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PERMANENCE OF PREDATOR-PREY SYSTEM WITH
INFINITE DELAY

JINGAN CUI, YONGHONG SUN

Abstract. In this paper we consider a predator-prey system with periodic

coefficients and infinite delay, in which the prey has a history that takes them
through two stages, immature and mature. We provide a sufficient and nec-
essary condition to guarantee the permanence of the system. The system has
a positive periodic solution under this condition. Some known results are
extended to the delay case.

1. Introduction

In this paper, we consider the following periodic predator-prey system with in-
finite delay and stage structure

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1 − p(t)x1

∫ 0

−∞
k12(s)y(t+ s) ds,

ẋ2 = c(t)x1 − f(t)x2
2,

ẏ = y
[
− g(t) + h(t)

∫ 0

−∞
k21(s)x1(t+ s) ds− q(t)

∫ 0

−∞
k22(s)y(t+ s) ds

]
,

(1.1)

where x1 and x2 denote the density of immature and mature population A(prey)
respectively, and y is the density of the predator B that prey on x1. The coefficients
in (1.1) are all ω-periodic and continuous for t ≥ 0, a(t), b(t), c(t), d(t) and f(t) are
all positive, p(t), h(t) and q(t) are nonnegative, and

∫ ω

0
q(t)dt > 0,

∫ ω

0
g(t)dt ≥ 0.

The functions kij(s)(i, j = 1, 2) defined on R− = (−∞, 0] are nonnegative and
integrable,

∫ 0

−∞ kij(s) = 1. The biological background for (1.1) can be found in
[4, 14].

Predator-prey systems have been studied in many articles; see for example [5,
6, 8, 9, 10]. However, for the predator-prey systems with stage structure and
infinite time delay, we have not obtained necessary and sufficient conditions for
its permanence. In the natural world, however, there are many species whose
individual members have a life history that take them through two stages, immature
and mature. In particularly, we have in mind mammalian populations and some
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amphibious animals, which exhibit these two stages. Recently, autonomous systems
with stage structure of species have been considered in [1, 2, 13, 14], in particularly,
the effect of dispersal on the permanence of a single species with stage structure
was discussed in [11]. And two species predator-prey Lotka-Volterra type dispersal
systems with periodic coefficients and infinite delays have been studied in [11].

In this paper, we consider system (1.1) with periodic coefficients. Our purpose
is to establish sufficient and necessary conditions of integrable form for the perma-
nence of system (1.1) .

2. Main Results

When f(t) is a continuous ω-periodic function defined on [0,+∞), we set

Aω(f) = ω−1

∫ ω

0

f(t)dt, fM = max
t≥0

f(t), fL = min
t≥0

f(t).

Let set C+ ={φ = (φ1, φ2, φ3) : φi(t) is continuous and nonnegative on R− and
φi(0) > 0, i = 1, 2, 3}
Definition The system ẋ = F (t, x), x ∈ Rn is said to be permanent if there are
constants M ≥ m > 0 such that every positive solution x(t) = (x1(t), . . . , xn(t)) ∈
Rn

+ = {(x1, . . . , xn) : xi > 0, i = 1, . . . , n} of this system, satisfies

m ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤M .

Lemma 2.1 ([4]). The system

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2

(2.1)

has a positive ω-periodic solution (x∗1(t), x
∗
2(t)) which is globally asymptotically sta-

ble with respect to R2
+0 = {(x1, x2) : x1 > 0, x2 > 0}.

Lemma 2.2 ([12]). For the well-known periodic logistic equation

u̇ = u[a(t)− b(t)u] (2.2)

where a(t) and b(t) are ω−periodic continuous functions, bl ≥ 0 and Aω(b) > 0,
there is a constant M > 0 such that every positive solution u(t) of (2.2) satisfies
lim supt→∞ u(t) ≤M .

