Electronic Journal of Differential Equations, Vol. 2004(2004), No. 79, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

PERIODICITY OF MILD SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATIONS IN BANACH SPACES

THANH LAN NGUYEN

Abstract

We give necessary and sufficient conditions for the periodicity of mild solutions to the the higher order differential equation $u^{(n)}(t)=A u(t)+$ $f(t), 0 \leq t \leq T$, in a Banach space E. Applications are made to the cases, when A generates a C_{0}-semigroup or a cosine family, and when E is a Hilbert space.

1. Introduction

This paper concerns the periodicity of solutions to the higher order Cauchy problem

$$
\begin{gather*}
u^{(n)}(t)=A u(t)+f(t), \quad 0 \leq t \leq T \\
u^{(i)}(0)=x_{i}, \quad i=0,1, \ldots, n-1 \tag{1.1}
\end{gather*}
$$

where A is a linear and closed operator on a Banach space E, and f is a function from $[0, T]$ to E. The asymptotic behavior and, in particular, the periodicity of solutions of 1.1 has been subject to intensive study in recent decades. It is wellknown [6] that, if A is an $n \times n$ matrix on \mathbb{C}^{n}, then the first order Cauchy problem

$$
\begin{gather*}
u^{\prime}(t)=A u(t)+f(t), \quad 0 \leq t \leq T, \\
u(0)=x \tag{1.2}
\end{gather*}
$$

in $E=\mathbb{C}^{n}$ admits a unique T-periodic solution for each continuous T-periodic forcing term f if and only if $\lambda_{k}=2 k \pi t / T, k \in \mathbb{Z}$, are not eigenvalues of A. This result was extended by Krein and Dalecki [2, 9] to the Cauchy problem in an abstract Banach space. In [2, Theorem II 4.3] it was claimed that, if A is a linear bounded operator on E, then 1.2 admits a unique T-periodic solution for each $f \in C[0, T]$ if and only if $2 k \pi i / T \in \varrho(A), k \in \mathbb{Z}$. Here $\varrho(A)$ denotes the resolvent set of A. Unfortunately, the above result does not hold any more when A is an unbounded operator (see [5]). For the case, when A generates a strongly continuous semigroup, periodicity of solutions of (1.2) was studied in [8, 15]. Corresponding results on the periodic solutions of the second order Cauchy problem were obtained in [12, 16], when A is generator of a cosine family. Related results can also be found in [3, 7, 10, 11, 13, 17] and the references therein.

[^0]In this paper we investigate the periodicity of mild solutions of the higher order Cauchy problem (1.1) when A is a linear, unbounded operator. The main tool we use here is the Fourier series method. For an integrable function $f(t)$ from $[0, T]$ to E, the Fourier coefficient of $f(t)$ is defined as

$$
f_{k}=\frac{1}{T} \int_{0}^{T} f(s) e^{-2 k \pi i s / T} d s, \quad k \in \mathbb{Z}
$$

Then $f(t)$ can be represented by Fourier series

$$
f(t) \approx \sum_{k=-\infty}^{\infty} e^{2 k \pi i t / T} f_{k}
$$

First, we establish the relationship between the Fourier coefficients of the periodic solutions of (1.1) and those of the inhomogeneity f. We then give different equivalent conditions so that (1.1) admits a unique periodic solution for each inhomogeneity f in a certain function space. As applications, in Section 3 we show a short proof of the Gearhart's Theorem: If A is generator of a strongly continuous semigroup $T(t)$, then $1 \in \varrho(T(1))$ if and only if $2 k \pi i \in \varrho(A)$ and $\sup _{k \in \mathbb{Z}}\|R(2 k \pi i, A)\|<\infty$. Corresponding result for the spectrum of a cosine family is also presented.

Let us fix some notation. A continuous function on $[0, T]$ is said to be T-periodic if $u(0)=u(T)$. For the sake of simplicity (and without loss of generality) we assume $T=1$ and put $J:=[0,1]$. For $p \geq 1, L_{p}(J)$ denotes the space of E-valued functions on J with $\int_{0}^{1}\|f(t)\|^{p} d t<\infty$ and $C(J)$ the space of functions on J with and $\|f\|=\sup _{J}\|f(t)\|<\infty$. Moreover, for $m>0$ we define the following function spaces
(1) $W_{p}^{m}(J):=\left\{f \in L_{p}(J): f^{\prime}, f^{\prime \prime}, \ldots, f^{(m)} \in L_{p}(J)\right\} . W_{p}^{m}(J)$ is then a Banach space with the norm

$$
\|f\|_{W_{p}^{m}}:=\sum_{k=0}^{m}\left\|f^{(k)}\right\|_{L_{p}(J)}
$$

(2) $P^{m}(J):=\left\{f \in C(J): f, f^{\prime}, \ldots, f^{(m)}\right.$ are in $\left.P(J)\right\}$. That means $P^{m}(J)$ is the space of all functions on J, which can be extended to 1-periodic, m-times continuously differentiable functions on \mathbb{R}. $P^{m}(J)$ is a Banach space with the norm

$$
\|f\|_{P^{m}(J)}:=\sum_{k=0}^{m}\left\|f^{(k)}\right\|_{C(J)}
$$

(3) $W P_{p}^{m}(J):=P^{m-1}(J) \cap W_{p}^{m}(J)$. It is easy to see that $W P_{p}^{m}(J)$ is a Banach space with $W_{p}^{m}(J)$-norm.

