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PARTIAL COMPACTNESS FOR THE 2-D LANDAU-LIFSHITZ
FLOW

PAUL HARPES

Abstract. Uniform local C∞-bounds for Ginzburg-Landau type approxi-

mations for the Landau-Lifshitz flow on planar domains are proven. They
hold outside an energy-concentration set of locally finite parabolic Hausdorff-
dimension 2, which has finite times-slices. The approximations subconverge to

a global weak solution of the Landau-Lifshitz flow, which is smooth away from
the energy concentration set. The same results hold for sequences of global
smooth solutions of the 2-d Landau-Lifshitz flow.

1. Introduction

The Ginzburg-Landau approximations uε : Ω×R+ → R3 to the Landau-Lifshitz
flow are solutions of

γ1∂tuε − γ2uε × ∂tuε −∆uε = − 1
ε2
f(uε) in Ω× R+ (1.1)

uε = u0 on
(
Ω× {0}

)
∪

(
∂Ω× R+

)
. (1.2)

where γ1 > 0 and γ2 ∈ R. ”×” denotes the usual vector product in R3. The domain
Ω ⊂ R2 is open, bounded and smooth. The initial and boundary data u0 is always
assumed to map a.e. into the standard sphere S2 ⊂ R3 or an embedded manifold
N ⊂ Rn (see below). For the definition of fε we distinguish two cases:
Case (I): If γ2 6= 0, the target is S2 ↪→ R3 and the right hand side is given by

f(uε) := −(1− |uε|2)uε =
1
4
d

du

(
1− |uε|2

)2
.

For small ε > 0 the maps uε then approximate the Landau-Lifshitz flow

γ1∂tu− γ2u× ∂tu−∆u = |∇u|2u in Ω× R+ . (1.3)

For sufficiently regular solutions u : Ω× R → S2 equation (1.3) is equivalent to

∂tu = −αu× (u×∆u) + βu×∆u in Ω× R+ , (1.4)

where α := γ1
γ2
1+γ2

2
> 0 and β := γ2

γ2
1+γ2

2
∈ R. This is the usual form of the Landau-

Lifshitz equations known in physics. (Compare [22] and [15], [16], [17].)
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Case (II): If γ2 = 0, the target is a smooth, closed, isometrically embedded man-
ifold N ↪→ Rn. For small ε > 0, the map uε : Ω × R+ → Rn will then be an
approximation of a harmonic map flow (compare [36]) and is defined to be a solu-
tion of

∂tuε −∆uε = − 1
2ε2

d

du
χ
(
dist2(uε, N)

)
in Ω× R+ (1.5)

uε = u0 on
(
Ω× {0}

)
∪

(
∂Ω× R+

)
, (1.6)

That is, for the function f(uε) in (1.1), we choose

f(uε) :=
1
2
d

du
χ
(
dist2(uε, N)

)
,

The cut-off function χ : R+ → R+ is smooth, non decreasing and satisfies χ(t) = t
for 0 ≤ t ≤ δ2N and χ(t) ≡ 2δ2N for t ≥ 4δ2N . The parameter δN > 0 is chosen in
such a way that the nearest neighbour projection U 3 x 7→ πN (x) ∈ N is defined
and smooth on a tubular neighborhood U ⊂ Rn of N with uniform radius radius
2δN > 0. (Such a δN > 0 always exists if N is closed. Compare [36] and [29, Section
2.12.3 p.42].)

For fixed ε > 0, smooth solutions of (1.1)-(1.2) or (1.5)-(1.6) on Ω × R+ exist
and if u0 ∈ H1,2(Ω;N) ∩H3/2,2(∂Ω;N), they are unique in

H1,2
loc ∩ L

∞(H1,2) := H1,2
loc (Ω× R+; Rn) ∩ L∞(R+;H1,2(Ω; Rn)) .

(Compare [3],[36].) Existence is obtained by Galerkin’s method, regularity (C∞)
follows from a standard bootstrap argument and uniqueness may be proven as for
the two dimensional harmonic map flow (see [30] or [31] (5◦) p.234 in the proof of
Theorem 6.6).

The total energy of the flow at time t ≥ 0 is defined by

Gε

(
uε(t)

)
:=

∫
Ω

gε(uε)(x, t)dx (1.7)

where

gε(uε) :=
1
2
|∇uε|2 +

1
4ε2

(1− |uε|2)2 if γ2 6= 0 ,

gε(uε) :=
1
2
|∇uε|2 +

1
2ε2

χ
(
dist2(uε, N)

)
if γ2 = 0 .

While the total energy of the ”ε-approximations” always decreases (see Lemma 2.1
below), the local energy given by

Gε

(
uε(t) , BΩ

R(x0)
)

:=
∫

BR(x0)∩Ω

gε(uε)(x, t) dx . (1.8)

may concentrate at space-time points (x0, t0) as ε ↘ 0 either for fixed t = t0 or
for variable t ↗ t0 or t ↘ t0. It characterizes the local ”asymptotic regularity
behaviour” of the flow. Here asymptotic refers to the limit ε↘ 0.

We will show that all the derivatives of the family of maps {uε}ε>0 are locally
uniformly bounded on a regular set Reg

(
{uε}ε>0

)
consisting of all points

z0 = (x0, t0) ∈ Ω×]0,∞[

for which there is R0 = R0(z0) > 0, such that

lim sup
ε↘0

sup
t0−R2

0<t<t0

Gε

(
uε(t) , BΩ

R0
(x0)

)
< ε0 , (1.9)
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for a constant ε0 > 0 that will be determined later. The complement

S
(
{uε}ε>0

)
:=

(
Ω× R+

)
r Reg

(
{uε}ε>0

)
is referred to as the energy-concentration set. It is closed, has locally finite parabolic
Hausdorff dimension two and finite slices at fixed time. The limits of converging
subsequences {uεj}j are distributional solutions of the Landau-Lifshitz flow (or
harmonic map flow if γ2 = 0) on all Ω×]0,∞[ in H1,2

loc ∩ L∞(H1,2).
Bubbling phenomena of the ε-approximations as ε↘ 0 either for fixed t = t0 or

for variable t ↗ t0 or t ↘ t0 as described in [16] will be presented in [18]. Strong
subconvergence of the harmonic map flow penalty-approximations in

W 1,0
2,loc

(
Reg({uε}ε>0); Rn

)
to a global distributional H1,2

loc ∩ L∞(H1,2)-solution of the harmonic map flow was
already proved by M. Struwe and Y. Chen in [36] for the case of a closed domain
manifold Ω = M with dimM = m ≥ 2 or M = Rm. (W 1,0

2,loc refers to functions
f , whose restriction to any closed ball (in space-time) lies in L2 as well as the
restriction of the space-gradient ∇f .)

Struwe and Chen provided uniform local L∞-bounds for gε(uε) on Reg({uε}ε>0).
Their result was extended to compact domains with boundary by Chen and Lin
in [7]. The energy-concentration set S({uε}ε>0) is known to have locally finite
m(= dimM)-dimensional Hausdorff measure in the case of the harmonic map flow
(see [36]).

X. Cheng investigates in [8] weak(*) H1,2
loc ∩ L∞(H1,2)-limits u∗ of sequences of

smooth solutions of the harmonic map flow on the domain M = Rm and shows
that the time slice S({uk}k)∩

(
Rm×{t}

)
has finite (m− 2)-dimensional Hausdorff

measure.
Weak(*)-subconvergence in H1,2

loc ∩ L∞(H1,2) of the Landau-Lifshitz ε-approx-
imations from closed surfaces to a distributional H1,2

loc ∩ L∞(H1,2)-solution of the
Landau-Lifshitz flow was proven by B. Guo and M.C. Hong in [15].

Guo and Ding also studied partial convergence of the two dimensional Landau-
Lifshitz penalty-approximations in [9],[10] and [11]. Their arguments however con-
tain several gaps and inconsistencies.

2. Energy-estimates

In the case γ2 = 0, equation (1.5) is the L2-gradient flow of the functional
u 7→ Gε(u). (1.1) is not known to be a gradient flow, but the total energy still
decreases along the (smooth) flow (1.1)-(1.2).

Lemma 2.1. Let uε be a solution of (1.1)-(1.2). Then

Gε

(
uε(T )

)
+ γ1

∫ T

0

∫
Ω

|∂tuε|2dxdt = Gε

(
uε(0)

)
= E(u0) =: E0 , (2.1)

Gε

(
uε(T2), BΩ

R(x0)
)
≤ Gε

(
uε(T1), BΩ

2R(x0)
)

+
C

γ1R2

∫ T2

T1

Gε

(
uε(t), BΩ

2R(x0)
)
dt,

(2.2)
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for 0 ≤ T1 < T2. Also for all η > 0, there exist T0 > 0 and R0 > 0, such that for
all x0 ∈ Ω and all ε > 0 we have

sup
0≤t≤T0

Gε

(
uε(t), BΩ

R0
(x0)

)
≤ η . (2.3)

Proof. Inequality (2.1) is obtained by multiplying (1.1) with ∂tuε. Inequality (2.2)
follows by multiplying (1.1) with ∂tuεφ

2 for an adequate cut-off function φ and then
integrating by parts and absorbing. Note that ∂tuε ≡ 0 on ∂Ω × R+. Inequality
(2.3) follows from (2.2), if we set T1 = 0 and T2 = T0 = γ1R2

0
2CE0

for sufficiently small
R0 > 0, such that Gε

(
uε(0), BΩ

R0
(x0)

)
= E

(
u0, B

Ω
R0

(x0)
)
< η/2. �

The energy estimates imply the penalty-approximations subconverge weak(*) in
H1,2

loc (Ω×R+; Rn) ∩L∞
(
R+;H1,2(Ω; Rn)

)
. This was already pointed out by B.Guo

and M.C.Hong in section 4 of [15].