Theorem 2.3. System (1.1) is permanent if and only if∫ ω

0

[−g(t) + h(t)
∫ 0

−∞
k21(s)x∗1(t+ s) ds]dt > 0, (2.3)

where (x∗1(t), x
∗
2(t)) is the positive ω-periodic solution of (2.1).

To prove this theorem, we need several Lemmas. In this paper we always assume
that solutions of system (1.1) satisfy the initial conditions:

xi(s) = ϕi(s), y(s) = ψ(s), (i = 1, 2), (ϕ1, ϕ2, ψ) ∈ C+, s ∈ (−∞, 0].

Lemma 2.4. There exist positive constants Mx and My such that

lim sup
t→∞

xi(t) ≤Mx, lim sup
t→∞

y(t) ≤My.
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Proof. Obviously, R3
+ is a positively invariant set of system (1.1). Given any posi-

tive solution (x1(t), x2(t), y(t)), we have

ẋ1 ≤ a(t)x2 − b(t)x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2.

By the vector comparison theorem [7], we obtain

xi(t) ≤ x̄i(t) (i = 1, 2)

for all t ≥ 0, where x̄(t) = (x̄1(t), x̄2(t)) is the solution of (2.1) with x̄(0) = x(0).
By the global asymptotic stability of x∗(t), there is a T0 > 0 such that for all t ≥ T0,

x̄i(t) ≤Mx (i = 1, 2);

hence, for all t ≥ T0,
xi(t) ≤Mx (i = 1, 2). (2.4)

Consequently, lim supt→∞ xi(t) ≤ Mx, i = 1, 2. Let ē(t) = −g(t) + 2Mxh(t) and
H0 = sup{x1(t + s) + x2(t + s) | t ≥ 0, s ≤ 0} and let the constant τ > 0 be such
that

H0

∫ −τ

−∞
k21(s) ds < Mx, (2.5)∫ 0

−τ

k22(s) exp(ēms) ds > 0. (2.6)

From (2.4), for any t ≥ T0 + τ we have

ẏ ≤ y[−g(t) + h(t)
∫ 0

−∞
k21(s)x1(t+ s) ds]

≤ y
[
− g(t) + h(t)

∫ −τ

−∞
k21(s)H0 ds+ h(t)

∫ 0

−τ

k21(s)Mx ds
]

≤ y[−g(t) + 2Mxh(t)] = yē(t).

Hence, for any t ≥ t+ s ≥ T0 + τ we obtain

y(t+ s) ≥ y(t) exp
∫ t+s

t

ē(u)du ≥ y(t) exp(ēms).

From this, for any t ≥ T0 + 2τ , we have

ẏ ≤ y[ē(t)− q(t)
∫ 0

−∞
k22(s)y(t+ s) ds]

≤ y
[
ē(t)− q(t)

∫ 0

−τ

k22(s)y(t+ s) ds
]

≤ y
[
ē(t)− q(t)

∫ 0

−τ

k22(s) exp(ēms) ds y(t)
]
.

Let u(t) be the solution of the auxiliary equation

u̇ = u[ē(t)− q(t)
∫ 0

−τ

k22(s) exp(ēms) dsu]

with the initial condition u(T0 + 2τ) = y(T0 + 2τ). Then we obtain

y(t) ≤ u(t) (2.7)
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for all t ≥ T0 + 2τ . From Lemma 2.2 , (2.6), q(t) ≥ 0 and Aω(q) > 0, we know that
there is a constant My > 0 such that

lim sup
t→∞

u(t) ≤My.

Consequently, by (2.7) we have

lim sup
t→∞

y(t) ≤My. (2.8)

�

Lemma 2.5. There is a positive constant δx (δx < Mx such that

lim inf
t→∞

xi(t) ≥ δx.

