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SOLUTION MATCHING FOR A THREE-POINT
BOUNDARY-VALUE PROBLEM ON A TIME SCALE

MARTIN EGGENSPERGER, ERIC R. KAUFMANN, NICKOLAI KOSMATOV

ABSTRACT. Let T be a time scale such that t1,t2,t3 € T. We show the exis-
tence of a unique solution for the three-point boundary value problem
AAA A AA
y=oo () = f(y(t),y" (1), y7 2 (1), tE [t ta]NT,
y(t) =y1, y(t2) =y2, y(t3) =ys.
We do this by matching a solution to the first equation satisfying a two-point

boundary conditions on [t1, t2] T with a solution satisfying a two-point bound-
ary conditions on [t2,t3] N T.

1. INTRODUCTION

Bailey, Shampine and Waltman [2] were the first to use solution matching tech-
niques to obtain solutions of two-point boundary value problems for the second
order equation y” = f(z,y,y’) by matching solutions of initial value problems.
Since then, many authors have used this technique on three-point boundary value
problems on an interval [a,c] for an n'" order differential equation by piecing to-
gether solutions of two-point boundary value problems on [a,b], where b € (a,c)
is fixed, with solutions of two-point boundary value problems on [b, c]; see for ex-
ample, Barr and Sherman [3], Das and Lalli [6], Henderson [7, [§], Henderson and
Taunton [9], Lakshmikantham and Murty [12], Moorti and Garner [I3], and Rao,
Murty and Rao [I4].

All the above cited works considered boundary value problems for differential
equations. In this work, we will use the solution matching technique to obtain a
solution to a three-point boundary value problem for a A-differential equation on
a time scale. The theory of time scales was introduced by Stephan Hilger, [10],
as a means of unifying theories of differential equations and difference equations.
Three excellent sources about dynamic systems on time scales are the books by
Bohner and Peterson [4], Bohner and Peterson [5], and Kaymakcalan et. al., [IT].
The definitions below can be found in [4].

A time scale T is a closed nonempty subset of R. For ¢ < supT and r >
inf T, we define the forward jump operator, o, and the backward jump operator, p,
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respectively, by
o(t)=inf{reT:7 >t} €T,
p(r)=sup{reT:7<r}eT.

If o(t) > t, t is said to be right scattered, and if o(t) = ¢, t is said to be right dense.
If p(t) < t, t is said to be left scattered, and if p(t) =t, t is said to be left dense.

If T has a left-scattered maximum at M, then we define T* = T\{M}. Otherwise
we define T® = T. If T has a right-scattered minimum at m, then we define
T, =T\ {m}. Otherwise we define T, = T.

We say that the function x has a generalized zero (g.z.) at t if x(t) = 0 or if
xz(o(t)) - z(t) < 0. In the latter case, we would say the generalized zero is in the
real interval (t,o(t)).

For x : T — R and t € T, (assume ¢ is not left scattered if ¢ = supT), we
define the delta derivative of x(t), x®(t), to be the number (when it exists), with
the property that, for each € > 0, there is a neighborhood, U, of ¢ such that

|2(0 (1) — x(s) — 22 (t)(a(t) — 5)| < elo(t) — s,

for all s € U.

Forz : T — R and ¢t € T, (assume ¢ is not right scattered if ¢ = inf T), we define
the nabla derivative of z(t), zV(t), to be the number (when it exists), with the
property that, for each € > 0, there is a neighborhood, U, of ¢ such that

|2(p(t)) — 2(s) — 2V (£)(p(t) — 5)| < elp(t) — s,
forall s € U.
Remarks: If T = R, then 22(t) = 2V(t) = 2/(t). If T = Z, then 22(t) =
x(t + 1) — x(¢) is the forward difference operator while zV () = z(t) — x(t — 1) is
the backward difference operator.
Let T be a time scale such that t1,t5,t3 € T. We consider the existence of
solutions of the three-point boundary value problem

yAAA(t) = f(tvy(t)7yA(t)a yAA(t))7 te (t17t3) N Tz (11)

y(t1) = y1, y(t2) = y2, y(t3) = ys. (1.2)

