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EXISTENCE OF SOLUTIONS FOR A NONLINEAR
DEGENERATE ELLIPTIC SYSTEM

NGUYEN MINH CHUONG, TRAN DINH KE

Abstract. In this paper, we study the existence of solutions for degenerate

elliptic systems. We use the sub-super solution method, and the existence of
classical and weak solutions. Some sub-supersolutions are constructed explic-
itly, when the nonlinearities have critical or supercritical growth.

1. Introduction

Let Ω be a smooth bounded domain in RN1×RN2 with boundary ∂Ω, and having
{0} ∈ Ω. We consider the Dirichlet problem

∆xu+ |x|2k∆yu+ f(x, y, u, v) = 0 in Ω,

∆xv + |x|2k∆yv + g(x, y, u, v) = 0 in Ω,
u = v = 0 on ∂Ω,

(1.1)

where ∆x =
∑N1

i=1
∂2

∂x2 , ∆y =
∑N2

i=1
∂2

∂y2 , k ≥ 0, f and g are real-valued functions
defined on Ω × R2, satisfying certain conditions which will be specified in next
sections. We assume in this paper that N1, N2 ≥ 1 and N(k) = N1 +(k+1)N2 ≥ 3.
Let ν = (νx, νy) be the outward unit normal to ∂Ω.

When the degenerating factor is removed (i.e. k = 0), system (1.1) reduces to a
problem with the Laplace operator. Such systems have been the subject for many
studies. In almost all of them, the systems are in Hamiltonian and potential forms
and are considered by using variational methods (see [1, 2] and references there in).
The operator Gk = ∆x + |x|2k∆y is of a Grushin type which was studied in [8, 12].
In particular, existence results for problem

∆xu+ |x|2k∆yu+ f(u) = 0 in Ω,
u = 0 on ∂Ω,

(1.2)

are obtained in [11]. Moreover, the authors proved the Sobolev embedding theorem
and set the critical exponent to N(k)+2

N(k)−2 . In [10], we introduced an existence result
for the Hamiltonian system with Gk involving nonlinerities that may change signs.
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In this work, we use sub-super solutions method to get both classical and weak
solutions, even when the nonlinearities have critical or supercritical growth.

In the next section, we extend the nonexistence results in [4] to our system when
it has the Hamiltonian form. The study is based on our generalized Pohozaev
identity. Section 3 shows the existence of classical solutions for (1.1). Finally, in
section 4, we construct the maximal and minimal weak solutions of our problem.

2. Nonexistence results

In this section, we prove nonexistence results when the domain has a special
shape described in the following definition.
Definition. A domain Ω is called k-starshaped with respect to {0, 0} if the in-
equality

(x, νx) + (k + 1)(y, νy) ≥ 0

holds almost everywhere on ∂Ω.

We are now in position to build a generalized version of Pohozaev identity.
Firstly, note that the Pohozaev identity for potential system with Laplace oper-
ator was introduced in [1]. Recall also that, the similar identity for scalar case
was obtained in [4]. Precisely, let u(x, y) ∈ H2(Ω) (the usual Sobolev space) be a
solution of the problem

∆xu+ |x|2k∆yu+ f(u) = 0 in Ω,
u = 0 on ∂Ω,

(2.1)

then

N(k)
∫

Ω

F (u) dx dy − N(k)− 2
2

∫
Ω

f(u)u dx dy

=
1
2

∫
∂Ω

[(x, νx) + (k + 1)(y, νy)](|νx|2 + |x|2k|νy|2)
(∂u
∂ν

)2

dS,

where F (u) =
∫ u

0
f(s)ds. In our paper, Lemma 2.1 makes an extension of this

identity for the Hamiltonian system with Grushin operator.
Before stating Lemma 2.1, we state the following condition.

• (S1) There exists a function H(x, y, u, v) ∈ C1(Ω× R2) satisfying

∂H

∂v
= f,

∂H

∂u
= g, H(x, y, 0, 0) = 0 for (x, y) ∈ Ω.

For the conditions in (S1), one can take f = f(v), g = g(u). Thus, H(u, v) =
F (v) +G(u), where

F (v) =
∫ v

0

f(s)ds , G(u) =
∫ u

0

g(t)dt .