3. Partial compactness

In this section we show that, under the uniform smallness condition (1.9) on
the local energy, all higher derivatives of uε are locally and uniformly bounded.
Here “uniform” of course always means uniform in ε > 0. In Section 3.1, estimates
for linear parabolic systems that can be applied to (1.1) as soon as ∇uε is locally
bounded are recalled. In Section 3.2 we show that ∇uε is necessarily locally uni-
formly bounded, whenever (1.9) holds. In Section 3.3 we derive estimates that will
provide bounds for the right hand side of (1.1) and allow to combine the previous
estimates into a bootstrap argument.

3.1. Some “standard” parabolic estimates. Equation (1.1) may be written as

Lε(uε) := ∂tuε −M(uε)∆uε = − 1
ε2
M(uε)f(uε) = fε(uε) . (3.1)

The coefficient-matrix M(u) is smooth with respect to u and also strictly elliptic:

γ1

γ2
1 + γ2

1

|ξ|2 < ξTM(u)ξ =
1

γ1(γ2
1 + γ2

2 |u|2)

(
γ2
1 |ξ|2 + γ2

2(u · ξ)2
)
<

1
γ1
|ξ|2,

for all ξ ∈ R3 (See [10, p.12], [15, p.316], [9, p.37]). Note that for γ2 = 0, we obtain
M(u) = 1

γ1
Id. The results of this section are indeed merely interesting in the case

γ2 6= 0, where the left hand side of (1.1) is non-linear. We will therefore restrict
ourselves to the case γ2 6= 0.

For fixed ε > 0, the solution uε of (1.1)-(1.2) is smooth and in particular contin-
uous. uε has the same regularity up to the boundary as the boundary data u0. The
family of solutions {uε}ε>0 is also uniformly bounded in ε > 0, since |uε(x, t)| ≤ 1
∀x, t. This follows from the Maximum Principle applied to the equation obtained
by multiplying (1.1) with (1− |uε|). Lε defines a strongly parabolic system in the
sense of Petrovskii (Definition 2, p.599 in [21]) but satisfies as well all the other
(not necessarily equivalent) definitions of strong parabolicity for general linear par-
abolic systems (Definitions 3-6) in [21]. The boundary-data operators also fullfill
the required conditions.

First we have estimates in the W 2,1
p -Sobolev spaces with p > 1 (see [21] Chapter

IV, Theorem 9.10 p.342 and (10.12) p.355 but also Chapter VII, Theorem 10.4
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p.621, for the generalization to parabolic systems). Let fε ∈ Lp(Ω× [0, T ]; Rn) and
u0 ∈ H2,p(Ω; Rn). Then for any δ ∈]0, 1[, p > 3/2 and for t0 −R2 > 0 a solution of

Lε(v) = fε in Ω×]0, T [ and v = u0 on
(
Ω× {0}

)
∪

(
∂Ω×]0, T [

)
satisfies

‖v‖W 2,1
p (Ω×[0,T ]) ≤ Cp(Ω, T, ωuε

)
(
‖fε‖Lp(Ω×[0,T ]) + ‖u0‖H2,p(Ω)

)
, (3.2)

‖v‖W 2,1
p (PΩ

δR(z0))
≤ C̃p(R, δ,Ω, ωuε

)
(
‖fε‖Lp(PΩ

R (z0)) + ‖v‖Lq(PΩ
R (z0))

+ δBR∩∂Ω‖u0‖H2−(1/p),p(BΩ
R∩∂Ω(z0))

)
,

(3.3)

with 1 ≤ q ≤ p. Here

PΩ
R (z0) := (BR(x0)×]t0 −R2, t0[) ∩ (Ω×]0,∞[)

and δBR∩∂Ω = 1 if BR ∩ ∂Ω 6= ∅ and 0 otherwise. The trace theorems of course
imply

‖u0‖H2−(1/p),p(∂Ω) ≤ ‖u0‖H2,p(Ω) .

The constants Cp and C̃p depend on the indicated quantities and additionally on
the uniform lower and upper bounds for the eigenvalues of M(uε), which may be
chosen independent of ε > 0. Note that the constants Cp, C̃p also depend on the
moduli of continuity of the coefficients of the leading term, i.e. the modulus of
continuity ωuε of uε. The equation can also be written in divergence form,

Lε(v) := ∂tv − div
(
M(uε)∇v

)
+

(
DM(uε)∂kuε

)
∂kv = fε .

If we assume in addition

lim sup
ε↘0

sup
PΩ

R

|∇uε| <∞ , (3.4)

then estimates for equations in divergence form imply v ∈ Cγ,(γ/2)(PΩ
δR; Rn) for

some γ ∈]0, 1[ and any δ ∈]0, 1[. (See [21] Chapter VII Theorem 3.1 p.582 or
Chapter V, Theorem 1.1, p.419.) Indeed if the right hand side fε ∈ Lp(PΩ

R ; Rn)
with p > 2, the following estimate for the mixed Hölder-norm of v on PΩ

δR holds

‖v‖Cγ,γ/2(PΩ
δR) ≤ C(fε) . (3.5)

(See [21] p.7 for the definition of the mixed Hölder-spaces denoted there by Hγ,γ/2)
The bound C(fε) depends on the parabolicity constants, on 0 < δ < 1, supPΩ

R
|uε|,

‖fε‖Lp(PΩ
R ), bounds for the coefficients of the equations depending on supPΩ

R
|∇uε|

and also on ‖u0‖Cγ(BR∩∂Ω) if BR ∩ ∂Ω 6= ∅.
Therefore, if (3.4) holds and ‖fε‖Lp(PΩ

R ) or supPΩ
R
|fε| are uniformly bounded

with respect to ε > 0, then estimate (3.5) holds for uε and is uniform in ε > 0. Now
the modulus of continuity of uε on PΩ

δR is bounded from above (by an increasing
function h with limt↘0 h(t) = 0) independently of ε > 0. We gain uniform bounds
for the modulus of continuity of uε with respect to t ≥ 0 and estimate (3.3) is now
uniform in ε > 0.

Further by Lemma 3.3 p.80 in Chapter II of [21] for p > m + 2(= 4) (m being
the dimension of the spatial domain, in our case m = 2), we have

‖∇v‖Cλ(PΩ
R ) ≤ C(m, p, λ,Ω)‖v‖W 2,1

p (PΩ
R ) for λ = 1− (m+ 2)/p .
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Also if (3.4) holds and ‖fε‖Lp(PΩ
R ) is uniformly bounded, then (3.3) yields ε-uniform

estimates for ‖∇uε‖Cλ(PΩ
δR).

3.2. The main sup-estimates for the energy-density.

3.2.1. An interior sup-estimate for the Landau-Lifshitz-flow approximations. In this
section we derive an interior sup-estimate for the energy density in the case γ2 6= 0,
but the proof also works if γ2 = 0 and the target is N . The proof of the interior
estimate is much simpler than in the boundary case and we therefore consider each
case separately. The estimate will result from a scaling argument combined to the
following higher estimates, that will be proven in the next section. Let

PR(z0) := BR(x0)×]t0 −R2, t0[ for z0 = (x0, t0) .

Lemma 3.1. Let uε be a solution of (1.1) for each ε > 0. Assume

lim sup
ε↘0

sup
PR(z0)

gε(uε) ≤ C0

and BR(x0) ⊂ Ω, 0 < R2 < t0. Then for any 0 < δ < 1,

lim sup
ε↘0

‖uε‖Ck(PδR(z0)) ≤ Ck and lim sup
ε↘0

‖ 1
ε2

(1− |uε|2)‖Ck(PδR(z0)) ≤ C̃k

for all k ≥ 0. The constants Ck, C̃k depend on C0, k, R, δ > 0. If γ2 = 0 and the
target is N , they also depend on the geometry of N (i.e. the metric on N and its
derivatives).

We will now prove the following “ε1-regularity” result.

Theorem 3.2. There are constants C1 = C1(N), ε1 = ε1(N) > 0, such that if, for
some 0 < R0 < min{1,

√
t0} and x0 ∈ Ω with BR0(x0) ⊂ Ω, a solution uε of (1.1)

satisfies

sup
t0−R2

0<t<t0

∫
BR0 (x0)

gε(uε)(x, t)dx < ε1 ,

then

sup
PδR0 (z0)

gε(uε) ≤
C1

(1− δ)2R2
0

for any δ ∈]0, 1[.