We will use the following simple lemma.
Lemma 1.1. If F is a continuous function on J such that $f=F^{\prime} \in L_{p}(J)$, then for $k \neq 0$ we have

$$
F_{k}=\frac{1}{2 k \pi i} f_{k}+\frac{F(0)-F(1)}{2 k \pi i}
$$

where f_{k} and F_{k} are the Fourier series of f and F, respectively.

2. Periodic Mild Solutions of Higher Order Differential Equations

Let J be the interval $[0,1]$ and $p \geq 1$. For each function $f \in L_{p}(J)$ we define the function If by $I f(t):=\int_{0}^{t} f(s) d s$ and, for $n \geq 2$, the function $I^{n} f$ by $I^{n} f(t):=$ $I\left(I^{n-1} f\right)(t)$.

Definition 2.1. (1) A continuous function u is called a mild solution of 1.1 on J, if $I^{n} u(t) \in D(A)$ and, for all $t \in J$,

$$
\begin{equation*}
u(t)=\sum_{i=0}^{n-1} \frac{t^{i}}{i!} x_{i}+A I^{n} u(t)+I^{n} f(t) \tag{2.1}
\end{equation*}
$$

(2) A function u is a classical solution of (1.1) on J, if $u(t) \in D(A), u$ is n-times continuously differentiable, and 1.1 holds for $t \in J$.

Remarks.

(i) If $n=1$ and A is the generator of a C_{0} semigroup $T(t)$, then a continuous function $u: J \rightarrow E$ is a mild solution of (1.1) if and only if it has the form

$$
u(t)=T(t) x_{0}+\int_{0}^{t} T(t-r) f(r) d r, \quad t \in J
$$

(See [1]).
(ii) Similarly, if $n=2$ and A generates a cosine family $(C(t))$ on E, then any continuously differentiable function u on E of the form

$$
u(t)=C(t) x_{0}+S(t) x_{1}+\int_{0}^{t} S(t-\tau) f(\tau) d \tau, \quad t \in J
$$

where $(S(t))$ is the associated sine family, is a mild solution of 1.1) (see Section 3 for more details).
The mild solution to (1.1) defined by 2.1 is really an extension of a classical solution in the sense that every classical solution is a mild solution and conversely, if a mild solution is n-times continuously differentiable, then it is a classical solution. That statement is actually contained in the following lemma.

Lemma 2.2. Suppose $0 \leq m \leq n$ and u is a mild solution of (1.1), which is m-times continuously differentiable. Then we have $\left(I^{n-m} u\right)(t) \in D(A)$ and

$$
\begin{equation*}
u^{(m)}(t)=\sum_{j=m}^{n-1} \frac{t^{j-m}}{(j-m)!} x_{j}+A I^{n-m} u(t)+I^{n-m} f(t) \tag{2.2}
\end{equation*}
$$

Proof. If $m=0$, then $\sqrt{2.2}$ coincides with (2.1). We prove for $m=1$: Let $v(t):=$ $A I^{n} u(t)$. Then, by 2.1$), v$ is continuously differentiable and

$$
v^{\prime}(t)=u^{\prime}(t)-\sum_{j=1}^{n-1} \frac{t^{j-1}}{(j-1)!} x_{j}-I^{n-1} f(t)
$$

Let $h>0$ and put

$$
v_{h}:=\frac{1}{h} \int_{t}^{t+h} I^{n-1} u(s) d s
$$

Then $v_{h} \rightarrow\left(I^{n-1} u\right)(t)$ for $h \rightarrow 0$ and

$$
\begin{aligned}
& \lim _{h \rightarrow 0} A v_{h}=\quad \lim _{h \rightarrow 0} \frac{1}{h}\left(A \int_{0}^{t+h} I^{n-1} u(s) d s-A \int_{0}^{t} I^{n-1} u(s) d s\right) \\
& \quad=\frac{1}{h}(v(t+h)-v(t)) \\
& \\
& \quad=v^{\prime}(t)
\end{aligned}
$$

Since A is a closed operator, we obtain that $I^{n-1} u(t) \in D(A)$ and

$$
A I^{n-1} u(t)=u^{\prime}(t)-\sum_{j=1}^{n-1} \frac{t^{j-1}}{(j-1)!} x_{j}-I^{n-1} f(t)
$$

from which 2.2 with $m=1$ follows. If $m>1$, we obtain 2.2 by repeating the above process $(m-1)$ times.

In particular, if the mild solution u is n-times continuously differentiable, then 2.2) becomes $u^{(n)}(t)=A u(t)+f(t)$, i.e. u is a classical solution of 1.1.

We now consider the mild solutions of 1.1 , which are $(n-1)$ times continuously differentiable. The following proposition describes the connection between the Fourier coefficients of such solutions and those of $f(t)$.