Proof. There exists a constant σ > 0 such that

H1

∫ −σ

−∞
k12(s) ds < My,

where H1 = sup{y(t + s) | t ≥ 0, s ≤ 0}. From (2.8), there is a constant T1 > 0
such that for all t ≥ T1 y(t) ≤My. For every t ≥ T1 + σ, we have

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1 − p(t)x1

∫ −σ

−∞
k12(s)y(t+ s) ds

− p(t)x1

∫ 0

−σ

k12(s)y(t+ s) ds

≥ a(t)x2 − b(t)x1 − d(t)x2
1 − 2Myp(t)x1,

ẋ2 = c(t)x1 − f(t)x2
2 .

Consider the auxiliary system

u̇1 = a(t)u2 − [b(t) + 2Myp(t)]u1 − d(t)u2
1,

u̇2 = c(t)u1 − f(t)u2
2.

(2.9)

Let u(t) = (u1(t), u2(t)) is the solution of system (2.9) with the initial condition
u(T1 + σ) = x(T1 + σ), then for all t ≥ T1 + σ,

xi(t) ≥ ui(t).

By Lemma 2.1, (2.9) has a positive ω-periodic solution u∗(t) = (u∗1(t), u
∗
2(t)), which

is globally asymptotically stable. By the global asymptotic stability of u∗(t), there
exist constants δx > 0 and T2 > T1 + σ such that for all t ≥ T2,

ui(t) ≥ δx.

Hence, for all t ≥ T2, xi(t) ≥ δx. So we have

lim inf
t→∞

xi(t) ≥ δx.

�

Lemma 2.6. There is a positive constant β (β < My) such that

lim sup
t→∞

y(t) > β. (2.10)
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Proof. By (2.3), we can choose constant ε0, 0 < ε0 < 1, such that∫ ω

0

[−g(t) + h(t)
∫ 0

−∞
k21(s)x∗1(t+ s) ds− 2h(t)ε0 − 2q(t)ε0]dt > ε0. (2.11)

Consider the following equations with a positive parameter α,

ẋ1 = a(t)x2 − [b(t) + 2αp(t)]x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2.

(2.12)

By Lemma 2.1, (2.12) has a positive ω-periodic solution x∗α(t) = (x∗1α(t), x∗2α(t)),
which is globally asymptotically stable. Let xα(t) = (x1α(t), x2α(t)) be the solution
of (2.12) with initial condition xα(0) = x∗(0), where x∗(t) = (x∗1(t), x

∗
2(t))is the

positive periodic solution of (2.1). Then for the above ε0, there exists T2 > 0 such
that for all t ≥ T2,

|x∗iα(t)− xiα(t)| < ε0/4, i = 1, 2.

By the continuity of the solution in the parameter, we have xα(t) → x∗(t) uniformly
in [T2, T2 + ω] as α→ 0. Hence for ε0 > 0, there exists α0 = α0(ε0) (0 < α0 < ε0)
such that

|xiα(t)− x∗i (t)| < ε0/4, i = 1, 2, 0 ≤ α ≤ α0, t ∈ [T2, T2 + ω].

So we have

|x∗iα(t)− x∗i (t)| < ε0/2, i = 1, 2, 0 ≤ α ≤ α0, t ∈ [T2, T2 + ω].

Since x∗α(t) and x∗(t) are all ω-periodic, we have

|x∗iα(t)− x∗i (t)| < ε0/2, i = 1, 2, 0 ≤ α ≤ α0, t ≥ 0. (2.13)

Suppose that the condition (2.10) is not true, then for any positive constant α < α0

we have
lim sup

t→∞
y(t) < α.

So there exists T3 > 0 such that for all t ≥ T3 y(t) < α. We can choose constant
τ0 > 0 such that

H2

∫ −τ0

−∞
k(s) ds < α,

where k(s) = k12(s)+ k21(s)+ k22(s), H2 = H1 +max{x∗1(t)}. For any t ≥ T3 + τ0,
we have

ẋ1 = a(t)x2 − b(t)x1 − d(t)x2
1 − p(t)x1

∫ 0

−τ0

k12(s)y(t+ s) ds

− p(t)x1

∫ −τ0

−∞
k12(s)y(t+ s) ds

≥ a(t)x2 − b(t)x1 − d(t)x2
1 − 2p(t)x1α

= a(t)x2 − [b(t) + 2αp(t)]x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2.