In the proof we would like to consider points zε = (xε, tε) ∈ PR(z0) such that
gε(zε) = supPR(z0) gε. Difficulties however arise if zε ∈ ∂PR(z0), since we then do
not have uniform estimates on a neighborhood of zε. This is elegantly avoided by
considering

max
0≤σ≤R0

(
(R0 − σ)2 sup

Pσ

gε

)
.

This trick is initially due to R. Schoen. (See [28], proof of Theorem 2.2. Schoen’s
method was extended to the parabolic context in [32], [36].)

Proof of Theorem 3.2. Without loss of generality, let (x0, t0) = 0. We set PR :=
PR(0). Since uε is regular, there is some σε ∈ [0, R0[ such that

(R0 − σε)2 sup
Pσε

gε = max
0≤σ≤R0

(
(R0 − σ)2 sup

Pσ

gε

)
.
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Moreover, there is some zε = (xε, tε) ∈ Pσε
, such that eε = gε(uε(zε)) = supPσε

gε.
Set ρε := 1

2 (R0 − σε). Since Pρε
(zε) ⊂ Pσε+ρε

⊂ PR0 , we have

sup
Pρε (zε)

gε ≤
1

(R0 − (σε + ρε))2
(R0 − (σε + ρε))2 sup

Pρε+σε

gε

≤ 4
(R0 − σε)2

(R0 − σε)2eε ≤ 4eε .

Set rε :=
√
eερε and consider the rescaled map

vε(y, s) := u(xε + e−1/2
ε y, tε + eε

−1s) for (y, s) ∈ Prε
.

By definition vε satisfies (1.1) on Prε
with ε̃ :=

√
eεε instead of ε and

g√eεε(vε)(0, 0) = 1 , sup
Prε

g√eεε(vε) ≤ 4 .

Now we claim rε ≤ 2. This will prove the theorem, since by definition of rε, we
then have (R0 − σε)2eε ≤ 16.

Assume rε > 2. Since BR0(x0) ⊂ Ω, all the higher derivatives of vε are then
bounded on P1 independently of ε > 0. Indeed if lim infε↘0

√
eεε > 0, the uniform

estimates are immediate and if lim infε↘0
√
eεε = 0, they follow from Lemma 3.1.

In particular√
|∂tgε̃(vε)|, |∇gε̃(vε)| ≤ C <∞ on P1 (uniformly in ε > 0)

and therefore,

inf
Pr0

gε̃(vε) ≥
1
2

for r0 := min{ 1
4C

, 1} .

Note that C is an absolute constant in the sense that it merely depends on the
radius 2, the factor δ = 1

2 , the L∞-bound 4 and the parabolicity constants and the
geometry of N . This lower bound implies

1 = g√eεε(vε)(0, 0) ≤ 2
πr20

sup
−r2

0<s<0

∫
Br0

g√eεε(vε)(y, s) dy

≤ C∗ sup
tε−r2

0e−1
ε <t<tε

∫
B

e
−1/2
ε r0

(xε)

gε(uε)(x, t) dx

≤ C∗ sup
−(

r2
0

eε
+σ2

ε )<t<0

∫
B r0√

eε
+σε

(x0)

gε(uε)(x, t) dx .

Set ε1 := min{ 1
2 ,

1
2C∗

}. Since rε =
√
eερε > 2 > r0, we have r0√

eε
+σε ≤ ρε+σε ≤ R0

and ( r0√
eε

)2 + σ2
ε ≤ (ρε + σε)2 ≤ R2

0. Then the last estimate yields a contradiction,
since the right hand side is smaller than ε1 ≤ 1

2 . Therefore rε =
√
eερε ≤ 2 and

(1− δ)2R2
0 sup

PδR0

gε ≤ 16 .

�
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3.2.2. A local boundary sup-estimate for the energy density. Local Lp-estimates for
∇3uε up to the boundary which are uniform in ε > 0 cannot be expected, even if
u0 ∈ C∞(Ω;S2). Indeed for fixed ε > 0, uε is smooth up to the boundary and we
may thus evaluate (1.1) at x ∈ ∂Ω for any t ≥ 0. This gives ∆uε = 0 on ∂Ω× R+.
As we will see later, uniform estimates imply the existence of a subsequence uεi

converging to a map u∗, which is a smooth solution of the Landau-Lifshitz or
harmonic map flow in Reg({uεi}) and satisfies

−∆u∗ = |∇u∗|2u∗ on (∂Ω× R+) ∩ Reg({uεi
}),

since ∂tu∗ = 0 on ∂Ω× R+. However Lp
loc-estimates for ∇3uε would imply

0 = ∆uεi
→ ∆u∗ in Lp

loc((∂Ω× R+) ∩ Reg({uεi
}); R3)

by compactness of the “projection” H1,p(Ω) ↪→ Lp(∂Ω). This is not possible unless
u∗ ≡ const. on (∂Ω×R+)∩Reg({uεi

}). (Compare [1], Remark 1 p.125 for a similar
argument in the time independent case.)

The following lemma will be proven in Section 3.3.

Lemma 3.3. Let uε be a solution of (1.1)-(1.2), with
u0 ∈ H1,2(Ω;S2) ∩H2,p(∂Ω;S2) and p ≥ 2 for each ε > 0. Assume

sup
PΩ

R (z0)

gε ≤ C0

and BR(x0) ∩ ∂Ω 6= ∅, 0 < R2 < t0. Then for any δ ∈]0, 1[, we have

‖uε‖W 2,1
p (PΩ

δR(z0))

≤ C1

(
‖ 1
ε2

(1− |uε|2)‖Lp(PΩ
R (z0)) + ‖uε‖L2(PΩ

R (z0)) + ‖u0‖H2−(1/p),p(BΩ
R(z0)∩∂Ω)

)
,

where the constant C1 depends on C0, p, R, δ and Ω. Further we have for any
δ ∈]0, 1[,

‖ 1
ε2

(1− |uε|2)‖Lp(PΩ
δR(z0)) ≤ C(p)‖gε‖Lp(PΩ

R ) + ε2/pC
(
‖gε‖Lp(PΩ

R ), p, δ, R
)
,

‖ 1
ε2

(1− |uε|2)‖L∞(PΩ
δR(z0)) ≤ 8C0 + oδ(ε),

where ε 7→ oδ(ε) is a function that depends on δ ∈]0, 1[ and limε↘0 ε
−koδ(ε) = 0 for

all k ∈ N. All the constants also depend on the parabolicity constants. If γ2 = 0
and the target is N , they also depend on the geometry of N .

We now prove the following result.

Theorem 3.4. Consider u0 ∈ H1,2(Ω;S2) ∩ C2(∂Ω;S2). Let uε be a solution
of (1.1)-(1.2) for each ε > 0. There are constants C0 = C0(‖u0‖C2(∂Ω), E0,Ω)
and ε0 = ε0(‖u0‖C2(∂Ω), E0,Ω) > 0, such that if for some z0 = (x0, t0) and R0 ∈
]0,min{1,

√
t0}[

lim sup
ε↘0

sup
t0−R2

0<t<t0

∫
BR0 (x0)∩Ω

gε(uε)dx < ε0 ,

then

lim sup
ε↘0

sup
PΩ

δR0
(z0)

gε(uε) ≤
C0

(1− δ)2R2
0

,

for any δ ∈]0, 1[.
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If the target is N , the above constants C0 and ε0 also depend on the geometry
of N .

Proof. Without loss of generality let (x0, t0) = 0. Since u0 ∈ C2(∂Ω) admits an
extension w0 ∈ C2(Ω) and since t0 − R2 > 0, we may assume u0 ∈ C2(Ω). We
have uε ∈ C1,0

α (Ω × R+;S2) for any 0 < α < 1 and so there are σε ∈ [0, R0[ and
zε = (xε, tε) ∈ PΩ

σε
, such that

(R0 − σε)2 sup
PΩ

σε

gε = max
0≤σ≤R0

(
(R0 − σ)2sup

PΩ
σ

gε

)
,

eε = gε(uε(zε)) = sup
PΩ

σε

gε .

Again for ρε := 1
2 (R0−σε), we have supPΩ

ρε
(zε) gε ≤ 4eε. Consider the rescaled map

vε(y, s) := u(xε + e−1/2
ε y, tε + e−1

ε s) .

By construction vε satisfies

γ1∂tvε − γ2vε × ∂tvε −∆vε =
1
ε̃2

(1− |vε|2)vε on PΩε
rε
, (3.6)

with ε̃ :=
√
eεε, rε :=

√
eερε, Ωε :=

√
eε

(
Ω− xε

)
and

PΩε
rε

:=
(
Brε

∩ Ωε

)
×]− r2ε , 0[ .