Denote

∇x = (
∂

∂x1
, . . . ,

∂

∂xN1

), ∇y = (
∂

∂y1
, . . . ,

∂

∂yN2

).

Lemma 2.1 (Generalized Pohozaev identity). Let Ω be a k-starshaped domain with
respect to {0, 0} and let (S1) hold. If (u, v) ∈ H2(Ω)×H2(Ω) is a solution of (1.1)
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then (u, v) satisfies the equation

N(k)
∫

Ω

H(x, y, u, v) dx dy +
∫

Ω

[(x,∇xH) + (k + 1)(y,∇yH)]dx dy

= (N(k)− 2)
∫

Ω

[tf(x, y, u, v)v + (1− t)g(x, y, u, v)u]dx dy

+
∫

∂Ω

[(x, νx) + (k + 1)(y, νy)](|νx|2 + |x|2k|νy|2)
∂u

∂ν

∂v

∂ν
dS,

for all t ∈ R.

Proof. For i = 1, . . . , N1, we have∫
Ω

∂

∂xi

(
xiH(x, y, u, v)

)
dy dy

=
∫

Ω

H(x, y, u, v) dx dy +
∫

Ω

xi(g
∂u

∂xi
+ f

∂v

∂xi
+
∂H

∂xi
) dx dy = 0.

This implies∫
Ω

H(x, y, u, v) dx dy = −
∫

Ω

xi[g
∂u

∂xi
+ f

∂v

∂xi
+
∂H

∂xi
] dx dy.

Hence∫
Ω

H(x, y, u, v) dx dy = − 1
N1

∫
Ω

[(x,∇xu)g + (x,∇xv)f + (x,∇xH)] dx dy . (2.2)

Analogously, for β ∈ R,

β

∫
Ω

H(x, y, u, v) dx dy = − β

N2

∫
Ω

[(y,∇yu)g + (y,∇yv)f + (y,∇yH)] dx dy. (2.3)

Equalities (2.2) and (2.3) yield

(1 + β)
∫

Ω

H(x, y, u, v) dx dy =
∫

Ω

[ (x,∇xu)
N1

+
β(y,∇yu)

N2

]
Gkv dx dy

+
∫

Ω

[ (x,∇xv)
N1

+
β(y,∇yv)

N2

]
Gku dx dy

−
∫

Ω

[ (x,∇xH)
N1

+
β(y,∇yH)

N2

]
dx dy .

(2.4)

We make some computations for the following integrals

I1 =
1
N1

∫
Ω

[(x,∇xu)∆xv + (x,∇xv)∆xu] dx dy,

I2 =
β

N2

∫
Ω

[(y,∇yu)∆xv + (y,∇yv)∆xu] dx dy,

I3 =
1
N1

∫
Ω

[(x,∇xu)∆yv + (x,∇xv)∆yu]|x|2k dx dy,

I4 =
β

N2

∫
Ω

[(y,∇yu)∆yv + (y,∇yv)∆yu]|x|2k dx dy.
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We have the generalized Rellich identity (for detail computations, we refer the
reader to [4])

I1 =
1
N1

∫
Ω

[(x,∇xu)∆xv + (x,∇xv)∆xu] dx dy

=
N1 − 2
N1

∫
Ω

∇xu∇xv dx dy +
1
N1

∫
∂Ω

|νx|2(x, νx)
∂u

∂ν

∂v

∂ν
dS.

(2.5)

In the same way

I2 =
β

N2

∫
Ω

[(y,∇yu)∆xv + (y,∇yv)∆xu] dx dy

= β

∫
Ω

∇xu∇xv dx dy +
β

N2

∫
∂Ω

|νx|2(y, νy)
∂u

∂ν

∂v

∂ν
dS,

(2.6)

I3 =
1
N1

∫
Ω

[
(x,∇xu)∆yv + (x,∇xv)∆yu

]
|x|2k dx dy

=
N1 + 2k
N1

∫
Ω

|x|2k∇yu∇yv dx dy +
1
N1

∫
∂Ω

(x, νx)|x|2k|νy|2
∂u

∂ν

∂v

∂ν
dS,

(2.7)

and

I4 =
β

N2

∫
Ω

[
(y,∇yu)∆yv + (y,∇yv)∆yu

]
|x|2k dx dy

= β
N2 − 2
N2

∫
Ω

|x|2k∇yu∇yv dx dy +
β

N2

∫
∂Ω

|νy|2|x|2k(y, νy)
∂u

∂ν

∂v

∂ν
dS.