Proposition 2.3. Suppose $f \in L_{p}(J)$ and u is a mild solution of 1.1, which is $(n-1)$ times continuously differentiable. Then

$$
\begin{equation*}
\frac{\left((2 k \pi i)^{n}-A\right) u_{k}-f_{k}}{(2 k \pi i)^{n}}=\sum_{j=0}^{n-1} \frac{u^{(j)}(0)-u^{(j)}(1)}{(2 k \pi i)^{j+1}} \tag{2.3}
\end{equation*}
$$

for $k \neq 0$.
Proof. Let $u_{k}^{(j)}$ be the $k^{\text {th }}$ Fourier coefficient of $u^{(j)}$. Using the identity

$$
\begin{equation*}
u_{k}^{(j)}=\frac{u^{(j)}(0)-u^{(j)}(1)}{2 k \pi i}+\frac{1}{2 k \pi i} u_{k}^{(j+1)} \tag{2.4}
\end{equation*}
$$

for $j=0,1,2, \ldots, n-2$ (by Lemma 1.1), we obtain

$$
\begin{equation*}
u_{k}=\sum_{j=0}^{n-2} \frac{u^{(j)}(0)-u^{(j)}(1)}{(2 k \pi i)^{j+1}}+\frac{1}{(2 k \pi i)^{n-1}} u_{k}^{(n-1)} . \tag{2.5}
\end{equation*}
$$

Since u is $(n-1)$ times continuously differentiable, by Lemma 2.2 ,

$$
\begin{equation*}
u^{(n-1)}(t)=u^{(n-1)}(0)+A I u(t)+I f(t) \tag{2.6}
\end{equation*}
$$

Taking the $k^{t h}$ Fourier coefficient on both sides of 2.6) and using 2.4), we have

$$
\begin{align*}
u_{k}^{(n-1)} & =A(I u)_{k}+(I f)_{k} \\
& =A\left(\frac{I u(0)-I u(1)}{2 k \pi i}+\frac{1}{2 k \pi i}(I u)_{k}^{\prime}\right)+\left(\frac{I f(0)-I f(1)}{2 k \pi i}+\frac{1}{2 k \pi i}(I f)_{k}^{\prime}\right) \tag{2.7}\\
& =\frac{-(A I u(1)+I f(1))}{2 k \pi i}+\frac{A u_{k}+f_{k}}{2 k \pi i} \\
& =\frac{u^{(n-1)}(0)-u^{(n-1)}(1)}{2 k \pi i}+\frac{A u_{k}+f_{k}}{2 k \pi i} .
\end{align*}
$$

Here we have also used $I u(0)=I f(0)=0,(I u)_{k}^{\prime}=u_{k}$ and $(I f)_{k}^{\prime}=f_{k}$. Combining (2.5) and 2.7), we obtain

$$
u_{k}=\sum_{j=0}^{n-1} \frac{u^{(j)}(0)-u^{(j)}(1)}{(2 k \pi i)^{j+1}}+\frac{A u_{k}+f_{k}}{(2 k \pi i)^{n}}
$$

from which 2.3 follows.

The interesting point of Proposition 2.3 is that the Fourier coefficients of the mild solution u depend not only on u but also on its derivatives. If u is a mild solution in $P^{(n-1)}(J)$, then we have a nice relationship between Fourier coefficients of u and those of f, as the following proposition shows.
Proposition 2.4. Suppose $f \in L_{p}(J)$ and u is a mild solution of 1.1), which is $(n-1)$ times continuously differentiable. Then $u \in P^{(n-1)}(J)$ if and only if

$$
\begin{equation*}
\left((2 k \pi i)^{n}-A\right) u_{k}=f_{k} \tag{2.8}
\end{equation*}
$$

for every $k \in \mathbb{Z}$.
Proof. Suppose u is a mild 1-periodic solution of 1.1 in $P^{n-1}(J)$. If $k \neq 0$, then (2.8) follows directly from (2.3). If $k=0$, using 2.2 with $m=n-1$ and $t=1$ we obtain

$$
\begin{aligned}
u^{(n-1)}(1) & =u^{(n-1)}(0)+A \int_{0}^{1} u(s) d s+\int_{0}^{1} f(s) d s \\
& =u^{(n-1)}(0)+A u_{0}+f_{0}
\end{aligned}
$$

Due to the 1-periodicity of $u^{(n-1)}$ we obtain $A u_{0}+f_{0}=0$, from which 2.8 holds for $k=0$. Conversely, suppose 2.8 holds for all $k \in \mathbb{Z}$. Then, by 2.3,

$$
\begin{equation*}
\sum_{j=0}^{n-1} \frac{u^{(j)}(0)-u^{(j)}(1)}{(2 k \pi i)^{j}}=0 \tag{2.9}
\end{equation*}
$$

all $k \neq 0$. That means that for any positive integer K, the vector

$$
X=\left(u(0)-u(1), u^{\prime}(0)-u^{\prime}(1), \ldots, u^{(n-1)}(0)-u^{(n-1)}(1)\right)^{T}
$$

is a solution of the system of linear equations

$$
\left(\begin{array}{cccc}
1 & \frac{1}{2 \pi i} & \cdots & \frac{1}{(2 \pi i)^{n-1}} \\
1 & \frac{1}{2 \cdot 2 \pi i} & \cdots & \frac{1}{(2 \cdot 2 \pi i)^{n-1}} \\
\vdots & & \ddots & \vdots \\
1 & \frac{1}{2 K \pi i} & \cdots & \frac{1}{(2 K \pi i)^{n-1}}
\end{array}\right)_{n \times K} \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=0 .
$$

This can only happen if $X=0$, i.e. $u^{(j)}(0)-u^{(j)}(1)=0$ for $j=0,1,2, \ldots,(n-1)$. Hence, $u \in P^{(n-1)}(J)$, and the proposition is proved.