Then by the vector comparison theorem we obtain

xi(t) ≥ xiα(t), i = 1, 2, t ≥ T3 + τ0, (2.14)
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where xα(t) = (x1α(t), x2α(t)) is the solution of (2.12) with initial condition xα(T3+
τ0) = x(T3 + τ0). By the global asymptotic stability of x∗α(t), there exists T4 >
T3 + τ0 such that

|xiα(t)− x∗iα(t)| < ε0/2, i = 1, 2, t ≥ T4. (2.15)

Hence, by (2.13), (2.14) and (2.15)

xi(t) ≥ x∗i (t)− ε0, i = 1, 2, t ≥ T4.

Then for any t ≥ T4 + τ0, we have

ẏ ≥ y
[
− g(t) + h(t)

∫ 0

−τ0

k21(s)x1(t+ s) ds− q(t)
∫ 0

−τ0

k22(s)y(t+ s) ds

− q(t)
∫ −τ0

−∞
k22(s)y(t+ s) ds

]
≥ y

[
− g(t) + h(t)

∫ 0

−τ0

k21(s)(x∗1(t+ s)− ε0) ds− q(t)α
∫ 0

−τ0

k22(s) ds− q(t)α
]

≥ y
[
− g(t) + h(t)

∫ 0

−∞
k21(s)x∗1(t+ s) ds− 2h(t)ε0 − 2q(t)ε0

]
(α < ε0)

Integrating the above inequality from T4 + τ0 to t (t ≥ T4 + τ0) yields

y(t) ≥ y(T4 +τ0) exp
∫ t

T4+τ0

[−g(t)+h(t)
∫ 0

−∞
k21(s)x∗1(t+s)−2h(t)ε0−2q(t)ε0] ds.

By (2.11) we know that y →∞ as t→∞, which is a contradiction. This completes
the proof. �

Lemma 2.7. There exists a positive constant δy (δy < My) such that

lim inf
t→∞

y(t) ≥ δy.

Proof. Otherwise, there must exist a sequence {φk} ⊂ C+ such that

lim inf
t→∞

y(t, φk) <
β

k + 1
, k = 1, 2, . . . .

By Lemma 2.6, we have lim supt→∞ y(t, ϕk) > β, k = 1, 2, . . . . Hence, for each k

there are time sequences {s(k)
q }and{t(k)

q }, satisfying 0 < s
(k)
1 < t

(k)
1 < s

(k)
2 < t

(k)
2 <

· · · < s
(k)
q < t

(k)
q < . . . and s(k)

q →∞ as q →∞, such that

y(s(k)
q , φk) = β, y(t(k)

q , φk) =
β

k + 1
, (2.16)

β

k + 1
< y(t, φk) < β, t ∈ (s(k)

q , t(k)
q ). (2.17)

By Lemma 2.4, for a given integer k > 0, there is a T (k) > 0 such that xi(t, φk) ≤
Mx (i = 1, 2) and y(t, φk) ≤ My for all t ≥ T (k). Further, there is a constant
σ(k) > 0 such that

H
(k)
1

∫ −σ(k)

−∞
k(s) ds < My,
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where H(k)
1 = sup{y(t + s, φk) : t ≥ 0, s ≤ 0}. Because of s(k)

q → ∞ as q → ∞,
there is a positive integer K(k)

1 such that s(k)
q > T (k) + σ(k) as q ≥ K

(k)
1 . For any

t ≥ T (k) + σ(k), we have

dy(t, φk)
dt

≥ y(t, φk)
[
− g(t)− q(t)

∫ 0

−σ(k)
k22(s)y(t+ s, φk) ds

− q(t)
∫ −σ(k)

−∞
k22(s)y(t+ s, φk) ds

]
≥ y(t, φk)

[
− g(t)− 2q(t)My

]
.