(2.8)

Combining (2.5), (2.6), (2.7) and (2.8), we obtain

I =
∫

Ω

[
(
(x,∇xu)
N1

+
β(y,∇yu)

N2
)Gkv + (

(x,∇xv)
N1

+
β(y,∇yv)

N2
)Gku

]
dx dy

= (β +
N1 − 2
N1

)
∫

Ω

∇xu∇xv dx dy + (
N1 + 2k
N1

+ β
N2 − 2
N2

)
∫

Ω

|x|2k∇yu∇yv dx dy

+
1
N1

∫
∂Ω

(x, νx)(|νx|2 + |x|2k|νy|2)
∂u

∂ν

∂v

∂ν
dS

+
β

N2

∫
∂Ω

(y, νy)(|νx|2 + |x|2k|νy|2)
∂u

∂ν

∂v

∂ν
dS.

Choosing β = N2
N1

(k + 1) and taking (2.4) into account, we have

N(k)
N1

∫
Ω

H(x, y, u, v) dx dy

=
N(k)− 2

N1

∫
Ω

(
∇xu∇xv + |x|2k∇yu∇yv

)
dx dy

− 1
N1

∫
Ω

[
(x,∇xH) + (k + 1)(y,∇yH)

]
dx dy

+
1
N1

∫
∂Ω

[(x, νx) + (k + 1)(y, νy)](|νx|2 + |x|2k|νy|2)
∂u

∂ν

∂v

∂ν
dS.
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Noting that∫
Ω

(
∇xu∇xv + |x|2k∇yu∇yv

)
dx dy =

∫
Ω

vf(x, y, u, v) dx dy

=
∫

Ω

ug(x, y, u, v) dx dy,

the conclusion of Lemma 2.1 follows for all t ∈ R. �

The next theorem follows from Lemma 2.1.

Theorem 2.2. Let Ω be a k-starshaped domain with respect to {0, 0} and let (S1)
hold. If there exists t ∈ R such that

1
N(k)− 2

[N(k)H(x, y, u, v) + (x,∇xH) + (k + 1)(y,∇yH)]

< tug(x, y, u, v) + (1− t)vf(x, y, u, v),

for all (x, y) ∈ Ω and (u, v) ∈ R2, then system (1.1) has no positive solution in
H2(Ω)×H2(Ω).

In the following theorem, we get a result similar to [9, Theorem 3.1].

Theorem 2.3. Let Ω be a k-starshaped domain with respect to {0, 0}. If the problem

−∆xu− |x|2k∆yu = |v|p−1v, in Ω,

−∆xv − |x|2k∆yv = |u|q−1u, in Ω,
u = v on ∂Ω,

has a nontrivial solution in H2(Ω)×H2(Ω) for p, q ≥ 1 then

1
p+ 1

+
1

q + 1
≥ N(k)− 2

N(k)
.

Proof. Since Ω is a k-starshaped domain, the following inequality results from
Lemma 2.1,

N(k)
N(k)− 2

∫
Ω

( 1
p+ 1

|v|p+1 +
1

q + 1
|u|q+1

)
dx dy ≥

∫
Ω

[
t|v|p+1 + (1− t)|u|q+1

]
dx dy,

for all t ∈ R. Then, we have the statement of Theorem 2.3 from the fact that∫
Ω

|v|p+1 dx dy =
∫

Ω

|u|q+1 dx dy =
∫

Ω

(∇xu∇xv + |x|2k∇yu∇yv) dx dy.

�

3. Existence of classical solutions

Unlike the Laplace operator, the Grushin operator Gk is not positively definite
(in the domain with origin) and not radially symmetric. However, it’s easy to check
that, the weak maximum principle can still be applied.

Proposition 3.1 (Weak maximum principle). Suppose that Ω is bounded. If u ∈
C2(Ω)∩C(Ω̄) and Gku ≥ 0 in Ω, then the maximum of u is attained at the boundary
∂Ω.
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Proof. Let u ∈ C2(Ω)∩C(Ω̄). First we prove for the case Gku > 0 in Ω and in the
next step we proceed for the case Gku ≥ 0 in Ω. Assume Gku > 0 in Ω and u has
a maximum at (x0, y0) ∈ Ω. Then

∂2u

∂x2
i

(x0, y0) ≤ 0, for i = 1, . . . , N1,

∂2u

∂y2
j

(x0, y0) ≤ 0, for j = 1, . . . , N2.