From Proposition 2.4 we obtain
Corollary 2.5. Suppose $f \in L_{p}(J)$. Then
(i) If $\left((2 k \pi i)^{n}-A\right)$ is injective for $k \in \mathbb{Z}$, then Equation (1.1) has at most one 1-periodic mild solution, which belongs tp $P^{n-1}(J)$.
(ii) If there exists a number $k \in \mathbb{Z}$ such that $f_{k} \notin \operatorname{Range}\left((2 k \pi i)^{n}-A\right)$, then Equation 1.1 has no periodic mild solution which belongs to $P^{n-1}(J)$.
(iii) Let u be a mild solution of $u^{(n)}=A u$, which is $(n-1)$ times continuously differentiable. Then u belongs to P^{n-1} if and only if

$$
(2 k \pi i)^{n} u_{k}=A u_{k}
$$

i.e., u_{k} is an eigen-vector of A corresponding to $(2 k \pi i)^{n}, k \in \mathbb{Z}$.

We are now in a position to state the main results.

Theorem 2.6. Let A be a closed operator on E and $0 \leq m \leq n$. The following statements are equivalent.
(i) For each function $f \in W P_{p}^{m}(J)$, Equation (1.1) admits a unique mild solution in $W P_{p}^{n}(J)$
(ii) For each $k \in \mathbb{Z}, 2 k \pi i \in \varrho(A)$ and there exists a constant $C>0$ such that

$$
\begin{equation*}
\left.\| \sum_{k}\left((2 k \pi i)^{n}-A\right)^{-1} e^{2 k \pi i} \cdot x_{k}\right)\left\|_{W_{p}^{n}(J)} \leq C \cdot\right\| \sum_{k} e^{2 k \pi i \cdot} x_{k} \|_{W_{p}^{m}(J)} \tag{2.10}
\end{equation*}
$$

for any finite sequence $\left\{x_{k}\right\} \subset E$
If E is a Hilbert space, and $p=2$, then (i) and (ii) are equivalent to
(iii) For every $k \in \mathbb{Z},(2 k \pi i)^{n} \in \varrho(A)$ and

$$
\begin{equation*}
\sup _{k \in \mathbb{Z}}\left\|k^{n-m}\left((2 k \pi i)^{n}-A\right)^{-1}\right\|<\infty \tag{2.11}
\end{equation*}
$$

We will need the following lemma.
Lemma 2.7. Let $F_{1}:=W P_{p}^{m}(J)$ and $F_{2}:=W P_{p}^{n}(J)$. Then the following are equivalent:
(1) For each function $f \in F_{1}$, (1.1) admits a unique mild solution u in F_{2}.
(2) There exists a dense subset D in F_{1} such that:
(i) For each function $f \in D$, 1.1) admits a unique mild solution u in F_{2};
(ii) There exists a constant $C>0$ such that for all $f \in D$,

$$
\begin{equation*}
\|u\|_{F_{2}} \leq C\|f\|_{F_{1}} \tag{2.12}
\end{equation*}
$$

Proof. (1) \Rightarrow (2): We will prove (2) with $D=F_{1}$. It is easy to see that (i) is automatically satisfied. To show (ii), we define the operator $G: F_{1} \mapsto F_{2}$ by $G f:=u$, where u is the unique mild solution of 1.1 in F_{2}. Then G is a linear, everywhere defined operator. We will prove the boundedness of G by showing that G is a closed operator. To this end, let $\left\{f_{j}\right\} \subset F_{1}$ a sequence such that $f_{j} \rightarrow f$ in F_{1} and $G f_{j} \rightarrow u$ in F_{2} for $j \rightarrow \infty$. For each $t \in J$, let $v_{j}:=I^{n}\left(G f_{j}\right)(t)$, then

$$
\lim _{j \rightarrow \infty} v_{j}=I^{n} u(t)
$$

Moreover, from the identity

$$
\left(G f_{j}\right)(t)=\sum_{i=0}^{n-1} \frac{t^{j}}{j!}\left(G f_{j}\right)(0)+A I^{n}\left(G f_{j}\right)(t)+I^{n} f_{j}(t)
$$

we have

$$
\begin{aligned}
A v_{j} & =A I^{n}\left(G f_{j}\right)(t) \\
& =\left(G f_{j}\right)(t)-\sum_{i=0}^{n-1} \frac{t^{i}}{i!}\left(G f_{j}\right)(0)-I^{n} f_{j}(t) \rightarrow u(t)-\sum_{i=0}^{n-1} \frac{t^{i}}{i!} u(0)-I^{n} f(t)
\end{aligned}
$$

as $j \rightarrow \infty$. Since A is a closed operator, $I^{n} u(t) \in D(A)$ and

$$
A I^{n} u(t)=u(t)-\sum_{i=0}^{n-1} \frac{t^{i}}{i!} u(0)-I^{n} f(t)
$$

i.e., u is a mild solution of 1.1 and consequently, $G f=u$. So, G is a bounded operator from F_{1} to F_{2}, from which 2.12 follows with $C=\|G\|$.
$(2) \Rightarrow(1)$. For any $f \in F_{1}$ there exists a sequence $\left\{f_{j}\right\} \subset D$ such that $f_{j} \rightarrow f$ for $j \rightarrow \infty$. Let u_{j} be the mild solution in F_{2} corresponding to f_{j}, then, by 2.12, $u_{j} \rightarrow u$ for some $u \in F_{2}$. With the same manner as in the previous part, we can prove that u is a mild solution of $\sqrt{1.1}$ corresponding to f. The uniqueness of this solution comes directly from (2.12).

