ L∞(0, T ;H) as m → ∞.
Furthermore, if u0 ∈ V , then vm ∈ L2(0, T ;V 2) ∩ L∞(0, T ;V ) and vm → 0 in
L2(0, T ;V 2) ∩ L∞(0, T ;V ) as m →∞.

Proof. Since (2.7) is a simple linear dissipative system, the existence and unique-
ness are immediate consequence of the standard results. Similarly to the proof
of Lemma 2.1, we can prove vm ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) and vm → 0 in
L2(0, T ;V ) ∩ L∞(0, T ;H). We only provide the proof of the second claim of this
lemma. Equation (2.7) is equivalent to the integral equation

vm(t) =e−νtΛ2
(I − Pm)u0 + (I − Pm)g(t) +

∫ t

0

e−ν(t−s)Λ2
(I − Pm)f(s) ds

−
∫ t

0

νΛ2e−ν(t−s)Λ2
(I − Pm)g(s) ds.



EJDE-2004/78 GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS 5

Since

Λvm(t) =e−νtΛ2
Λ(I − Pm)u0 + Λ(I − Pm)g(t) +

∫ t

0

Λe−ν(t−s)Λ2
(I − Pm)f(s) ds

−
∫ t

0

νΛ2(1−ε)e−ν(t−s)Λ2
Λ1+2ε(I − Pm)g(s) ds

is a continuous function in H (see (2.4)), we have vm ∈ C([0, T );V ). Set

hm(t) =e−νtΛ2
(I − Pm)u0 −

∫ t

0

νΛ2e−ν(t−s)Λ2
(I − Pm)g(s) ds

+
∫ t

0

e−ν(t−s)Λ2
(I − Pm)f(s) ds,

i.e., vm(t) = (I − Pm)g(t) + hm(t). It follows that hm satisfies the equation

dhm

dt
+ νΛ2hm = −νΛ2(I − Pm)g + (I − Pm)f.

Taking inner product with Λ2hm in L2 produces

1
2

d

dt
|Λhm|2L2 + ν|Λ2hm(t)|2L2 ≤

ν

2
|Λ2hm|2L2 + C|Λ2(I − Pm)g|2L2 + C|(I − Pm)f |2L2 .

Integrating over [0, T ), we obtain

|Λ2hm(t)|2L2 + ν

∫ T

0

|Λ2hm(t)|2L2dt

≤ |Λ(I − Pm)u0|2L2 + C

∫ T

0

|Λ2(I − Pm)g(t)|2L2dt + C

∫ T

0

|(I − Pm)f(t)|2L2dt.

Thus hm ∈ L2(0, T ;V 2). Since g ∈ L2(0, T ;V 2), we obtain vm ∈ L2(0, T ;V 2).
Lebesgue’s dominated convergence Theorem produces vm → 0 in L2(0, T ;V 2) ∩
L∞(0, T ;V ) as m → ∞. For the uniqueness, if there exists two solutions v1

m

and v2
m of (2.7), then we denote by ρ(t) = v1

m(t) − v2
m(t). We have the following

deterministic equations.

dρ

dt
+ νΛ2ρ = 0, ρ(0) = 0.

Thus we have ρ(t) = 0, which completes the proof. �

From Lemma 2.1, we have um is in L∞(0, T ;V ) ∩ L2(0, T ;V 2). Now for every
m, we consider also the solution vm of the linearized problems (2.7) We then set
wm = um + vm and observe wm satisfies wm ∈ L2(0, T ;V 2) ∩ L∞(0, T ;V ) if u0 ∈
V . By adding two equations, we have the following Navier-Stokes equations with
nonregular force

dwm

dt
+ νΛ2wm −B(wm, wm) = fm +

dg

dt
, (2.8)

where fm = f − B(vm, vm) − B(vm, um) − B(um, vm) − (I − Pm)B(um, um). Let
w̃m be another solution of (2.8). Then by letting ρ̃m = wm − w̃m, we have

dρ̃m

dt
+ νΛ2ρ̃m = B(ρ̃m, wm) + B(w̃m, ρ̃m).
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Hence we have
d

dt
|ρ̃m|2L2 ≤ −2ν|Λρ̃m|2L2 + C|ρ̃m|L6 |∇wm|L3 |ρ̃m|L2

≤ −ν|Λρ̃m|2L2 + C|wm|V 2 |wm|V |ρ̃m|2L2 .

Using Gronwall’s inequality, we have

|ρ̃m(t)|2L2 ≤ |ρ̃m(0)|2L2 exp
(
C

∫ t

0

|wm|V 2 |wm|V ds
)
.

Since wm ∈ L2(0, T ;V 2)∩L∞(0, T ;V ), it is clear that wm is the unique solution in
L2

loc(0,∞;V 2) ∩ L∞
loc(0,∞;V ). Hence for the proof of Theorem 1.1, it is sufficient

to show that fm converges to f in Lq(0, T ;L6/5) with 1 ≤ q < 4
3 .

Proof of Theorem 1.1. For the remaining of this proof, we use only the weaker
assumption u0 ∈ H instead of u0 ∈ V . Since we have vm → 0 in L2(0, T ;V ) ∩
L∞(0, T ;H) as m → ∞, it is clear that B(vm, vm) → 0 in Lq(0, T ;L6/5) by the
inequalities∫ T

0

|B(vm, vm)|q
L6/5dt ≤ C

∫ T

0

|vm|qL3 |vm|qV dt

≤ C

∫ T

0

|vm|q/2
L2 |vm|

3
2 q

V dt

≤ C
( ∫ T

0

|vm|
2q

4−3q

L2 dt
) 4−3q

4
( ∫ T

0

|vm|2V dt
)3q/4

≤ CT
4−3q

4 |vm|
4q

4−3q

L∞(0,T ;H)|vm|3q/2
L2(0,T ;V ).