Hence

Gku(x0, y0) =
N1∑
i=1

∂2u

∂x2
i

(x0, y0) + |x|2k
N2∑
j=1

∂2u

∂y2
j

(x0, y0) ≤ 0.

This contradiction implies
sup
Ω
u ≤ sup

∂Ω
u.

Now we prove for the case Gku ≥ 0 in Ω. Suppose that Ω ⊂ {|x1| < d}. Put
w(x, y) = u(x, y) + εeαx1 , where ε > 0 and α > 0. We have

Gkw = Gku+ εα2eαx1 > 0 in Ω.

¿From the arguments in first step and the construction of w, we deduce

sup
Ω
u ≤ sup

Ω
w ≤ sup

∂Ω
w ≤ sup

∂Ω
u+ εeαd.

The result follows for ε→ 0. �

As a consequence, we have the following result.

Corollary 3.2. If u ∈ C2(Ω) ∩ C(Ω̄) satisfies
−Gku ≥ 0 in Ω,
u ≥ 0 on ∂Ω,

(3.1)

then u ≥ 0 for x ∈ Ω.

Now if u1, u2 ∈ C2(Ω) ∩ C(Ω̄) are solutions for
−Gku = f in Ω,
u = 0 on ∂Ω,

(3.2)

where f ∈ C(Ω̄), then u1−u2 and u2−u1 satisfy (3.1). In other words, u1 = u2 in
Ω. The conclusion is that (3.2) has at most one solution in C2(Ω) ∩ C(Ω̄).

Proposition 3.3. If u ∈ C2(Ω) ∩ C(Ω̄) is a solution of (3.2) for f ∈ C(Ω̄), then
there exists a positive constant C such that for all (x, y) ∈ Ω,

|u(x, y)| ≤ C sup
Ω
|f | .

Proof. Denote

` = sup
Ω
|x|, M = sup

Ω
|f |, v(x, y) =

`2 − |x|2

2N1
.

Then Gkv = −1 and v ≥ 0 in Ω. Put v1(x, y) = u(x, y)−Mv(x, y) and v2(x, y) =
u(x, y) + Mv(x, y). By the fact that Gkv1 = f + M ≥ 0 in Ω and using weak
maximum principle, we have

v1(x, y) ≤ sup
∂Ω

v1 in Ω,
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or
u(x, y)−Mv(x, y) ≤ sup

∂Ω
(u−Mv) ≤ sup

∂Ω
u = 0, for all (x, y) ∈ Ω.

It follows

u(x, y) ≤Mv(x, y) ≤ `2

2N1
sup
Ω
|f | in Ω.

Arguing similarly for v2 with Gkv2 ≤ 0 in Ω, we get

u(x, y) ≥ min
∂Ω

u−Mv(x, y) ≥ − `2

2N1
sup
Ω
|f | in Ω.

The proof is complete with C = `2/2N1. �

Before constructing the inverse operator of Gk, we state some conditions on the
linear problem (3.2).

(S2) Any solution u of (3.2) with f ∈ C(Ω̄) belongs to C2(Ω) ∩ C(Ω̄).
Remark. In the case k = 0 and ∂Ω is C2, hypothesis (S2) is satisfied obviously.
The explicit conditions ensured the truth of (S2) for the case k > 0 are still open.
It’s expected to return this problem in the other works.

Given hypothesis (S2) and the uniqueness of problem (3.2), we can define the
inverse operator

G−1
k : C(Ω̄) → C(Ω̄),

f 7→ u.

Furthermore, Proposition 3.3 ensures that G−1
k is compact.

(S3) The functions f(x, y, s, t), g(x, y, s, t) in C(Ω̄ × R × R) are nondecreasing
in s and t for all (x, y) ∈ Ω, i.e. the maps s 7→ f(x, y, s, t), s 7→ g(x, y, s, t)
for fixed t ∈ R and t 7→ f(x, y, s, t), t 7→ g(x, y, s, t) for fixed s ∈ R are
nondecreasing for all (x, y) ∈ Ω.