We obtain solutions by matching a solution of (1.1]) satisfying two-point boundary
conditions on [t1,t2] N'T to a solution of (I.1)) satisfying two-point boundary con-

ditions on [ta,t3] N T. In particular, we will give sufficient conditions such that if
y1(t) is the solution of (I.1) satisfying the boundary conditions y(t1) = y1,y(t2) =

Y2,y (t2) = m, (j = 1 or 2) and ya(t) is y(ta) = v,y (t2) = m, y(ts) = s,
(using the same j), then the solution of (L.1)), (1.2)) is
y(t) = yl(t), t e [tl,tg}ﬂrﬂ‘,
yg(t), te [tg,t:ﬂ NT.
We will assume that f : T x R? — R is continuous and that solutions of initial value
problems for (1.1]) exist and are unique on [t1,t3] N T. Moreover, we require that

to € T is dense and fixed throughout. In addition to these hypotheses, we suppose
that there exists a function g : T x R?® — R such that:

(A) For each vs,us € R the function f satisfies

f(t,’l)l,l)g,’l)g) - f(t,U1,U2,U3) > g(t,'l)l —U1,V2 — U2,V3 77—"3)
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when t € (t1,t2] VT, ug — v > 0, and ug — vy < 0, or when t € [to, t3) N
T, u1 —v; <0, and ug —ve <0
(B) There exists 1 > 0 such that, for each 0 < € < ¢y, the initial value problem

Y22 (t) = gt y(t),y> (1), y>2 (1)), teE [t ts]NT,
y(ty) =0, y22(ty) =0, y2(t2) =¢

has a solution z such that z does not change sign on [t;,t3] N'T
(C) There exists €5 > 0such that, for each 0 < £ < €3, the initial value problem

yREA() = gt y(),y2 (1), y>2 (1), t e[t ta]NT,
y(t2) =0, y2(t2) =0, y>2(t2) =e(—¢)

has a solution z on [ta, 3] N'T, ([t1,t2] N'T), such that 224 does not change
sign on [tQ, tg] N T, ([tl, tQ] N T)

(D) For each w € R, the function g satisfies g(¢,v1,ve, w) > g(t, u1, us, w) when
t € (t1,t2]NT, uy—v; > 0and vy > ug > 0, or when t € [ta,t3)NT, ug—v; <
0 and vy > uy >0

We will need also the following two theorems due to Atici and Guseinov, (The-
orems 2.5 and 2.6 in [I, pg. 79]).

Theorem 1.1. If f : T — C is A-differentiable on T and if f> is continuous on
T*, then f is V-differentiable on T, and

FY @) = A1)
forallt € Ty.

Theorem 1.2. If f: T — C is V-differentiable on T, and if f¥ is continuous on
Ty, then f is A-differentiable on T" and

FA@) = Y (o)
for allt € T".

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Consider the boundary conditions,

y(t) =y, y(ta) =2, y> (t2) =m (2.1)

for 7 =1,2, and

y(ts) = g2, y™ () =m,  y(ts) = ys, (2.2)

forj = 1 2, where y1,y2,y3,m € R. In this section, the solution of (1.1), ,
(j=1,2)1is matched with the solution of (|1.1] , . (j = 1,2) to obtain a unique

solutlon of ‘ Our first theorem states that solutions of (L.1f), (2.1)),
2.2)

71=12 and jJ = 1,2, are unique.

Theorem 2.1. Let y1,y2,y3 € R, and assume that conditions (A) through (D)
are satisfied. Then, given m € R, each of the boundary value problems (L.1)),(2.1),
i=1,2, and (1.1)(2.2), 7 = 1,2, has at most one solution.
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Proof. We will consider only the proof for , with with j = 1; the argu-
ments for the other cases is similar.

Let us assume that there are distinct solutions « and ( of 7 (with
j = 1). Define w = a — 3. Then w(t;) = w(tz) = w?(t2) = 0. By uniqueness of
solutions of initial value problems for we know that w2 (ty) # 0. Without
loss of generality, we let w2 (t3) < 0.