Proof of Theorem 2.6. (i) \rightarrow (ii): We first show that $(2 k \pi i)^{n} \in \varrho(A)$ for $k \in \mathbb{Z}$. To this end, let $f(t)=e^{2 k \pi i t} x, x \in E$ and $u(t)$ be the unique mild solution to (1.2) corresponding to f. By Lemma 2.4 we have $\left((2 k \pi i)^{n}-A\right) u_{k}=x$. Hence $\left((2 k \pi i)^{n}-A\right)$ is surjective. On the other side, if $\left((2 k \pi i)^{n}-A\right)$ is not injective, i.e. there is a non-zero vector $x_{0} \in E$ such that $\left((2 k \pi i)^{n}-A\right) x_{0}=0$, then it is not hard to check that $u_{1}: \equiv 0$ and $u_{2}(t):=e^{2 k \pi i t} x_{0}$ are two distinct 1-periodic mild (classical) solution $\mathrm{f} u^{(n)}(t)=A u(t)$. It is contradicting to the uniqueness of u. So $\left((2 k \pi i)^{n}-A\right)$ is injective and hence bijective, i.e. $(2 k \pi i)^{n} \in \varrho(A)$. Let now $f(t):=\sum_{k} e^{2 k \pi i t} x_{k}$, where $\left\{x_{k}\right\}$ is any finite sequence in E. Then, by Lemma 2.4 , $u(t)=\sum_{k}\left((2 k \pi i)^{n}-A\right)^{-1} e^{2 k \pi i t} x_{k}$ is the unique 1-periodic mild solution to (1.1) corresponding to f. Thus, 2.10 is obtained by inequality (2.12).
(ii) \rightarrow (i): Put

$$
\mathcal{M}:=\left\{f(t)=\sum_{k} e^{2 k \pi i t} x_{k}:\left\{x_{k}\right\} \text { is a finite sequence in } E\right\} .
$$

Observe that \mathcal{M} is dense in $W P_{p}^{m}(J)$. Moreover, if f is a function in \mathcal{M}, i.e., if $f(t)=\sum_{k} e^{2 k \pi t} x_{k}$, then it is easy to check that $u(t)=\sum_{k}\left((2 k \pi i)^{n}-A\right)^{-1} e^{2 k \pi i t} x_{k}$ is a unique 1-periodic mild solution of (1.1) corresponding to f and, by Corollary 2.5 (i, it is the unique one. From 2.12 it follows that $\|u\|_{W_{p}^{n}(J)} \leq C\|f\|_{W_{p}^{m}(J)}$ for all $f \in \mathcal{M}$. By Lemma 2.7, that implies (i).

Finally, if E is a Hilbert space, then $W P_{2}^{m}(J)$ is a Hilbert space for any $0 \leq$ $m \leq n$. Moreover, for $f(t)=\sum_{k} e^{2 k \pi i t} x_{k}$ and $u(t)=\sum_{k}\left((2 k \pi i)^{n}-A\right)^{-1} e^{2 k \pi i t} x_{k}$ we have

$$
\begin{equation*}
\|f\|_{W_{2}^{m}(J)}=\sum_{j=0}^{m}\left(\sum_{k}(2 k \pi)^{2 j}\left\|x_{k}\right\|^{2}\right)^{1 / 2} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{W_{2}^{n}(J, E)}=\sum_{j=0}^{n}\left(\sum_{k}(2 k \pi)^{2 j}\left\|\left((2 k \pi i)^{n}-A\right)^{-1} x_{k}\right\|^{2}\right)^{1 / 2} \tag{2.14}
\end{equation*}
$$

Suppose (ii) holds, i.e., $\|u\|_{W_{2}^{n}(J)} \leq C\|f\|_{W_{2}^{m}(J)}$ for $f \in \mathcal{M}$. For any $k \in \mathbb{Z}$, take $f(t):=e^{2 k \pi i t} x$. From 2.13 and 2.14, we have

$$
\begin{equation*}
\|f\|_{W_{2}^{m}(J)}=\sum_{j=0}^{m}\left\|(2 k \pi)^{j} x\right\| \leq(2 \pi)^{m}(m+1)\left\|k^{m} x\right\| \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{W_{2}^{n}(J)}=\sum_{j=0}^{n}\left\|(2 k \pi)^{j}\left((2 k \pi i)^{n}-A\right)^{-1} x\right\| \geq(2 \pi)^{n}\left\|k^{n}\left((2 k \pi i)^{n}-A\right)^{-1} x\right\| \tag{2.16}
\end{equation*}
$$

Combining 2.10, 2.15 and 2.16 we obtain

$$
(2 \pi)^{n}\left\|k^{n}\left((2 k \pi i)^{n}-A\right)^{-1} x\right\| \leq C \cdot(2 \pi)^{m}(m+1)\left\|k^{m} x\right\|,
$$

from which 2.11) follows.