Further by construction,

gε̃(vε)(0, 0) = 1 and sup
PΩε

rε

gε̃(vε) ≤ 4 . (3.7)

The boundary data are also rescaled. Set vε,0(y) := u0(xε + e
−1/2
ε y). Then

vε(y, s) = vε,0(y) on (∂Ωε ∩Brε
)×]− r2ε , 0[

and
sup
PΩε

rε

|∇vε,0| ≤ e−1/2
ε sup

PΩ
R0

|∇u0| , sup
PΩε

rε

|∇2vε,0| ≤ e−1
ε sup

PΩ
R0

|∇2u0| .

Now we claim that for sufficiently small ε > 0, we have

rε ≤ C0 := max{2, C̃(Ω, ‖u0‖C2(Ω))},

where C̃(·) > 0 will be specified later. Again by definition of rε, this will prove the
theorem.

Assume by contradiction rε > C0 ≥ 2 for small ε > 0. Then

e−1/2
ε = ρε/rε < R0/(2C0) ≤ 1/(2C0),

since 0 < R0 < 1. First we claim that

lim inf
ε↘0

√
eεε = lim inf

ε↘0
ε̃(ε) = 0 .

Indeed if lim infε↘0
√
eεε > 0, the right hand side of (3.6) is uniformly bounded in

ε̃ =
√
eεε > 0 and together with (3.7) we obtain uniform bounds in C∞(PΩε

2 ). This
however leads to a contradiction as in the proof of Theorem 3.2, if ε0 is smaller
than ε1. Further if

lim sup
ε↘0

(√
eε dist(xε, ∂Ω)

)
= lim sup

ε↘0
dist(0, ∂Ωε) ≥

1
2
,
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we can also use uniform interior estimates in C∞(PΩε

1/4) and proceed as in the proof
of Theorem 3.2 to get a contradiction, if we choose ε0 sufficiently small. So far the
required upper bound on ε0 is universal in the sense that it only depends on the
geometry of N and the parabolicity constants. We therefore have

lim sup
ε↘0

dist(0, ∂Ωε) < 1/2 ,

and in the sequel we consider sufficiently small ε > 0, such that dist(0, ∂Ωε) < 1/2.
Lemma 3.3 combined to the embedding W 2,1

p (P1) ↪→ C1(P1) for p > 4, implies

sup
PΩε

1

|∇vε|2

≤ C‖vε‖2W 2,1
p (PΩε

1 )

≤ C(p,Ωε ∩B2)
(
‖ 1
ε̃2

(1− |vε|2)‖2Lp(PΩε
2 )

+ ‖vε‖2L2(PΩε
2 )

+ ‖vε,0‖2H2,p(PΩε
2 )

)
Note that Ωε ∩B2 has uniformly bounded curvature and so

0 < C(p,Ωε ∩B2) < C(p,Ω) .

Since (1− |vε|2) ≤ 1 and supPΩε
2
gε̃(vε) ≤ 4, Lemma 3.3 implies

‖ 1
ε̃2

(1− |vε|2)‖2Lp(PΩε
2 )

≤ Cp

(
o(ε0) + o(ε̃)

)
,

where Cp = C(p,E0) and o(τ) denotes a generic function that satisfies

lim
τ↘0

o(τ) = 0 .

A Poincaré inequality on PΩε
2 leads to

‖vε‖2L2(PΩε
2 )

≤ 2
(
‖vε,0‖2L2(PΩε

2 )
+ ‖vε − vε,0‖2L2(PΩε

2 )

)
≤ 2‖vε,0‖2L2(PΩε

2 )
+ C(Ω)

(
‖∇vε,0‖2L2(PΩε

2 )
+ ‖∇vε‖2L2(PΩε

2 )

)
.

Again ‖∇vε‖2L2(PΩε
2 )

≤ o(ε0). Of course

‖vε,0‖H1,2(BΩε
2 ) ≤ C(p)‖vε,0‖H1,p(BΩε

2 )

≤ C(p)‖vε,0‖2H2,p(BΩε
2 )

≤ C(p,Ω)‖vε,0‖2C2(BΩε
2 )

and we still need to estimate ‖vε,0‖2C2(BΩε
2 )

.

For each ε > 0 we may chose coordinates for the target such that vε,0(0) = 0.
Then

sup
BΩε

2

|vε,0| ≤ 4 sup
BΩε

2

|∇vε,0| ,

‖vε,0‖C2(BΩε
2 ) ≤ Ce−1/2

ε sup
BΩ

R0

|∇u0|+ e−1
ε sup

BΩ
R0

|∇2u0| .
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The above estimates combined to the one for ‖ 1
ε̃2 (1− |vε|2)‖L∞(PΩε

1 ) in Lemma 3.3
yield

1 ≤ sup
PΩε

1

gε̃(vε)

≤ sup
PΩε

1

1
2
|∇vε|2 + ε̃2 sup

PΩε
1

( 1
ε̃2

(1− |vε|2)
)2

≤ C1

(
o(ε0) + o(ε̃) + e−1

ε ‖∇u0‖2C1(BΩ
R0

)

)
,

where C1 = C1(Ω, E0). Now if both o(ε0) < (1/4)C−1
1 and o(ε̃) < (1/4)C−1

1 , this
leads to

eε < 2C1‖∇u0‖2C1(BΩ
R0

),

which is in contradiction with rε > C0 := max{2, 2C1‖u0‖C2(Ω)} and
√
eε > 2C0.

Thus rε ≤ C0 and by definition of rε also
1
4
(R0 − δR0)2 sup

PΩ
δR0

gε ≤ C2
0 = C(Ω, E0, ‖u0‖C2(Ω)) .

Since t0−R2 > 0, we could replace u0 in the above by any w0 ∈ C2(Ω) with w0 = u0

on ∂Ω ∩BR0 . Therefore the above constants merely depend on ‖u0‖C2(∂Ω). �

3.3. Higher estimates. In this section, we prove Lemmata 3.1 and 3.3, for which
the following uniform estimates will be needed.

3.3.1. Uniform estimates in ε > 0. The “distance-to-the-target-function” ρε :=
1− |uε|2 satisfies

γ1∂tρε −∆ρε +
2
ε2
ρε = 2|∇uε|2 +

2
ε2
ρ2

ε . (3.8)

Since γ1 > 0, we may assume γ1 = 1 without loss of generality. We will now derive
uniform a priori estimates for this equation. Lemma 3.5 extends a comparision
argument from [1] (Lemma 2, p.130) to the time dependent case and to non-positive
solutions.

The parabolic boundary of PR := BR(0)×]−R2, 0[ is denoted as

∂̃PR :=
(
BR(0)× {−R2}

)
∪

(
∂BR(0)× [−R2, 0]

)
.

Lemma 3.5. Let a > 0, R ∈]0, 1
4 [, ε ∈]0, 1[ and g ∈ C0(PR) with ε2 supPR

|g| ≤ a.
Let f ∈ C0(PR) ∩ C2(PR) be a solution of(

∂tf −∆f
)

+
1
ε2
f = g in PR ,

|f | ≤ a on ∂̃PR .

Then for any δ ∈]0, 1[, we have
1
ε2
|f | ≤ sup

PR

|g|+ 2a
ε2
e−

1
ε (1−δ2)2R4

on PδR .

Proof. Consider ω(x, t) = 2ae−
1
ε (R2−|x|2)(R2+t). Then

ε2
(
∂tω −∆ω

)
+ ω > 0 in PR ,

ω = 2a on ∂̃PR .
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For f1 := f − ε2sup
PR

|g| and f2 := f + ε2sup
PR

|g|, we have

|f1| ≤ 2a and |f2| ≤ 2a on ∂̃PR ,

and hence
f1 − ω ≤ 0, f2 + ω ≥ 0 on ∂̃PR .

Moreover

ε2
(
∂tf1 −∆f1

)
+ f1 ≤ 0 , ε2

(
∂tf2 −∆f2

)
+ f2 ≥ 0 in PR .

The Maximum Principle now implies f1 − ω ≤ 0 and f2 + ω ≥ 0 on PR, that is

−ω − ε2sup
PR

|g| ≤ f ≤ ω + ε2 sup
PR

|g| .

�

The above lemma will yield interior estimates. If BR ∩ Ω 6= ∅ and f ≡ 0 on
BR ∩ ∂Ω, we still obtain a local estimate up to the boundary, i.e. on PΩ

δR =
(BδR ∩ Ω)×]− (δR)2, 0[.

Corollary 3.6. Consider a smooth domain Ω ⊂ R2, a > 0, R ∈]0, 1
4 [, ε ∈]0, 1[ and

g ∈ C0(PΩ
R ) with ε2 supPR

|g| ≤ a. Let f ∈ C0(PΩ
R ) ∩ C2(PΩ

R ) be a solution of(
∂tf −∆f

)
+

1
ε2
f = g in PΩ

R ,

|f | ≤ a on ∂̃PR ∩ Ω ,
f = 0 on ∂Ω ∩ PR .

Then for any δ ∈]0, 1[, we have

1
ε2
|f | ≤ sup

PΩ
R

|g|+ 2a
ε2
e−

1
ε (1−δ2)2R4

on PΩ
δR .