Integrating the above inequality from s
(k)
q to t(k)

q , for any q ≥ K
(k)
1 we get

y(t(k)
q , φk) ≥ y(s(k)

q , φk) exp
∫ t(k)

q

s
(k)
q

[−g(t)− 2q(t)My]dt.

Consequently

t(k)
q − s(k)

q ≥ ln(k + 1)
r1

, q ≥ K
(k)
1 , (2.18)

where r1 = maxt≥0{|g(t)|+ 2Myq(t)}. By (2.11), there are constants P > 0 and r
such that for any a ≥ P we have

∫ a

0

[−g(t) + h(t)
∫ 0

−∞
k21(s)x∗1(t+ s) ds− 2h(t)ε0 − 2q(t)ε0]dt > r.

Obviously, for any k there is K(k)
2 > K

(k)
1 such that for all q ≥ K

(k)
2 ,

H
(k)
1

∫ T (k)−s(k)
q

−∞
k(s) ds <

1
2
β. (2.19)

Further, we can choose a constant σ0 such that

H2

∫ −σ0

−∞
k(s) ds <

1
2
β, (2.20)

where H2 = My + maxt≥0{x∗1(t) + x∗2(t)}. by (2.18), there is a integer N1 > 0 such
that t(k)

q − s
(k)
q > σ0 for all k ≥ N1, q ≥ K

(k)
2 . For any k ≥ N1, q ≥ K

(k)
2 and



8 J. CUI & Y. SUN EJDE-2004/81

t ∈ [s(k)
q + σ0, t

(k)
q ], by (2.17), (2.19) and (2.20) we have

dx1(t, φk)
dt

= a(t)x2(t, φk)− b(t)x1(t, φk)− d(t)x2
1(t, φk)

− p(t)x1(t, φk)
∫ T (k)

−∞
k12(u− t)y(u, φk) du

− p(t)x1(t, φk)
∫ s(k)

q

T (k)
k12(u− t)y(u, φk) du

− p(t)x1(t, φk)
∫ t

s
(k)
q

k12(u− t)y(u, φk)du

≥ a(t)x2(t, φk)− b(t)x1(t, φk)− d(t)x2
1(t, φk)

− p(t)x1(t, φk)H(k)
1

∫ T (k)−t

−∞
k12(s) ds

− p(t)x1(t, φk)My

∫ s(k)
q −t

−∞
k12(s) ds

− p(t)x1(t, φk)β
∫ 0

−∞
k12(s) ds

≥ a(t)x2(t, φk)− b(t)x1(t, φk)− d(t)x2
1(t, φk)− 2p(t)x1(t, φk)β

= a(t)x2(t, φk)− [b(t) + 2βp(t)]x1(t, φk)− d(t)x2
1(t, φk),

dx2(t, φk)
dt

= c(t)x1(t, φk)− f(t)x2
2(t, φk).

Let xβ(t) = (x1β(t), x2β(t)) be the solution of (2.12) for α = β with the initial
condition xβ(s(k)

q +σ0) = x(s(k)
q +σ0, φk). Then by the vector comparison theorem,

it follows that

xi(t, φk) ≥ xiβ(t), i = 1, 2, t ∈ [s(k)
q + σ0, t

(k)
q ]. (2.21)

From limq→∞ s
(k)
q = ∞ and Lemmas 2.4 and 2.5, we obtain that for any k there is

a K(k)
3 > K

(k)
2 such that for any q ≥ K

(k)
3 ,

δx ≤ xi(s(k)
q + σ0, φk) ≤Mx, i = 1, 2.