Conversely, suppose (iii) holds, i.e., there is a positive constant C such that $\left.\|(2 k \pi i)^{n}-A\right)^{-1} \| \leq C|k|^{m-n}$ for $k \in \mathbb{Z}$. Using that inequality for the right hand side of (2.14) we obtain

$$
\begin{aligned}
\left\|\sum_{k}\left((2 k \pi i)^{n}-A\right)^{-1} e^{2 k \pi i} x_{k}\right\|_{W_{2}^{n}(J)} & \leq C \sum_{j=0}^{n}\left(\sum_{k}(2 k \pi)^{2 j} k^{2 m-2 n}\left\|x_{k}\right\|^{2}\right)^{1 / 2} \\
& \leq C_{1} \sum_{j=0}^{n}\left(\sum_{k}(2 k \pi)^{2 j+2 m-2 n}\left\|x_{k}\right\|^{2}\right)^{1 / 2} \\
& \leq C_{1}(n+1)\left(\sum_{k}(2 k \pi)^{2 m}\left\|x_{k}\right\|^{2}\right)^{1 / 2} \\
& \leq C_{1}(n+1) \sum_{j=0}^{m}\left(\sum_{k}(2 k \pi)^{2 j}\left\|x_{k}\right\|^{2}\right)^{1 / 2} \\
& =C_{1}(n+1)\left\|\sum_{k} e^{2 k \pi i} x_{k}\right\|_{W_{2}^{m}(J)}
\end{aligned}
$$

where $C_{1}=C(2 \pi)^{n-m}$. Thus, 2.10 holds and the theorem is proved.

The next theorem shows the relationship between the regularity of the inhomogeneity and that of the corresponding mild solution.

Theorem 2.8. If A is a closed operator on E, then the following statements are equivalent.
(i) For each $f \in L_{p}(J)$ Eq. 1.1 admits a unique mild solution in $P^{n-1}(J)$.
(ii) $0 \in \varrho(A)$ and for each $f \in L_{p}(J)$ with $\int_{0}^{1} f(s) d s=0$, Equation 1.1 admits a unique mild solution in $P^{n-1}(J)$.
(iii) For each $f \in W P_{p}^{1}(J)$, Equation 1.1) admits a unique 1-periodic classical solution.

Proof. If (i) or (iii) holds, then, by the same reasoning as in the proof of Theorem 2.6, we can prove that $2 k \pi i \in \varrho(A)$ for $k \in \mathbb{Z}$.
(i) \rightarrow (iii): Let F be any function in $W P_{p}^{1}(J)$. Then F can be written as by $F(t)=\int_{0}^{t} f(s) d s+x_{0}$, where $f \in L_{p}(J)$ and x_{0} is a vector in E. Since F is 1 periodic we have $\int_{0}^{1} f(s) d s=0$. Let u be the mild solution to (1.1) corresponding to f, which is in $P^{n-1}(J)$, and put

$$
U(t)=\int_{0}^{t} u(s) d s+A^{-1} u^{n-1}(0)-A^{-1} x_{0}
$$

From identity 2.2 with $m=n-1$ we have

$$
\begin{equation*}
u^{(n-1)}(1)=u^{n-1}(0)+A \int_{0}^{1} u(s) d s+\int_{0}^{1} f(s) d s \tag{2.17}
\end{equation*}
$$

Note that $u^{(n-1)}(1)=u^{(n-1)}(0)$ and $\int_{0}^{1} f(s) d s=0$. Thus, from 2.17 we obtain $A \int_{0}^{1} u(s) d s=0$, which implies, due to $0 \in \varrho(A), \int_{0}^{1} u(s) d s=0$. Hence, U is a

1-periodic function. Moreover,

$$
\begin{aligned}
U^{(n)}(t) & =u^{(n-1)}(t) \\
& =u^{n-1}(0)+A \int_{0}^{t} u(s) d s+\int_{0}^{t} f(s) d s \\
& =u^{n-1}(0)+A\left[U(t)-A^{-1} u_{n-1}+A^{-1} x_{0}\right]+\left(F(t)-x_{0}\right) \\
& =A U(t)+F(t)
\end{aligned}
$$

So, U is an 1-periodic classical solution. The uniqueness of this solution follows from the fact that $u \equiv 0$ is the unique 1-periodic mild solution to the homogeneous equation $u^{(n)}(t)=A u(t)$, which, in turn, follows from (i).
(iii) \rightarrow (ii): Let f be a function in $L_{p}(J)$ with $\int_{0}^{1} f(s) d s=0$. Define $F(t):=$ $\int_{0}^{t} f(s) d s$, then it is easy to see that $F \in W P_{p}^{1}(J)$. Let U be the unique 1-periodic classical solution of 1.2 corresponding to F and put $u:=U^{\prime}$. Then $u \in P^{n-1}(J)$ and $U(t)=\int_{0}^{t} u(s) d s+U(0)$. By the definition of U and F, the equation $U^{(n)}(t)=$ $A U(t)+F(t)$ means

$$
u^{(n-1)}(t)=A U(0)+A \int_{0}^{t} u(s) d s+\int_{0}^{t} f(s) d s
$$

Hence, by Lemma 2.2, u is a mild solution to 1.1 corresponding to f. The uniqueness of u follows from Corollary 2.5
(ii) \rightarrow (i): Let f be a function in $L_{p}(J)$. Define $\tilde{f}(t):=f(t)-f_{0}$, where $f_{0}=$ $\int_{0}^{1} f(s) d s$, then $\int_{0}^{1} \tilde{f}(s) d s=0$. Let \tilde{u} be the 1-periodic mild solution to 1.1 corresponding to \tilde{f} and put $u(t):=\tilde{u}(t)-A^{-1} f_{0}$. Then u, as \tilde{u}, is in $P^{n-1}(J)$. Moreover,

$$
\begin{aligned}
u(t)= & \tilde{u}(t)-A^{-1} f_{0} \\
= & \left(\sum_{k=0}^{n-1} \frac{t^{k}}{k!} \tilde{u}^{(k)}(0)+A I^{n} \tilde{u}(t)+I^{n} \tilde{f}(t)\right)-A^{-1} f_{0} \\
= & \left(u(0)+A^{-1} f_{0}+\sum_{k=1}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)\right)+A I^{n}\left(u(t)+A^{-1} f_{0}\right) \\
& +I^{n}\left(f(t)-f_{0}\right)-A^{-1} f_{0} \\
= & \left.\sum_{k=0}^{n-1} \frac{t^{k}}{k!} u^{(k)}(0)\right)+A I^{n} u(t)+I^{n} f(t) .
\end{aligned}
$$