The proof of Lemma 3.5 also applies in this case. The next interior-estimate-
version of Lemma 3.5 deals with the case BR(x0)∩Ω 6= ∅ and f 6= 0 on ∂BR(x0)∩Ω.
The estimate then also depends on dist(x, ∂Ω). We formulate the following lemma
in such a way that it readily extends to the case Ω = M is a manifold.

Corollary 3.7. Let U ⊂ R2 be an open smooth neighborhood of 0 with diamU ≤ 1
and set PR,U := U×]−R2, 0[. Consider a > 0, R ∈]0, 1

4 [, ε ∈]0, 1
4 [ and g ∈ C0(PR,U )

with ε2 supPR,U
|g| ≤ a. Let f ∈ C0(PR,U ) ∩ C2(PR,U ) be a solution of(

∂tf −∆f
)

+
1
ε2
f = g in PR,U ,

|f | ≤ a on ∂̃PR,U .
(3.9)

Then there is a constant C = C(U) > 0, such that for any δ ∈]0, 1[ we have

1
ε2
|f(x, t)| ≤ sup

PR,U

|g|+ 2a
ε2
e−

R2
Cε (1−δ2) dist2(x,∂U) on PδR,U .

Of course
∂̃PR,U :=

(
U × {−R2}

)
∪

(
∂U × [−R2, 0]

)
.
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Proof. Set d(x) := dist(x, ∂U), C = C(U) := max{1, ‖∆d2‖L∞(U), ‖∇d2‖L∞(U)}.
Note that d(x) ≤ 1 on U since diamU ≤ 1. We claim that

ω(x, t) := 2ae−
1

Cε d2(x)(R2+t)

is a supersolution of equation (3.9), if 0 < R < 1
4 and 0 < ε < 1

4 . Indeed

ε2(∂t −∆)ω + ω = ω
[
1− ε

C
d2 +

ε

C
(R2 + t)∆d2 − ε

C

1
εC

(R2 + t)2|∇d2|2
]

≥ ω
[
1− ε− εR2 −R4

]
≥ 1

4
ω > 0 on PR,U .

The claim now follows just as in the proof of Lemma 3.5. �

We will also need a priori Lp-estimates for the above equation.

Lemma 3.8. Consider a smooth domain Ω ⊂ R2, g ∈ L1(Ω×]0, T [) and ε > 0. Let
f ∈ C1(Ω× [0, T ]) ∩ C2(Ω×]0, T [) be a solution of(

∂tf −∆f
)

+
1
ε2
f = g in Ω×]0, T [ ,

f = 0 on Ω× {0} ∪ ∂Ω×]0, T [ .

For f ≥ 0, we only need to assume(
∂tf −∆f

)
+

1
ε2
f ≤ g in Ω×]0, T [ ,

f = 0 on Ω× {0} ∪ ∂Ω×]0, T [ .

Then
‖ 1
ε2
f‖L1(Ω×]0,T [) ≤ ‖g‖L1(Ω×]0,T [) . (3.10)

and for any R, ρ > 0 and z0 = (x0, t0) ∈ Ω×]0, T ] with R2 + ρ2 < t0,∫
PΩ

R (z0)

1
ε2
|f |dz ≤

∫
PΩ

R+ρ(z0)

(
|g|+ C

ρ2
|f |

)
dz . (3.11)

Proof. (i) Multiplication of the equation for f by f√
f2+δ2

leads to

∂t|f ||f |√
f2 + δ2

+
|∇f |2√
f2 + δ2

(
1− f2

f2 + δ2
)

+
1
ε2

f2√
f2 + δ2

=
gf√
f2 + δ2

+ ∆
√
f2 + δ2 .

Now integrate over Ω×]0, t[ for any t ∈]0, T ] and let δ → 0 to obtain

sup
0≤t≤T

∫
Ω

|f(x, t)| dx+
∫ T

0

∫
Ω

1
ε2
|f | ≤

∫ T

0

∫
Ω

|g| dx dt .

(ii) We multiply the equation by f with( f√
f2 + δ2

)
(x, t)φ(x)η(t) .

The cut-off function φ satisfies 0 ≤ φ ∈ C∞c (R2) with sptφ ⊂ BR+ρ(x0) and φ ≡ 1
on BR(x0), whereas η ∈ C∞(R+) with 0 ≤ η(t) ≤ 1, η(t0 − R2 − ρ2) = 0 and
η(t) ≡ 1 if t ≥ t0 −R2. We may assume

|∇φ| ≤ C

ρ
, |∇2φ| ≤ C

ρ2
and |dtη| ≤

C

ρ2
.
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This leads to
∂t

(
|f |φ2η

)
|f |√

f2 + δ2
+
|∇f |2φ2η√
f2 + δ2

(
1− f2

f2 + δ2
)

+
1
ε2

f2φ2η√
f2 + δ2

=
gfφ2η√
f2 + δ2

+ div
(
∇f fφ2η√

f2 + δ2

)
+

f2φ2∂tη

2
√
f2 + δ2

− 2ηφ∇φ∇
√
f2 + δ2 .

Of course ∫
Ω

φ∇φη∇
√
f2 + δ2 dx = −

∫
Ω

η
√
f2 + δ2

(
φ∇2φ+ |∇φ|2

)
dx .

After integrating (4.2) and letting δ → 0, we obtain

sup
t0−(R2+ρ2)<t<t0

∫
BΩ

R

1
2
|f | dx+

∫
PΩ

R

1
ε2
|f | dz ≤

∫
PΩ

R+ρ

(
|g|+ C

ρ2
|f |

)
dz .

�

Lemma 3.9. Consider a smooth domain Ω ⊂ R2, g ∈ L1 ∩Lp(Ω×]0, T [) for p ≥ 2
and ε > 0. Let f ∈ C1(Ω× [0, T ]) ∩ C2(Ω×]0, T [) be a solution of(

∂tf −∆f
)

+
1
ε2
f = g in Ω×]0, T [ ,

f = 0 on ∂Ω×]0, T [ .

For f ≥ 0, we only need to assume(
∂tf −∆f

)
+

1
ε2
f ≤ g in Ω×]0, T [ ,

f = 0 on ∂Ω×]0, T [ .

(i) For any δ ∈]0, 1[ and z0 = (x0, t0) ∈ Ω×]0, T ] with 0 < R2 < t0, we have

‖ 1
ε2
f‖Lp(PΩ

δR(z0)) ≤ C1‖g‖Lp(PΩ
R (z0)) + ε2/pC2 ,

where C1 = C1(p) and C2 = C2

(
‖g‖Lp(PΩ

R (z0)), ‖f‖L2p−1(PΩ
R (z0)), p, δ, R

)
.

(ii) The same bound as in (i) holds for

‖
( 1
ε2

)(1− 1
p )
f‖L2p(PΩ

δR(z0)) , ‖
( 1
ε2

)(1−1/p)
f‖

L∞
(
[t0−R2,t0];Lp(BΩ

δR(x0))
)

and

‖1
ε
∇f‖L2(PΩ

δR(z0)) .

Proof. We multiply the equation for f by f |f |2s−2(x, t)φ2(x)η(t), where s ≥ 1. The
cut-off functions φ and η are the same as in the proof of Lemma 3.8. Then

1
2s
∂t

(
|f |2s(x, t)φ2(x)η(t)

)
+

2s− 1
s2

|∇|f |s|2φ2η +
1
ε2
|f |2sφ2η

= −div
(
∇ff |f |2s−2φ2η

)
+ gf |f |2s−2φ2η +

1
2s
|f |2sφ2dtη −∇|f ||f |2s−12∇φφη ,

for any s ≥ 1. By Young’s inequality ab ≤ δ−p ap

p + δq bq

q for p, q > 1 with 1
q + 1

p = 1
and a, b, δ > 0, we have∣∣|g||f |2s−1

∣∣ ≤ 1
2ε2

2s− 1
2s

|f |2s + (2ε2)(2s−1) 1
2s
|g|2s
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and ∣∣∇|f ||f |2s−12∇φφη
∣∣ = 2|(1

s
∇|f |sφ)(|f |s∇φ)η|

≤ 2s− 1
2s2

|∇|f |s|2φ2η +
2

2s− 1
|f |2s|∇φ|2η .

This leads to
1
2s
∂t

(
|f |2s(x, t)φ2(x)η(t)

)
+

2s− 1
2s2

|∇|f |s|2φ2η +
1

2ε2
|f |2sφ2η

≤ −div
(
∇ff |f |2s−2φ2η

)
+ (2ε2)(2s−1) 1

2s
|g|2sφ2η

+
2

2s− 1
|f |2s

(
|∇φ|2η + φ2|dtη|

)
.