For the parameter α = β, Equation (2.12) has a globally asymptotically stable
positive ω-periodic solution x∗β(t) = (x∗1β(t), x∗2β(t)). ¿From the periodicity of (2.12)
we know that the periodic solution x∗β(t) also is globally uniformly asymptotically
stable. Hence, there is a T5 > P , and T5 is independent of any k and q, such that

xiβ(t) > x∗iβ(t)− 1
2
ε0

for all t ≥ T5 + s
(k)
q + σ0 and q ≥ K

(k)
3 . Consequently, by (2.13),

xiβ(t) > x∗i (t)− ε0 (2.22)

for all t ≥ T5 + s
(k)
q + σ0 and q ≥ K

(k)
3 . By(2.18), there is a N2 ≥ N1 such that

t
(k)
q − s

(k)
q ≥ 2W for all k ≥ N2 and q ≥ K

(k)
3 , where W ≥ T5 + σ0. Hence, from

(2.21) and (2.22) we finally obtain

xi(t, φk) ≥ x∗i (t)− ε0. (2.23)
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for all t ∈ [W + s
(k)
q , t

(k)
q ], k ≥ N2 and q ≥ K

(k)
3 . Since, for any t ∈ [W + s

(k)
q +

σ0, t
(k)
q ], k ≥ N2 and q ≥ K

(k)
3 , by (2.23), (2.19) and (2.20), we have

dy(t, φk)
dt

≥ y(t, φk)[−g(t) + h(t)
∫ 0

−σ0

k21(s)x1(t+ s, φk) ds

− q(t)
∫ T (k)

−∞
k22(u− t)y(u, φk)du− q(t)

∫ s(k)
q

T (k)
k22(u− t)y(u, φk)du

− q(t)
∫ t

s
(k)
q

k22(u− t)y(u, φk)du]

≥ y(t, φk)[−g(t) + h(t)
∫ 0

−σ0

k21(s)(x∗1(t+ s, φk)− ε0) ds

− q(t)H(k)
1

∫ T (k)−t

−∞
k22(s) ds− q(t)My

∫ s(k)
q −t

−∞
k22(s) ds

− q(t)β
∫ 0

−∞
k22(s) ds]

≥ y(t, φk)[−g(t) + h(t)
∫ 0

−∞
k21(s)x∗1(t+ s, φk) ds

− 2h(t)ε0 − q(t)
1
2
β − q(t)

1
2
β − q(t)β]

≥ y(t, φk)[−g(t) + h(t)
∫ 0

−∞
k21(s)x∗1(t+ s, φk) ds− 2h(t)ε0 − 2q(t)ε0] .

Integrating from W + s
(k)
q + σ0 to t(k)

q for any k ≥ N2 and q ≥ K
(k)
3 we obtain

y(t(k)
q , φk) ≥ y(W + s(k)

q + σ0, φk) exp
∫ t(k)

q

W+s
(k)
q +σ0

[
− g(t)

+ h(t)
∫ 0

−∞
k21(s)x∗1(t+ s, φk) ds− 2h(t)ε0 − 2q(t)ε0

]
dt.

Hence, by (2.16) and (2.17) we finally have

β

k + 1
≥ β

k + 1
exp

∫ t(k)
q

W+s
(k)
q +σ0

[
− g(t) + h(t)

∫ 0

−∞
k21(s)x∗1(t+ s, φk) ds

− 2h(t)ε0 − 2q(t)ε0
]
dt

>
β

k + 1
,

t
(k)
q − (W + s

(k)
q + σ0) ≥ T5 > P , which leads to a contradiction. This completes

the proof. �

Proof of main Theorem. The sufficiency of this theorem now follows from Lem-
mas 2.4 2.5 2.6 2.7. We thus only need to prove the necessity of theorem. Suppose
that ∫ ω

0

[−g(t) + h(t)
∫ 0

−∞
k12(s)x∗1(t+ s) ds]dt ≤ 0.
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We will show that limt→∞ y(t) = 0. In fact, we know that for any given 0 < ε < 1,
there exist ε1 < ε and ε0 > 0 such that∫ ω