It is well known from the interpolation inequality that

|B(um, vm)|L6/5 ≤ C|um|L6 |∇vm|L3/2 ≤ C|∇um|L2 |vm|1/2
L2 |vm|1/2

V .

Then ∫ T

0

|B(um, vm)|q
L6/5dt

≤ C

∫ T

0

|∇um|qL2 |vm|q/2
L2 |vm|q/2

V dt

≤ C
( ∫ T

0

|∇um|2L2dt
)q/2( ∫ T

0

|vm|
2q

4−3q

L2 dt
) 4−3q

4
( ∫ T

0

|vm|2V dt
)q/4

≤ CT
4−3q

4 |um|qL2(0,T ;V )|vm|q/2
L∞(0,T ;H)vm|q/2

L2(0,T ;V ) → 0 .

Similarly, we have∫ T

0

|B(vm, um)|q
L6/5dt ≤

∫ T

0

|vm|qL3 |∇um|qL2dt

≤ CT
4−3q

4 |um|qL2(0,T ;V )|vm|q/2
L∞(0,T ;H)|vm|q/2

L2(0,T ;V ) → 0 .

To complete the proof, it is sufficient to show that

(I − Pm)B(um, um) → 0 in Lq(0, T ;L6/5) as m →∞.
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First we recall that um converges to its limit u from Lemma 2.1. We rewrite u as
an expansion by the complete orthonormal basis K, i.e.,

u =
∑

k∈Z3 i=1,2,3

ui
k

1
αi(k)

Pdiv(~eie
ik·x) =:

∑
k∈Z3

ukek(x),

where ui
k is the corresponding coefficient, and for simplicity of notation we intro-

duced the right-hand-side. Then we have

(I − Pm)B(u, u) = (I − Pm)Pdiv((u · ∇)u)

= (I − Pm)Pdiv

∑
k′∈Z3

(
∑
k∈Z3

ukek(x) · k′)uk′ek′(x)

= Pdiv

(( ∑
|k|≥[ m

2 ]

ukek(x) · ∇
) ∗∑

k′

uk′ek′(x)
)

+ Pdiv

(( ∗∑
k

ukek(x) · ∇
) ∑
|k′|≥[ m

2 ]

uk′ek′(x)
)
,

(2.9)

where [a] denotes the largest integer less than or equal to a, and
∑∗

h denotes the
summation over all h ∈ Z3 satisfying |h+j| > m when |j| ≥ [m

2 ]. Using the identity
(2.9), we obtain

|(I − Pm)B(u, u)| ≤ C|
∑

|k|≥[ m
2 ]

ukek(x)|L3 |∇u|L2 + C|u|L6 |∇
∑

|k′|≥m
2

uk′ek′(x)|L3/2

≤ C|
∑

|k|≥[ m
2 ]

ukek(x)|1/2
L2 |∇u|3/2

L2 .

We obtain that for any q < 4/3,∫ T

0

|(I − Pm)B(u, u)|q
L6/5dt

≤ C

∫ T

0

|∇u|
3q
2

L2 |
∑

|k|≥[ m
2 ]

ukek(x)|q/2
L2 dt

≤ C
( ∫ T

0

|∇u|2L2dt
)3q/4( ∫ T

0

|
∑

|k|≥[ m
2 ]

ukek(x)|
2q

4−3q

L2 dt
) 4−3q

4
.

Since K is a complete orthonormal basis for H, we have

(I − Pm)B(u, u) → 0 in Lq(0, T ;L6/5) as m →∞.

Thus it only remains to prove that B(um, um) − B(u, u) → 0 in Lq(0, T ;L6/5).
From Lemma 2.1, we have

um → u in L2(0, T ;V 1−ε) ∩ L
1
ε (0, T ;H) for any ε > 0.

We complete the proof by showing that

B(um − u, um), B(u, um − u) → 0 in Lq(0, T ;L6/5) for all q < 4/3.
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By the interpolation inequality, we have for ε < 1/2,

|B(um − u, um)|L6/5 ≤ C|um − u|
1−2ε

2(1−ε)

L2 |um − u|
1

2(1−ε)

V 1−ε |∇um|L2 ,

|B(u, um − u)|L6/5 ≤ C|u|L6 |um − u|1/2
L2 |um − u|1/2

V .

Setting r = 2q(1−2ε)
4−3q−2ε(2−q) , we have

q

2
+

q

4(1− ε)
+

q(1− 2ε)
2r(1− ε)

= 1.

By Hölder’s inequality and Lemma 2.1, we obtain∫ T

0

|B(um − u, um)|q
L6/5dt

≤ C
( ∫ T

0

|um − u|rL2dt
) q(1−2ε)

2r(1−ε)
( ∫ T

0

|um − u|2V 1−εdt
) q

4(1−ε)
( ∫ T

0

|∇um|2L2dt
)q/2

which approaches zero as m approaches ∞. Again using Hölder’s inequality(note
that q

2 + q
4 + 4−3q

4 = 1), we have∫ T

0

|B(u, um − u)|q
L6/5dt

≤ C
( ∫ T

0

|u|2V dt
)q/2( ∫ T

0

|um − u|
2q

4−3q

L2 dt
) 4−3q

4
( ∫ T

0

|um − u|2V dt
)q/4

→ 0 .

This completes the proof of Theorem 1.1. �
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