(3.12)

For notational ease we relabel the domain as Ω×]− T, 0[ and assume z0 = (0, 0) ∈
Ω×]− T, 0[ and 0 < R2 + ρ2 < T . As always PR := PR(0).
(i) Set p = 2s. After multiplying (3.12) with

(
1
ε2

)p−1 and integrating, we get, for
p ≥ 2,

sup
t≥−R2−ρ2

∫
BΩ

R+ρ

( 1
ε2

)p−1|f |p(x, t)φ2(x)η(t) dx

+
∫

PΩ
R+ρ

( 1
ε2

)p−1|∇fp/2|2φ2η dz
)

+
∫

PΩ
R+ρ

( 1
ε2

)p|f |pφ2η dz

≤ C(p)
( ∫

PΩ
R+ρ

|g|pφ2ηdz +
( 1
ε2

)p−1
∫

PΩ
R+ρ

|f |p
(
|∇φ|2η + φ2|dtη|

)
dz

)
.

(3.13)

In particular we have∫
PΩ

R

( 1
ε2

)p|f |pdz ≤ C(p)
( ∫

PΩ
R+ρ

|g|p dz + ε2
C

ρ2

∫
PΩ

R+ρ

( 1
ε2

)p|f |pdz
)
. (3.14)

Let p = k
2 + 1 for k ∈ N. Hölder’s inequality for q1 = (2p − 1)/(2p − 2) and

q2 = 2p− 1 implies∫
PΩ

R

( 1
ε2
|f |

)p−1|f |dz ≤ ‖ 1
ε2
f‖p−1

Lp−(1/2)‖f‖L2p−1 .

Now (3.13) leads to

‖ 1
ε2
f‖p

Lp(PΩ
R )
≤ C(p)

(
‖g‖p

Lp(PΩ
R+ρ)

+
C

ρ2
‖ 1
ε2
f‖p−1

Lp−(1/2)(PΩ
R+ρ)

‖f‖L2p−1(PΩ
R+ρ)

)
.

An iteration combined either to (3.11) from Lemma 3.8 after the k-th step yields
an estimate of the form

‖ 1
ε2
f‖Lp(PΩ

R ) ≤ C
(
‖g‖Lp(PΩ

R+(k+1)ρ
), ‖f‖L2p−1(PΩ

R+(k+1)ρ
), p, ρ,R

)
. (3.15)

If we set ρ := δR
k+1 and insert (3.15) into (3.14), we obtain for any δ > 0

‖ 1
ε2
f‖p

Lp(PΩ
R )
≤ C(p)‖g‖p

Lp(PΩ
(1+δ)R

)
+ ε2C2 , (3.16)
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where
C2 = C2

(
‖g‖Lp(PΩ

(1+δ)R
), ‖f‖L2p−1(PΩ

(1+δ)R
), p, δ, R

)
.

Claim (i) follows by setting Rnew = (1 + δ)R and δnew = 1
1+δ , i.e. δnewRnew = R.

(ii) By applying the estimate(∫
[a,b]

∫
BR

|u|4dxdt
) 1

2 ≤ C
(

max
t∈[a,b]

∫
BR

|u|2dxdt+
∫

[a,b]

∫
BR

|∇u|2dxdt
)

(see Theorem 6.9 p.110 in [23]) to u := fp/2φ
√
η, we find that the expression( 1

ε2
)p−1

(∫
PΩ

R

|f |2pφ4η2dz
) 1

2
+

∫
PΩ

R

( 1
ε2

)p|f |pφ2ηdz (3.17)

admits the same bound as (3.13) with a different constant C(p) > 0. By combining
(3.17) with (3.13), we see that the same bounds as in (3.16) also holds for( 1

ε2
)p−1

(
sup

−R2<t<0

∫
BΩ

R

|f |p(x, t) dx+
∫

PΩ
R

|∇fp/2|2 dz
)

and ( 1
ε2

)p−1
(∫

PΩ
R

|f |2p dz
) 1

2
.

�

3.3.2. Higher estimates. By considering the flow equation (1.1) and equation (3.8)
for ρε := 1 − |uε|2 as a coupled system, the uniform estimates from the previ-
ous paragraph and parabolic estimates for (1.1) can be combined in a standard
bootstrap argument to prove Lemma 3.1 and 3.3.

In the case of the harmonic map flow dε := dist(uε, N) replaces ρε. The corre-
sponding equation is then

∂tdε −∆dε + |∇νε|2dε +
1
ε2
χ′(d2

ε)dε = ∆vε · νε ≤ C|∇uε|2 , (3.18)

whenever uε ∈ U . Here we decomposed uε = vε + dενε, where vε := πN (uε)
and νε := ν(uε) is the unit normal in

(
TπN (uε)N

)⊥, whereas dε := dist(uε, N).
Remember that πN : U → N denotes the nearest neighbour projection from a
tubular neighbourhood U ⊂ Rn of N onto N .

4. Towards characterizing the limits

We start with alternative characterisations of the “regular set” Reg
(
{uε}ε

)
. Re-

member that by Lemma 2.1, we have for any 0 ≤ s < t

Gε

(
uε(t), BΩ

R(x0)
)
≤ Gε

(
uε(s), BΩ

2R(x0)
)

+
C(t− s)E0

γ1R2
. (4.1)

Set δ0 := γ1ε0
2CE0

, where ε0 is the constant from Theorem 3.4. After increasing C if
necessary, we may assume 0 < δ0 < 1.

Lemma 4.1. Let uε be a solution of (1.1)-(1.2) with u0 ∈ H1,2(Ω;S2)∩C2(∂Ω;S2)
for each ε > 0. Then the following assertions are equivalent:
(i) z0 = (x0, t0) ∈ Reg

(
{uε}ε>0

)
.

(ii) ∃δ,R > 0 : lim supε↘0 supt0−δ<t<t0 Gε

(
uε(t), BΩ

R(x0)
)
< ε0.

(iii) ∃δ > 0 : limR↘0 lim supε↘0 supt0−δ<t<t0 Gε

(
uε(t), BΩ

R(x0)
)

= 0.
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(iv) ∃R > 0 : lim supε↘0
1

R2

∫ t0
t0−R2

∫
BΩ

R(x0)
gε(uε) dx dt < 1

4δ0ε0.

(v) ∃δ,R > 0 : lim supε↘0 supt0−δ<t<t0+δ Gε

(
uε(t), BΩ

R(x0)
)
< ε0.

Proof. “(i) ⇔ (ii)” is obvious.
“(ii) ⇒ (iii)” follows from Theorem 3.4 in Section 3.2.2.
“(iii) ⇒ (iv)” is obvious.
“(iv) ⇒ (ii)”: Assume (iv) holds. By (4.1) and the above choice of δ0, we have for
sufficiently small ε > 0,

sup
t0−(1/2)δ0R2<t<t0

Gε

(
uε(t), BΩ

(1/2)R(x0)
)

≤ inf
t0−δ0R2<s<t0−(1/2)δ0R2

Gε

(
uε(s), BΩ

R(x0)
)

+
Cδ0R

2E0

γ1R2

≤ 2
δ0R2

∫ t0−(1/2)δ0R2

t0−δ0R2
Gε

(
uε(t), BΩ

R(x0)
)
dt+

1
2
ε0

<
2
δ0

1
4
δ0ε0 +

1
2
ε0 < ε0 .

“(v) ⇒ (ii)” is obvious.
“(iii) ⇒ (v)”: Assume (iii) holds. Then there are R, δ > 0, such that

lim sup
ε↘0

sup
t0−δ≤t≤t0

∫
BR(x0)∩Ω

gε(uε(x, t))dx < ε0/2 .

On the other hand by (4.1), we have for δnew := ε0γ1R2

2CE0
= δ0R

2,

sup
t0≤t≤t0+δnew

∫
B 1

2 R
(x0)∩Ω

gε(uε(x, t))dx ≤
∫

BR(x0)∩Ω

gε(uε(x, t0))dx+
δnewCE0

γ1R2
.

Now (v) holds for 1
2R and min{δ, δnew}. �

Corollary 4.2. Let uε be a solution of (1.1)-(1.2) with u0 in H1,2(Ω;S2) ∩
C2(∂Ω;S2) for each ε > 0. Let {εi}i be a sequence with εi ↘ 0 as i → ∞. Then
the following holds:
(i) Reg({uε}ε) and Reg({uεi}i) are open in Ω× R+.
(ii) There is some T0 > 0, such that Ω× [0, T0[⊂ Reg({uε}ε).

Proof. (i) follows from Lemma 4.1 (v).
(ii) The existence of T0 immediately follows from Lemma 2.1 (2.3). �

Set
QR(z) := BR(x)×]t−R2, t+R2[ for z = (x, t) .

and let H2 denote the 2-dimensional parabolic Hausdorff measure.

Proposition 4.3. Let uε be a solution of (1.1)-(1.2) with u0 ∈ H1,2(Ω;S2) ∩
C2(∂Ω;S2) for each ε > 0. Then the following holds:
(i) S({uε}ε) has locally finite two dimensional parabolic Hausdorff-measure. More
precisely there is a constant K1 = K1(E0, ε0) > 0, such that for any compact
intervall I ⊂ R+

H2
(
S({uε}ε) ∩ (Ω× I)

)
≤ K1|I| .