Definition. A pair (ū, v̄) ∈ C2(Ω) ∩ C(Ω̄) is said to be a supersolution to (1.1) if

−Gkū ≥ f(x, y, ū, v̄) in Ω,

−Gkv̄ ≥ g(x, y, ū, v̄) in Ω,
ū ≥ 0, v̄ ≥ 0 on ∂Ω.

(3.3)

Similarly, (u, v) ∈ C2(Ω) ∩ C(Ω̄) is called subsolution to (1.1) if

−Gku ≤ f(x, y, u, v) in Ω,

−Gkv ≤ g(x, y, u, v) in Ω,
u ≤ 0, v ≤ 0 on ∂Ω.

(3.4)

The following theorem is the main result for current section.

Theorem 3.4. Assume that hypotheses (S2) and (S3) hold. If (1.1) has a subso-
lution (u, v) and a supersolution (ū, v̄) such that (u, v) ≤ (ū, v̄), then there exists at
least one solution (u, v) of (1.1) satisfying (u, v) ≤ (u, v) ≤ (ū, v̄).

Proof. We use similar arguments as in [6]. Let f∗(x, y, u, v) and g∗(x, y, u, v) be
the functions which are defined from f(x, y, u, v), g(x, y, u, v) as follows

(i) If u < u then replace u by u, if u > ū then replace u by ū.
(ii) If v < v then replace v by v, if v > v̄ then replace v by v̄.
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Then f∗, g∗ are continuous functions. Consider the problem
−Gku = f∗(x, y, u, v) in Ω,

−Gkv = g∗(x, y, u, v) in Ω,
u = v = 0 on ∂Ω.

(3.5)

The definition of f∗(x, y, u, v) and g∗(x, y, u, v) implies that, if (u, v) is a solution
of (3.5) satisfying

(u, v) ≤ (u, v) ≤ (ū, v̄), (3.6)
then (u, v) is a solution for (1.1).

Let us define the operator

T (u, v) =
(
−G−1

k 0
0 −G−1

k

) (
f∗(x, y, u, v)
g∗(x, y, u, v)

)
on the convex bounded subset of [C(Ω)]2

D = {(u, v) : (u, v) ≤ (u, v) ≤ (ū, v̄)}.
Since f∗ and g∗ are continuous and bounded, G−1

k is compact, hence T is compact.
Note now that system (3.5) is equivalent to (u, v) = T (u, v). To apply Shauder

fixed point theorem [9, page 60], we have only to prove that T (D) ⊂ D. Indeed, let
(u, v) be a solution to (3.5), we show that (u, v) satisfies (3.6). It suffices to prove
that, the following sets

Ω1 = {(x, y) ∈ Ω : u(x, y) > ū(x, y)},
Ω2 = {(x, y) ∈ Ω : v(x, y) > v̄(x, y)},
Ω3 = {(x, y) ∈ Ω : u(x, y) < u(x, y)},
Ω4 = {(x, y) ∈ Ω : v(x, y) < v(x, y)}

are empty. We proceed with Ω1, the proofs for the other set are performed analo-
gously. Assume to the contrary that Ω1 is not empty. The continuity of u and ū
ensures that Ω1 is open set in Ω, then Ω1 ∩ ∂Ω1 = ∅. The first inequality in (3.3)
and the first equation in (3.5) gives

−Gk(u− ū) ≤ f∗(x, y, u, v)− f(x, y, ū, v̄). (3.7)

For pointing out the sign of the left hand side in (3.7), we define the following
subsets of Ω1

Ω+
1 = {(x, y) ∈ Ω1 : v(x, y) > v̄(x, y)},

Ω−1 = {(x, y) ∈ Ω1 : v(x, y) < v(x, y)},
Ω0

1 = {(x, y) ∈ Ω1 : v(x, y) ≤ v(x, y) ≤ v̄(x, y)}.

It’s easy to see that Ω1 = Ω+
1 ∪Ω−1 ∪Ω0

1 and each subset is separated from others.
By the definition of f∗ and monotoncity of f , we have

f∗(x, y, u, v)− f(x, y, ū, v̄) = f(x, y, ū, v̄)− f(x, y, ū, v̄) = 0 in Ω+
1 ,

f∗(x, y, u, v)− f(x, y, ū, v̄) = f(x, y, ū, v)− f(x, y, ū, v̄) ≤ 0 in Ω−1 ,

f∗(x, y, u, v)− f(x, y, ū, v̄) = f(x, y, ū, v)− f(x, y, ū, v̄) ≤ 0 in Ω0
1.