Hence, u is a mild solution to (1.1) corresponding to f. The uniqueness of u follows from Corollary 2.5 .

3. Applications

A semigroup case. Here, we consider the first order Cauchy problem

$$
\begin{gather*}
u^{\prime}(t)=A u(t)+f(t) \quad 0 \leq t \leq T \\
u(0)=x \tag{3.1}
\end{gather*}
$$

where A generates a C_{0}-semigroup $(T(t))_{t \geq 0}$. Recall that in this case the mild solution is of the form

$$
\begin{equation*}
u(t)=T(t) x+\int_{0}^{t} T(t-s) f(s) d s \tag{3.2}
\end{equation*}
$$

We have the following result, in which the equivalence between (i) and (v) is the Gearhart's Theorem [4].
Theorem 3.1. Let A generate a C_{0}-semigroup $(T(t))_{t \geq 0}$. Then the following statements are equivalent:
(i) $1 \in \varrho(T(1))$;
(ii) For every function $f \in L_{p}(J)$, Equation 3.1) admits a unique 1-periodic mild solution;
(iii) For every function $f \in W P_{p}^{1}(J)$, Equation 3.1 admits a unique mild solution in $W P_{p}^{1}(J)$;
(iv) For every function $f \in W P_{p}^{1}(J)$, Equation 3.1 admits a unique 1-periodic classical solution
If E is a Hilbert space, all the above statements are equivalent to
(v) $\{2 k \pi i: k \in \mathbb{Z}\} \subset \varrho(A)$ and

$$
\sup _{k \in \mathbb{Z}}\left\|(2 k \pi i-A)^{-1}\right\|<\infty .
$$

Proof. The equivalence (i) \Leftrightarrow (ii) was proved in [15]. The equivalence (ii) \Leftrightarrow (iv) follows from Theorem 2.8 and, if E is a Hilbert space, (iii) \Leftrightarrow (v) follows from Theorem 2.6. The inclusion (iv) \Rightarrow (iii) is obvious. So, it remains to show (iii) \rightarrow (iv).

To this end, let u be the unique mild solution of 3.1), which belong to $W P_{p}^{1}(J)$. Since $\int_{0}^{t} T(t-s) f(s) d s \in D(A)$ and $t \rightarrow \int_{0}^{t} T(t-s) f(s) d s$ is continuously differentiable for any $f \in W_{p}^{1}(J)$ (see e.g. [14]), we obtain that $T(\cdot) u(0) \in W_{p}^{1}(J)$. It follows that $T(t) u(0) \in D(A)$ for $t>0$ (since $t \mapsto T(t) x$ is differentiable at t_{0} if and only if $\left.T\left(t_{0}\right) x \in D(A)\right)$. Hence, $u(1)$, and thus, $x=u(1)$ belongs to $D(A)$. So u is a classical solution. The uniqueness of the 1-periodic classical solution is obvious.

A cosine family case. We now consider the second order Cauchy problem

$$
\begin{gather*}
u^{\prime \prime}(t)=A u(t)+f(t) \quad 0 \leq t \leq T \\
u(0)=x, u^{\prime}(0)=y \tag{3.3}
\end{gather*}
$$

where A is generator of a cosine family $(C(t))_{t \in \mathbb{R}}$ on E. Recall (see u.g. [1]) that in this case there exists a Banach space F such that $D(A) \hookrightarrow F \hookrightarrow E$ and such that the operator

$$
\mathcal{A}:=\left(\begin{array}{ll}
0 & I \\
A & 0
\end{array}\right)
$$

with $D(\mathcal{A})=D(A) \times F$ generates the C_{0}-semigroup

$$
\mathcal{T}(t):=\left(\begin{array}{cc}
C(t) & S(t) \\
C^{\prime}(t) & C(t)
\end{array}\right)
$$

on $F \times E$, where $S(t)$ is the associated sine family. Moreover, it is not difficult to check that u is a mild solution of 3.3 , which is continuously differentiable (a mild solution, which is in $W P_{p}^{2}(J)$, or a classical solution of 3.3 , respectively), if and
only if $\mathcal{U}=\left(u, u^{\prime}\right)^{T}$ is a mild solution (a mild solution, which is in $W P_{p}^{1}(J)$, or a classical solution, respectively) of the first order differential equation

$$
\begin{gather*}
\mathcal{U}^{\prime}(t)=\mathcal{A} \mathcal{U}(t)+(0, f(t))^{T}, \quad 0 \leq t \leq T \tag{3.4}\\
\mathcal{U}(0)=(x, y)^{T}
\end{gather*}
$$