(ii) There is a constant K2 = K2(E0, ε0) > 0, such that for any t > 0 the set
St({uε}ε) := S({uε}ε) ∩ (Ω× {t}) consists of at most K2 points.
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Proof. (i) By (iv) of Lemma 4.1, we have for any z0 = (x0, t0) ∈ S({uε}ε), any
R > 0 and sufficiently small 0 < ε ≤ ε(z0)

1
R2

∫ t0

t0−R2

∫
BΩ

R(x0)

gε(uε)dxdt >
1
4
δ0ε0 . (4.2)

Fix a compact intervall I ⊂ R+ and δ > 0. By compactness and Vitali’s Covering
Theorem any covering of S({uε}ε) ∩

(
Ω × I

)
by parabolic cylinders QΩ

R(z) with
0 < R2 < δ and z ∈ S({uε}ε) ∩

(
Ω × I

)
contains a finite covering

⋃
j Q

Ω
5Rj

(zj) ⊃
S({uε}ε)∩

(
Ω× I

)
, such that the cylinders QΩ

Rj
(zj) are pairewise disjoint. By (4.2)

and the energy estimate, we obtain for 0 < ε ≤ minj{ε(zj)}∑
j

ω2(5Rj)2 ≤ 25
4ω2

δ0ε0

∑
j

∫ tj

tj−R2
j

∫
BΩ

Rj
(xj)

gε(uε)dxdt <
100ω2

δ0ε0
(|I|+ δ)E0 .

By letting δ ↘ 0, we find

H2
(
S({uε}ε) ∩ I

)
≤ 100ω2E0

δ0ε0
|I| .

(ii) Pick any (x1, T ), . . . , (xk, T ) ∈ S({uε}). By assumption we have for

∀R, δ, γ > 0,∃ε ∈]0, γ[: sup
T−δ<t<T

∫
BΩ

R(xl)

gε(uε(x, t))dx ≥
ε0
2

for 1 ≤ l ≤ k .

We may choose R > 0, such that the BΩ
R(xl)(1 ≤ l ≤ k) are pairewise disjoint.

Choose δ ∈]0, γ1R2ε0
4CE0

[, where C is the constant from Lemma 2.1 (2.1) and ε ∈]0, γ[
as above. Since t 7→

∫
BΩ

R(xl)
gε(uε(x, t))dx is continuous, we may find tlδ ∈]T − δ, T [

such that ∫
BΩ

R(xl)

gε(uε(x, tlδ))dx ≥
ε0
2

for 1 ≤ l ≤ k .

The energy estimate and the local energy inequality, Lemma 2.1,(2.1) and (2.2)
now imply

E0 ≥
k∑

l=1

∫
BΩ

R(xl)

gε(uε(x, T − δ)) dx

≥
k∑

l=1

(∫
BΩ

R(xl)

gε

(
uε

(
x, tlδ

))
dx− C

γ1R2

∫ T

T−δ

∫
BΩ

R(xl)

|∇uε(x, t)|2dxdt
)
.

Thus E0 ≥ k
(

ε0
2 − CE0

R2 δ
)
. Now since δ < R2ε0

4CE0
, this implies k ≤ 8E0

ε0
=: K2.

(Compare [32] and [31] (1◦) of the proof of Theorem 6.6 p.229 for a similar argument
in the case of the harmonic map flow.) �

Theorem 4.4. Let uε be a solution of (1.1)-(1.2) with u0 in H1,2(Ω;S2) ∩
H3/2,2(∂Ω;S2) for each ε > 0. Then the following holds:
There is at least one sequence {εi}i, with εi → 0 as i→∞ and

u∗ ∈ H1,2
loc (Ω× R+;S2) ∩ L∞(R+;H1,2(Ω;S2)),

such that uεi
⇀ u∗ weakly in H1,2

loc (Ω×R+; R3) and weak* in L∞(R+;H1,2(Ω; R3)).
In addition: (i) For any such sequence {uεi}i, we have

lim
i→∞

uεi = u∗ in C∞(Reg({uεi}i) ∩ (Ω× R+); R3)
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and 1
ε2 (1− |uε|2) → |∇u∗|2 in C∞(Reg({uεi

}i) ∩ (Ω× R+)).
(ii) u∗ is a smooth solution of (1.3) in Reg({uεi}i)∩ (Ω×R+) and a distributional
solution in

H1,2
loc (Ω× R+) ∩ L∞

(
R+;H1,2(Ω; Rn)

)
on all Ω× R+. Further limt↘0 u∗(., t) = u0 in H1,2(Ω; R3) and

u∗(., t)|∂Ω = u0|∂Ω as a H2,2(Ω; R3)-trace for a.e. t > 0 .

(iii) If u∗ is regular at z0 = (x0, t0) ∈ Ω× R+ in the sense that

lim
R↘0

sup
t0−R2≤t≤t0

∫
BR(x0)

|∇u∗|2dx = 0

and if z0 is parabolically isolated for {uεi}i, i.e.

BR0(x0)×]t0 −R2
0, t0[⊂ Reg({uεi

}) for some R0 > 0 ,

then z0 ∈ Reg({uεi}). (In particular u∗ cannot (backwards) concentrate energy and
(backwards) bubble at z0 as t↘ t0. Compare [17], [18])

Proof. (i) The convergence statements follow from the energy estimate (Lemma
2.1), Theorem 3.2 and Lemma 3.1.
(ii) For the case γ2 = 0 and f(uε) = 1

2
d

duχ
(
dist2(uε, N)

)
, this is proven in [36] III

p.95. We will prove it in the case γ2 6= 0. If we apply “uεi
× .” from the left to

(1.1) and pass to the limit εi → 0 on Reg({uεi
}) ∩ (Ω× R+), we obtain

γ1u∗ × ∂tu∗ − γ2u∗ × (u∗ × ∂tu∗)− u∗ ×∆u∗ = 0 . (4.3)

Since (1− |uεi |2) → 0 smoothly, we also have

|u∗(x, t)| = 1 in Reg({uεi}) ∩ (Ω× R+).

Now we use a × (b × c) = (ac)b − (ab)c and |u∗| ≡ 1 while applying “u∗×.” from
the left to (4.3), to obtain

γ1∂tu∗ − γ2u∗ × ∂tu∗ −∆u∗ = |∇u∗|2u∗ in Ω× R+ . (4.4)

In particular, since the left side of (1.1) converges to the left side of (4.4), we have
1
ε2i

(1− |uεi
|2) → |∇u∗|2 in C∞(Reg({uεi

}) ∩ (Ω× R+)) .

We now prove that u∗ is a distributional H1,2
loc ∩ L∞(H1,2)-solution of (1.3) on all

Ω× R+. Note that the sequence {uεi
}i converges weakly in H1,2(Ω× R+;S2) and

smoothly on Reg({uεi
})∩ (Ω×R+). Further since St({uεi

}) := S({uεi
})∩ (Ω×{t})

is finite for all t ≥ 0, we have both uεi
→ u∗ pointwise a.e. in Ω × R+ and

uεi
(·, t) → u∗(·, t) pointwise a.e. in Ω for all t ∈ R+. Since

∫∞
0

∫
Ω
|∂tuεi

|2dxdt ≤ E0,
by Fatou’s Lemma the complement of

A := {t ≥ 0| lim inf
εi↘0

∫
Ω

|∂tuεi
|2(x, t)dx <∞}

has measure 0. Pick t0 ∈ A. Then there is a subsequence still denoted by uεi , such
that ∂tuεi(·, t0) ⇀ ∂tu∗(·, t0) weakly in L2(Ω; R3). By the local energy estimate,
we may assume that, for the same subsequence, we also have uεi

(·, t0) ⇀ u∗(·, t0)
weakly inH1,2(Ω;S2). By pointwise a.e. uniqueness of the limit, the whole sequence
converges. Also

u∗(·, t0) ∈ H1,2(Ω;S2) and ∂tu∗(·, t0) ∈ L2(Ω; R3) for all t0 ∈ A .
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Now

−∆u∗(·, t0) = (|∇u∗|2u∗)(·, t0) + f ,

where

f = −γ1∂tu∗(·, t0) + γ2u∗ × ∂tu∗(·, t0) ∈ L2(Ω; R3)

and by a regularity result of T.Rivière (see [27] Lemma p.3), we have

u∗(·, t0) ∈ H2,2(Ω;S2) if u0 ∈ H3/2,2(∂Ω;S2) ∩H1,2(Ω;S2) .

This in particular implies u∗(., t)|∂Ω = u0|∂Ω as a H2,2(Ω)-trace for any t ∈ A.
Further since St0({uεi}i) consists of finitely many points, it has vanishing 2-capacity
in R2, i.e.

Cap2

(
St0({uεi

})
)

= 0

(see [12]). Therefore, there is a sequence {ηk}k = {ηk,q}k ⊂ C∞c (R2) with

ηk(x) = 1∀x ∈ St0({uεi}i) and ‖ηk‖H1,2(R2)
(k→∞)→ 0

(see [12] 4.7.1). For φ ∈ C∞c (Ω), we may test equation (4.3) with the cut-off function
(1− ηk)φ, which has support in Reg({uεi

}i). After passing to the limit k →∞, we
find that for any t ∈ A,∫

Ω

γ1∂tu∗(x, t)φ(x)− γ2(u∗ × ∂tu∗)(x, t)φ(x) +∇u∗(x, t)∇φ(x) dx

=
∫

Ω

(|∇u∗|2u∗)(x, t)φ(x) dx .