Taking (3.7) into account, we conclude that Gk(u − ū) ≥ 0. Proposition 3.1 con-
cludes that, the maximum of u − ū is attained at (x1, y1) ∈ ∂Ω1. Therefore,
(u− ū)(x1, y1) > 0. The contradiction occurs since (x1, y1) ∈ Ω1 ∩ ∂Ω1. �
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The critical cases. We construct a class of subsolutions and supersolutions of
(1.1) in the case when nonlinearities have critical growth

∆xu+ |x|2k[∆yu+ |v|
N(k)+2
N(k)−2 + h1(x, y)] = 0 in Ω,

∆xv + |x|2k[∆yv + |u|
N(k)+2
N(k)−2 + h2(x, y)] = 0 in Ω,

u = v = 0 on ∂Ω,

(3.8)

where h1, h2 ∈ C(Ω̄). Denote

ρ = (|x|2k+2 + (k + 1)2|y|2)
1

2k+2 .

We find a class of supersolutions (u∗, v∗) to (3.8) of the form

u∗ = v∗ = Cλ
N(k)−2

2 (1 + λ2ρ2)−
N(k)−2

2 , (3.9)

where C > 0, λ > 0. Note that, if u = u(ρ) then

∆xu+ |x|2k∆yu =
[∂2u

∂ρ2
+
N(k)− 1

ρ

∂u

∂ρ

] |x|2k

ρ2k
.

It suffices to find C such that

∂2u∗

∂ρ2
+
N(k)− 1

ρ

∂u∗

∂ρ
+ ρ2k(|v∗|

N(k)+2
N(k)−2 + h1(x, y)) ≤ 0 in Ω,

∂2v∗

∂ρ2
+
N(k)− 1

ρ

∂v∗

∂ρ
+ ρ2k(|u∗|

N(k)+2
N(k)−2 + h2(x, y)) ≤ 0 in Ω,

u ≥ 0, v ≥ 0 on ∂Ω.

Put

Au = −
[∂2u

∂ρ2
+
N(k)− 1

ρ

∂u

∂ρ
+ ρ2k|u|

N(k)+2
N(k)−2

]
.

From (3.9) and with some computations (Using Maple software), we have

Au∗ = −Cλ
N(k)+2

2 (1 + λ2ρ2)−
N(k)+2

2 [C
4

N(k)−2 ρ2k −N(k)(N(k)− 2)].

Choosing

C < [N(k)(N(k)− 2)]
N(k)−2

4 (max
Ω̄

ρ2k)−
N(k)−2

4 ,

we have Au∗ > 0 in Ω. Obviously, (u∗, v∗) is a supersolution and (0, 0) is a subso-
lution to (3.8) if

0 < h1(x, y), h2(x, y) ≤ (max
Ω̄

ρ)−2kAu∗ in Ω

(in this case, (0, 0) can not be solution of (3.8)).
As a consequence of Theorem 3.4, there exists a positive solution (u, v) for (3.8)

such that 0 < u, v ≤ u∗ for all (x, y) ∈ Ω.

The supercritical cases. Consider the problem

∆xu+ |x|2k[∆yu+ α|v|p + h1(x, y)] = 0 in Ω,

∆xv + |x|2k[∆yv + β|u|q + h2(x, y)] = 0 in Ω,
u = v = 0 on ∂Ω,

(3.10)
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where p, q > N(k)+2
N(k)−2 ; α, β > 0; h1, h2 ∈ C(Ω̄). One finds a class of supersolutions

(u#, v#) to (3.10) of the form

u# = C1λ
a(1 + λ2ρ2)−a,

v# = C2λ
b(1 + λ2ρ2)−b,

where C1 > 0, C2 > 0; λ > 0; a, b > 0. For γ > 0 and s > 1, let

Bs,γ(u, v) =
∂2u

∂ρ2
+
N(k)− 1

ρ

∂u

∂ρ
+ γρ2k|v|s .