0

[−g(t) + h(t)
∫ 0

−∞
k12(s)(x∗1(t+ s) + ε1) ds−

1
2
q(t)lε]dt

≤ ε1

∫ ω

0

h(t)dt− 1
2
lε

∫ ω

0

q(t)dt < −ε0,
(2.24)

where l =
∫ 0

−∞ k22(s) exp(ems) ds, e(t) = −g(t) + h(t)
∫ 0

−∞ k21(s)x∗1(t + s) ds +
h(t)ε1. Since

ẋ1 ≤ a(t)x2 − b(t)x1 − d(t)x2
1,

ẋ2 = c(t)x1 − f(t)x2
2,

for all t ≥ 0. Let x(t) = (x1(t), x2(t)) be the solution of (2.1) with initial condition
x(0) = x(0). By the vector comparison theorem we obtain xi(t) ≤ xi(t) (i = 1, 2),
t ≥ 0. Obviously, by the global asymptotic stability of x∗(t), there is a T6 > 0 such
that xi(t) ≤ x∗i (t) + 1

2ε1 (i = 1, 2) for all t ≥ T6. Hence, we have

xi(t) ≤ x∗i (t) +
1
2
ε1 (i = 1, 2) (2.25)

for all t ≥ T6. Choose a constant τ1 > 0 such that

H0

∫ −τ1

−∞
k(s) ds <

1
2
ε1 (2.26)∫ 0

−τ1

k22(s) exp(ems) ds >
1
2
l. (2.27)

For any t ≥ T6 + τ1, by (2.25) and (2.26) we have

ẏ ≤ y
[
− g(t) + h(t)

∫ 0

−τ1

k21(s)x1(t+ s) ds+ h(t)
∫ −τ1

−∞
k21(s)x1(t+ s) ds

]
≤ y

[
− g(t) + h(t)

∫ 0

−τ1

k21(s)(x∗1(t+ s) +
1
2
ε1) ds+

1
2
h(t)ε1

]
≤ ye(t)

Hence, by (2.27), for any t ≥ t+ s ≥ T6 + τ1 we obtain

ẏ ≤ y
[
e(t)− q(t)

∫ 0

−τ1

k22(s)y(t+ s) ds
]

≤ y
[
e(t)− q(t)

∫ 0

−τ1

k22(s) exp(ems) ds y
]

≤ y
[
e(t)− 1

2
lq(t)y

]
.

If y(t) ≥ ε for all t ≥ T6 + 2τ1, then we have

ẏ ≤ y[e(t)− 1
2
lq(t)ε]. (2.28)

Consequently, by (2.24) we obtain

y(t) ≤ y(T6 + 2τ1) exp
∫ t

T6+2τ1

[e(u)− 1
2
lq(u)ε]du→ 0
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as t→∞, which leads to a contradiction. Hence, there is a t1 ≥ T6 +2τ1 such that
y(t1) < ε.

Let M(ε) = maxt≥0{|e(t)| + 1
2 lq(t)ε}. We know that M(ε) is bounded for ε ∈

[0, 1]. We then show that

y(t) ≤ ε exp(M(ε)ω), t ≥ t1. (2.29)

Otherwise, there are t3 > t2 > t1 such that y(t3) > ε exp(M(ε)ω), y(t2) = ε and
y(t) > ε for all t ∈ (t2, t3]. Let p ≥ 0 be an integer such that t3 ∈ (t2 + pω, t2 +(p+
1)ω]. Then from (2.28) we have

ε exp(M(ε)ω) < y(t3)

≤ y(t2) exp
∫ t3

t2

[e(t)− 1
2
lq(t)ε]dt

= ε exp(
∫ t2+pω

t2

+
∫ t3

t2+pω

)[e(t)− 1
2
lq(t)ε]dt

< ε exp(
∫ t3

t2+pω

[e(t)− 1
2
lq(t)ε]dt)

≤ ε exp(M(ε)ω).

This leads to a contradiction. Hence, inequality (2.29) holds. Further, by the
arbitrariness of ε we obtain y(t) → 0 as t→∞. This completes the proof.
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