Since w(t;) = 0 and since o is dense, there exists an r1 € (t1,t2) N'T such that
wAA(t) has a g.z. at 7, w2(t) > 0 on [r1,t2) N'T, w(t) < 0 on (ry,t2] N'T, and
wAA(t) < 0 on [r1,t2) NT. From the definition of a generalized zero, we have either
whB(r1) = 0 or w22 (r1) - w2 (o (r1)) < 0. If 71 is right dense, then w2 (r1) = 0.
If ry is right scattered and w2 (ry) # 0, then w2 (ry) - w®(o(r1)) < 0. Since
wAB(t) < 0 on (r1,ta] NT, w2 (ry) > 0. Thus w?2(ry) > 0.

Now let 0 < & < 1 min{ey, —w™2(t2)} and let 2. satisfy the criteria of hypothesis
(C) relative to the interval [t1,%2] N'T; that is

22081 = gt 2 (1), 28 (1), 222(1),  t€ [t 8] NT,

ze(ty) = 22(ts) =0, 228(ty) = —¢

and 222 does not change sign in [t;, 2] N'T.

Set Z = w — z.. Then Z(t2) = Z2(t2) = 0, and Z2%(t2) < 0. Moreover,
ZAB(r) = whB(ry) — 222(r1) > 0, and Z22(ty) < 0 imply that there exists an
r9 € [r1,t2) N'T such that ZAA has a g.z. at o and Z22(t) < 0 on (ro,t2) NT. As
above, since Z22 has a g.z. at ro, Z2%(r5) > 0. Also, Z2(t) > 0 and Z(t) < 0 on
[7‘2, tQ) NT.

When o(rg) > rq,

Z22(0(r2)) = Z22%(r2)

AAA _
Z (r2) = o(rg) —rg

<0.

When o(ry) = 7o,
ZAA(t
ZA882(ry) = lim ®)
t~>'r‘2+ t— ]

<0.

Regardless of wether r5 is right dense or right scattered we have, from the definition
of the delta derivative, that Z2%2(ry) < 0.
From conditions (A) and (D) we have

ZAAA<’/‘2) _ ’U)AAA(’I“Q) _ ZEAAA(T2>

> g(ra, w(re), w(ra), w?(r2)) — g(ra, z2(r2), 258 (r2), 222 (r2))
> 0.

That is, Z222(ry) > 0, which is a contradiction. Our assumption must be wrong
and consequently (|1.1) (2.1) has at most one solution. O

Theorem 2.2. Assume that hypotheses (A) through (D) are satisfied. Then (1.1]),
(1.2) has at most one solution.

Proof. Assume that there exist two distinct solutions o and 5 of ([1.1)), (1.2]). Define
w=a— . Then w(t;) = w(tz) = w(ts) = 0. From Theorem A(tg) # 0 and
whB(ty) # 0. Without loss of generality let w™(ty) = a®(t2) — 32(t2) > 0. By
Theoremwe have wV (t3) = w?(t2) > 0. Then there exist points 71 € (t1,t2)NT
and ry € (t2,t3) N T such that w® has a g.z. at r; and ro and w™(¢t) > 0 on
(7“1, T'Q) NT.
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Let & = 1 min{ey, wA(tg)} and let z. be the solution of the initial value problem
ZABA(E) = g(t, 22 (1), 22 (1), 228),t € [t1,t3) NT, 2(t2) = 0,22 (t2) = ¢, 2:(t2) = 0.
By condition (B), z2 does not change sign on [t1,#3] N T.

Define Z = w — z.. Then Z(ty) = 0, Z%(t2) > 0, and Z22(t3) = w™(t2) # 0.
There are two cases to consider.

Case 1: Z2%(ty) < 0. Recall that w® has a g.z. at 7. If r; is right dense, then
w?(r1) = 0. If 1 is right scattered, then either w?(r1) = 0 or w? (o (r1))-w (rl) <
0. In the latter case since w®(t) > 0 on (r1,79)NT, we have w* (r ) <0. Regardless
of wether 7 is right dense or right scattered we have Z2(ry) = w™ (r1) —22(r1) < 0.

Since Z2(r;) < 0 and Z2%2(ty) < 0, there exists an r3 € (r1,t2] N T such that
ZAA has a g.z. at r3 and Z22(t) < 0 on (rs, o] NT.

On the one hand, if o(r3) > r3, then

23(0(r3)) = 252 (rs)

o(rs) —rs

Z828 (r3) = <0.