in the space $F \times E$. Using (3.2), we have the explicit form of u by

$$
u(t)=C(t) x+S(t) y+\int_{0}^{t} S(s-\tau) f(\tau) d \tau
$$

Theorem 3.2. Let A generate a cosine family $(C(t))_{t \in \mathbb{R}}$ in E. Then the following statements are equivalent:
(i) $1 \in \varrho(C(1))$;
(ii) For each function $f \in L_{p}(J)$, Equation 3.3 has a unique 1-periodic mild solution, which is continuously differentiable;
(iii) For each function $f \in W P_{p}^{1}(J)$, Equation 3.3 admits a unique mild solution in $W P_{p}^{2}(J)$;
(iv) For each function $f \in W P_{p}^{1}(J)$, Equation 3.3) admits a unique 1-periodic classical solution;
If E is a Hilbert space, all the above statements are equivalent to

$$
\text { (v) }\left\{-4 k^{2} \pi^{2}: k \in \mathbb{Z}\right\} \subset \varrho(A) \text { and } \sup _{k \in \mathbb{Z}}\left\|k\left(4 k^{2} \pi^{2}+A\right)^{-1}\right\|<\infty
$$

Proof. The equivalence (i) \Leftrightarrow (ii) is virtually proved in [16]. The equivalence (ii) \Leftrightarrow (iv) from Theorem 2.8 and, if E is a Hilbert space, (iii) \Leftrightarrow (v) follows from Theorem 2.6. The inclusion (iv) \Rightarrow (iii) is obvious. So, it remains to show (iii) \rightarrow (iv). To this end, let u be the 1-periodic mild solution of (3.3), which is in $W P_{p}^{2}(J)$, then $\mathcal{U}=\left(u, u^{\prime}\right)^{T}$ is the 1-periodic mild solution of 3.4), which is in $W P_{p}^{1}(J, F \times E)$. Since \mathcal{A} is the generator of a C_{0}-semigroup, we can show (with the same manner as in the proof of Theorem 3.1) that \mathcal{U} is a 1-periodic classical solution of (3.4). It follows that u is a 1 -periodic classical solution of 3.3.

Acknowledgments. The author would like to express his gratitude to the anonymous referee for his/her helpful remarks and suggestions.

References

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neuberander: Vertor-valued Laplace Transforms and Cauchy Problems. Birkhäuser Verlag, Basel-Boston-Berlin 2001.
[2] J. Daleckii, M. G. Krein: Stability of solutions of differential equations on Banach spaces. Amer. Math. Soc., Providence, RI, 1974.
[3] Y, S, Eidelman, I. V. Tikhonov: On periodic solutions of abstract differential equations, Abstr. Appl. Anal. 6 (2001), no. 8, 489-499.
[4] L. Gearhart: Spectral theory for contraction semigroups on Hilbert space. Trans. Amer. Math. Soc. 236 (1978), 385-394.
[5] G. Greiner, J. Voigt, M. Wolff: On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory 5 (1981), 245-256.
[6] J. K. Hale: Ordinary differential equations. Wiley-Interscience, New York, 1969.
[7] L. Hatvani, T. Krisztin: On the existence of periodic solutions for linear inhomogeneous and quasi-linear functional differential equations, J. Differential Equations 97 (1992), 1-15.
[8] A. Haraux: Nonlinear evolution equations, Lecture Notes in Math., vol. 841 Springer Verlag, Heidelberg 1981. (1992), 1-15.
[9] M. G. Krein: On some questions related to the ideas of Liapunov in the theory of stability, Uspekhi Mat. Nauk 3 (1948), 166-169 (in Russian).
[10] C. E. Langenhop: Periodic and almost periodic solutions of Volterra integral differential equations with infinite memory, J. Differential Equations 58, 1985, 391-403 .
[11] Y. Latushkin, S. Montgomery-Smith: Evolution semigroups and Liapunov Theorems in Banach spaces, J. Func. Anal. 127 (1995), 173-197.
[12] I. Cioranescu, C. Lizama: Spectral properties of cosine operator functions, Aequationes Math. 36 (1988), no. 1, 80-98.
[13] C. Lizama: Mild Almost Periodic Solutions of Abstract Differential Equations, J. Math. Anal. Appl. 143 (1989), 560-571.
[14] R. Nagel, E. Sinestrari: Inhomogeneous Volterra integrodifferential equations for HilleYosida operators, In: K.D. Bierstedt, A. Pietsch, W. M. Ruess, D. Vogt (eds.): Functional Analysis. Proc. Essen Conference, Marcel Dekker 1993, 51-70.
[15] J. Pruss: On the spectrum of C_{0}-semigroup, Trans. Amer. Math. Soc. 284, 1984, 847-857.
[16] E. Schuler: On the spectrum of cosine functions, J. Math. Anal. Appl. 229 (1999), 376-398.
[17] E. Schuler, Q. P. Vu: The operator equation $A X-X B=C$, admissibility and asymptotic behavior of differential equations, J. Differential Equations, 145 (1998), 394-419.

Thanh Lan Nguyen
Department of Mathematics, Western Kentucky University, Bowling Green, Ky 42101, USA

E-mail address: Lan.Nguyen@wku.edu

[^0]: 2000 Mathematics Subject Classification. 34G10, 34K06, 47D06.
 Key words and phrases. Abstract Cauchy problems, Fourier series, periodic mild solutions, semigroups and cosine families.
 (C) 2004 Texas State University - San Marcos.

 Submitted February 18, 2004. Published June 4, 2004.