This equation holds for a.e. t ≥ 0. On the other hand, we have u∗ ∈ H1,2(Ω ×
[0, T ];S2) for any T > 0 and so both sides of the above equation are locally inte-
grable on R+. Therefore we may multiply the equation with ψ ∈ C∞c ([0,∞[) and in-
tegrate over R+. Moreover linear combinations

∑
k akφk(x)ψk(t) with φk ∈ C∞c (Ω)

and ψk ∈ C∞c ([0,∞[) are dense in C∞c (Ω× [0,∞[) and so∫ ∞

0

∫
Ω

γ1∂tu∗(x, t)φ(x, t)− γ2(u∗ × ∂tu∗)(x, t)φ(x, t) +∇u∗(x, t)∇φ(x, t)dx dt

=
∫ ∞

0

∫
Ω

(|∇u∗|2u∗)(x, t)φ(x, t)dx dt ,

for any φ ∈ C∞c (Ω×[0,∞[). Finally limt↘0 u∗(., t) = u0 in H1,2(Ω;S2) immediately
follows from E(u∗(t0)) ≤ E(u0), since we have weak convergence as t↘ 0.
(iii): By assumption there is R > 0, such that

sup
t0−R2≤t≤t0

∫
BR(x0)∩Ω

1
2
|∇u∗(x, t)|2dx <

ε0
4
.

Set δ := min{R2, γ1R2ε0
2CE0

} and s0 := t0 − 1
2δ. We may assume we have for the same

R > 0 PΩ
2R(z0) \ {z0} ⊂ Reg({uεi

}). Then Theorem 3.2 and 3.4 and Lemma 3.1
and 3.3 imply

lim
i→∞

∫
BR(x0)∩Ω

gεi
(uεi

(x, s0))dx =
∫

BR(x0)∩Ω

1
2
|∇u∗(x, s0)|2dx <

ε0
4
.
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Now by Lemma 2.1 (2.2), we have

sup
s0≤t≤s0+δ

∫
B 1

2 R
(x0)∩Ω

gεi
(uεi

(x, t)) dx ≤
∫

BR(x0)∩Ω

gεi
(uεi

(x, s0)) dx+
δCE0

γ1R2

<
ε0
2

+
ε0
2
,

for i sufficiently large. Since by construction t0 ∈]s0, s0 + δ[, the claim follows. �

By Theorem 4.4, Corollary 4.2 (ii) and uniqueness of smooth solutions, we obtain
the following.

Remark 4.5. There is T0 > 0, such that

lim
ε↘0

uε = u∗ in C∞(Ω×]0, T0[;S2),

where u∗ is the unique smooth solution of (1.3) with initial and boundary data u0.
(Compare [17].)

If the energy of a (sub-)limit u∗ was everywhere decreasing, A.Freire’s uniqueness
result [13] would imply that u∗ is (globally) the Struwe-solution. However all we
can say about the energy of sublimits u∗ is the following Lemma 4.6. In particular
extension u∗ after the maximal smooth existence time T0 with backward bubbling
cannot be excluded. (See [18].)

Lemma 4.6. Let uε be a solution of (1.1)-(1.2) for fixed ε > 0 and assume u∗ =
weak-H1,2- limi→∞ uεi for a sequence 0 < εi ↘ 0. If s < t and Ss({uεi}) :=
(Ω× {s}) ∩ S({uεi}i) = ∅ and St({uεi}) 6= ∅, then∫

Ω

1
2
|∇u∗|2(x, s) dx ≥

∫
Ω

1
2
|∇u∗|2(x, τ) dx ∀τ > s ,

and ∫
Ω

1
2
|∇u∗|2(x, s) dx ≥

∫
Ω

1
2
|∇u∗|2(x, t) dx+ ε0 ,

where ε0 > 0 is the constant from Theorem 3.4.

Proof. Set x := (x1, . . . , xK) if St({uεi
}) = {x1, . . . , xK} and

BR(x) :=
⋃K

j=1BR(xj). Then

E(u∗(s),Ω) :=
∫

Ω

1
2
|∇u∗|2(x, s) dx

= lim
i→∞

∫
Ω

gεi
(uεi

)(x, s) dx

≥ lim sup
i→∞

∫
Ω

gεi
(uεi

)(x, τ) dx ∀τ > s (by Lemma 2.1)

≥
∫

Ω

1
2
|∇u∗|2(x, τ) dx ∀τ > s (by weak lower semi-continuity)

Also

E(u∗(s),Ω) ≥ lim sup
i→∞

(∫
ΩrBR(x)

gεi
(uεi

)(x, τ) dx+
∫

BR(x)

gεi
(uεi

)(x, τ) dx
)
,
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for all τ ∈]s, t]. Now for any δ ∈]0, 1[ and R > 0, there are sequences s < ti ↗ t
and 0 < δi ↘ 0, such that∫

BR(x)

gεi
(uεi

)(x, ti)dx = sup
δi<τ<t

∫
BR(x)

gεi
(uεi

)(x, τ)dx ≥ δε0

and so

E(u∗(s)) ≥ lim sup
i→∞

∫
ΩrBR(x)

gεi
(uεi

)(x, ti)dx+ δε0

≥
∫

ΩrBR(x)

1
2
|∇u∗|2(x, t)dx+ δε0 ∀R > 0 , δ ∈]0, 1[ .

Since the last inequality holds for any R > 0 and δ ∈]0, 1[, the claim follows. �

Theorem 4.4 provides an alternative version of the construction of the “Struwe-
solution” (see [17]).

Corollary 4.7. Let u0 ∈ H1,2(Ω;S2). Then there is a global distributional solution
u ∈ H1,2

loc (Ω×]0,∞[;S2) ∩ L∞(]0,∞[;H1,2(Ω;S2)) with ∂tu ∈ L2(Ω×]0,∞[; R3) of
(1.3) with initial and boundary data u0, which is smooth on Ω×]0,∞[ except at
finitely many points and has decreasing and right continuous energy. If in addition
u0 ∈ H3/2,2(∂Ω;S2), then u is unique among the solutions of (1.3) with initial
and boundary data u0 which are smooth except for isolated singular points and with
limt↘sE(u(t)) < E(u(s)) + ε0 for all s ≥ 0. (It is also unique among the H1,2

loc -
solutions with decreasing energy by Freire’s result.)

Proof. By Theorem 4.4 the ε-approximation scheme provides a smooth short time
solution

u ∈ C∞
(
Ω×]0, T0[;S2

)
to (1.3) with boundary data u0 and limt↘0 u(·, t) = u0 in H1,2(Ω; R3). Also there
are {x1, . . . , xK} ⊂ Ω, such that

lim
t↗T0

u(·, t) = u(·, T0) in C∞
(
Ω r {x1, . . . , xK},R3

)
and

‖∇u(·, T0)‖2L2(Ω) ≤ lim inf
t↗T0

‖∇u(·, t)‖2L2(Ω) ≤ 2E0 .

In particular u(·, T0) ∈ H1,2(Ω). If we now set ũ0 := u(·, T0) and repeat the same
procedure with ũ0 instead of u0, we obtain step by step a global solution with point
singularities. To see that ∂tu ∈ L2(Ω×R+; R3), we sum up the energy inequalities
of each time intervall ]tk, tk+1[ on which u is regular and use that the energy is
right continuous, whereas

lim sup
t↗tk+1

E(u(t)) ≥ E(u(tk+1)) + ε0

by Lemma 4.6. This yields∫ ∞

0

∫
Ω

|∂tu|2dxdt ≤ E0 −
∑

k

ε0

and also shows that there can only be finitely many “singular times” tk.
Now assume we have two solutions u1 and u2 of (1.3) with initial and bound-

ary data u0 and both with finitely many point singularities and limt↘sE(u(t)) <
E(u(s)) + ε0 for all s ≥ 0. By Remark 4.5, we have u1 = u2 on Ω × [0, T1[, where



EJDE-2004/90 PARTIAL COMPACTNESS 23

T1 is the maximal commun smooth existence time, i.e. either u1 or u2 has point
singularities at T1. However by Corollary 4 on the existence of smooth extensions
in [17], if u1 admits a smooth extension up to T1, then so does u2 and conversely.
Moreover, since the criterion for the existence of a smooth extension is local, both
solutions have the same singularities x1, . . . , xK at time T1 and u1(·, T1) = u2(·, T1)
on Ω \ {x1, . . . , xK}. By Theorem 6 in [17], and the assumption on the energy, the
extension of u1 and u2 after T1 is again unique “for a short time” and an iteration
of the previous argument leads to the claimed uniqueness. �

Acknowledgement. The author gratefully acknowledges encouragement and sup-
port from Michael Struwe.

References
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