If o(r3) = rs, then

ZAAA (rg) = lim
( 3) t%r; — T3

<0.

Regardless of wether r3 is right dense or right scattered we have, from the definition
of the delta derivative, that Z2%%(r3) < 0.
On the other hand, from conditions (A) and (D) we have
883 (1) = w8 (rg) — 2859 (1)

> g(rs, w(rs), w™(rs), w2 (rs)) — g(rs, z=(rs), 22 (rs), 222 (r3))
>0.

That is, conditions (A) and (D) imply that Z222(r3) > 0 which is a contradiction.
Consequently, Z22(ty) £ 0

Case 2: Z2%(ty) > 0. Agam we know that w® has a g.z. at ro. If o(ry) = 7o,
then w?(ry) = 0. If o(ry) > ra, then either w™(ry) = 0 or w®(r) > 0 and

w?(o(re)) < 0 or w?(ry) < 0 and w?(p(rz)) > 0. Consequently, either Z2(rg) < 0
or Z2(o(re)) < 0.

Since Z2(r*) < 0, (where r* = 75 or 7* = o(r3)), and since Z2%(ty) > 0, there
exists 74 € (t2,7*) such that Z22 has a g.z. at ry, Z22(t) > 0 on [ty,74) N'T, and
ZAA does not have a g.z. in [tg,74) N'T.

We now obtain a contradiction. On the one hand, we can use the definition of
the A-derivative to calculate Z222(ry). If p(r4) = 74, then by Theorem we
have AR

ZA8D (1) — ZAAY (1) i Z27(t) =0
t—ry, t—ry

< 0.

If p(rs) < 74, then either o(ry) =ry or o(rs) > r4. If 0(r4) = 14, then

ZAA(t
ZAAA(m) = lim *)
tﬂrz’ t— T4

<0.

If o(rs) > r4, then
Z2%(a(rs)) = 222 (ra)
o(ry) —ry4

In any case, we have, by definition of the A-derivative, that Z222(r,) < 0.

2888 (ry) = <o.
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On the other hand, we have from conditions (A) and (D),

ZAAA(T4) _ wAAA(,r4) _ ZEAAA(T4)

> g(ra,w(rs), w(ra), w(ra)) — g(ra, ze(ra), 22 (ra), 222 (r4))

> 0.

Conditions (A) and (D) imply Z222(ry) > 0 which is a contradiction. Thus
Z28(ty) # 0.

Since Z22(ty) # 0 and Z2%(ty) < 0 and Z22(t3) > 0 lead to contradictions,
our original assumption must be false. As such, the boundary value problem ,
has at most one solution and the theorem is proved. O

Now given m € R, let a(x, m), B(x, m), u(x, m) and v(z, m) denote the solutions,

when they exist, of the boundary value problems for , and ,,
7 =1,2, respectively.
Theorem 2.3. Suppose that (A) through (D) are satisfied and that, for each m € R,
there exist solutions of , and , , j =1,2. Then u®(ty,m) and
a®B(ty,m) are strictly increasing functions of m whose range is R, and v (ty, m)
and 322 (ta, m) are strictly decreasing functions of m with ranges all of R.

Proof. The “strictness” of the conclusion arises from Theorem We will prove
the theorem with respect to the solution af(t,m). Let my > mg and let w(t) =
a(t,m1) — a(t,mz). Then when w(t;) = w(tz) = 0,w(t2) > 0, and w2 (t2) # 0.

Assume that w®®(ty) < 0. Then there exists an 71 € (t1,t2) N'T such that
w® has a g.z. at r; and w™(t) > 0 on (r1,t2] N'T. By continuity, there exists an
ry € (r1,t2) N'T such that w™ has a g.z. at 75 and w22 () < 0 on (ra,tz] N T.
Note that w(t) < 0 on [ro,t2) NT.

Let 0 < ¢ < min{ey, —w??(t2)} and let z. be the solution of the initial value
problem satisfying conditions of (C), and set Z = w—z.. Then Z(ty) = 0, Z2(t5) =
w®(ty) > 0, and Z2%(ty) < 0. Furthermore Z2%(ry) > 0. Thus there exist
3 € (re,t2)NT such that Z2%(r3) = 0 and Z22(t) < 0 on (r3,t2]. Then Z2(t) > 0
and Z(T) < 0 on [r3,t2). As in the proofs of Theorems and we can then
argue that Z222(r3) < 0 and Z2%2(r3) > 0, which is again a contradiction. Thus
w?B(ty) > 0 and consequently, a®2(t,m) is strictly increasing as a function of
m.

We now show that {a®®(ty,m)|m € R} = R. Let k € R and consider the
solution u(zx, k) of the 1-) |i (with j = 2) with u as specified above. Consider
also the solution a(z, (tg, , of (T.1)), 1) (with j = 1). Then a(x uA(thf))
and u(z, k) are solutlons of , 1.} Hence, by Theorem a(z,uP(ts, k) =
u(z, k). Therefore, a2 (ta,u>(t2,k)) = k and so {a”? (ta, ) m € ]R} R. The
other three parts are established in a snnilar manner and the proof is complete. [

Theorem 2.4. Assume the hypothesis of Theorem [2.3 Then (L.1), (L.2) has a
unique solution.
Proof. By Theorem there exists a unique mg such that u® (to, mg) = v (t2, mg).
Also u®2 (tg, mo) = mo = v22(t2, mg). Then,

) u(t,mo) =y1(t), t1 <t <t

y =
v(t,mo) = ya(t), t2 <t <ts,

is a solution of (1.1f), (1.2). By Theorem y(t) is the unique solution. O



EJDE-2004/91 SOLUTION MATCHING ON A TIME SCALE 7

(1]
2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]

(12]

REFERENCES

F. M. Atici and G. Sh. Guseinov, On Green’s Functions and Positive Solutions for Boundary
Value Problems on Time Scales, J. Comput. Appl. Math. 141 (2002), 75-99.

P. Bailey, L. Shampine, and P. Waltman, Nonlinear Two Point Boundary Value Problems,
Academic Press, New York, 1968.

D. Barr and T. Sherman, Existence and uniqueness of solutions of three-point boundary value
problems, J. Differential Equations 13(1973), 197-212.

M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An introduction with
Applications, Birkhauser, Boston, 2001.

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser,
Boston, 2003.

K. M. Das and B. S. Lalli, Boundary value problems for v/ = f(z,y,y’), J. Math. Anal.
Appl. 81 (1981), 300-307.

J. Henderson, Three-point boundary value problems for ordinary differential equations, Non-
linear Anal. 7 (1983), 411-417.

J. Henderson, Solution Matching for boundary value problems for linear equations, Internat.
J. Math. & Math. Sci. 12 No. 4 (1989), 713-720.

J. Henderson and R. D. Taunton, Solutions of boundary value problems by matching methods,
Appl. Anal. 49 (1993), No. 3-4, 235-246.

S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus,
Results Math. 18(1990), 18-56.

B. Kaymakcalan, V. Lakshmikantham, and S. Sivasundaram, Dynamical Systems on Measure
Chains, Kluwer Academic Publishers, Boston, 1996.

V. Lakshmikantham and K. N. Murty, Theory of differential inequalities and three-point
boundary value problems, PanAm. Math. J. 1 (1991), 1-9.

[13] V. R. G. Moorti and J. B. Garner, Existence -uniqueness theorems for three-point boundary

value problems for nth-order nonlinear differential equations, J. Differential Equations 29
(1978), 205-213.

[14] D.R.K.S. Rao, K.N. Murty, A.S. Rao, On three-point boundary value problems associated

with third order differential equations, Nonlinear Anal. 5 (1981), 669-673.

MARTIN EGGENSPERGER

GENERAL STUDIES, SOUTHEAST ARKANSAS COLLEGE, PINE BLUFF, ARKANSAS, USA

E-mail address: meggensperger@seark.edu

ERriCc R. KAUFMANN

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ARKANSAS AT LITTLE ROCK,
LITTLE ROCK, ARKANSAS 72204-1099, USA

E-mail address: erkaufmann@ualr.edu

NickorAal KosmaTov

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF ARKANSAS AT LITTLE ROCK,
LiTTLE ROCK, ARKANSAS 72204-1099, USA

E-mail address: nxkosmatov@ualr.edu



	1. Introduction
	2. Existence and Uniqueness of Solutions
	References