After some calculations (using Maple software) we get

Bp,α(u#, v#) = −2C1aλ
2+a(1 + λ2ρ2)−2−a[λ2ρ2(N(k)− 2a− 2) +N(k)]

+ αρ2kCp
2λ

bp(1 + λ2ρ2)−bp.

Similarly,

Bq,β(v#, u#) = −2C2bλ
2+b(1 + λ2ρ2)−2−b[λ2ρ2(N(k)− 2b− 2) +N(k)]

+ βρ2kCq
1λ

aq(1 + λ2ρ2)−aq.

We choose a, b such that qa = 2 + b and pb = 2 + a. Clearly

a =
2p+ 2
pq − 1

, b =
2q + 2
pq − 1

.

Therefore,

Bp,α(u#, v#)

= λ2+a(1 + λ2ρ2)−2−a{αρ2kCp
2 − 2aC1[λ2ρ2(N(k)− 2a− 2) +N(k)]},

Bq,β(v#, u#)

= λ2+b(1 + λ2ρ2)−2−b{βρ2kCq
1 − 2bC2[λ2ρ2(N(k)− 2b− 2) +N(k)]}.

Under the above mentioned conditions for p and q, we have

N(k)− 2a− 2 > 0, N(k)− 2b− 2 > 0.

For the positivity of −Bp,α(u#, v#) and −Bq,β(v#, u#), the following conditions
are sufficient:

αmax
Ω̄

ρ2kCp
2 < 2aN(k)C1,

βmax
Ω̄

ρ2kCq
1 < 2bN(k)C2.

That implies

C1 <
[ 2bN(k)
βmaxΩ̄ ρ

2k

] p
pq−1

[ 2aN(k)
αmaxΩ̄ ρ

2k

] 1
pq−1

,

C2 <
[ 2bN(k)
βmaxΩ̄ ρ

2k

] 1
pq−1

[ 2aN(k)
αmaxΩ̄ ρ

2k

] q
pq−1

.

Now, (u#, v#) becomes a supersolution and (0, 0) becomes a subsolution to (3.10)
if

0 < h1(x, y) ≤ −Bp,α(u#, v#)(max
Ω̄

ρ)−2k,

0 < h2(x, y) ≤ −Bq,β(v#, u#)(max
Ω̄

ρ)−2k.
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Applying Theorem 3.4, we see that there exists at least one solution (u, v) for (3.10)
satisfying

0 < u ≤ u#,

0 < v ≤ v#.

4. Maximal and minimal weak solutions

Definition. By Sp
1 (Ω), 1 < p < +∞, we denote the set of all pairs (u, v) ∈

Lp(Ω)× Lp(Ω) such that

∂u

∂xi
,

∂v

∂xi
, |x|k ∂u

∂yj
, |x|k ∂v

∂yj
∈ Lp(Ω)

for i = 1, . . . , N1, and j = 1, . . . , N2.
For the norm in Sp

1 , we take

‖(u, v)‖Sp
1 (Ω)

=
[ ∫

Ω

(|u|p + |∇xu|p + |x|pk|∇yu|p + |v|p + |∇xv|p + |x|pk|∇yv|p) dx dy
]1/p

For p = 2, the inner product in S2
1 is defined by

〈(u, v), (ϕ,ψ)〉

=
∫

Ω

(uϕ+∇xu∇xϕ+ |x|2k∇yu∇yϕ+ vψ +∇xv∇xψ + |x|2k∇yv∇yψ) dx dy.

The space Sp
1,0(Ω) is defined as closure of C1

0 (Ω) × C1
0 (Ω) in the space Sp

1 (Ω).
Trivially, one can prove that Sp

1 (Ω) and Sp
1,0(Ω) are Banach spaces, S2

1(Ω) and
S2

1,0(Ω) are Hilbert spaces.
The following Sobolev embedding inequality was proved in [11].( ∫

Ω

|u|q dx dy
)1/q

≤ C
[ ∫

Ω

(|∇xu|2 + |x|2s|∇yu|2) dx dy
]1/2

,

where q = 2N(s)
N(s)−2 − τ , C > 0 and s ≥ 0, provided small positive number τ . So, one

can take the norm for S2
1,0(Ω) as follows

‖(u, v)‖2
S2

1,0(Ω) =
∫

Ω

[
|∇xu|2 + |∇xv|2 + |x|2k(|∇yu|2 + |∇yv|2)

]
dx dy.

The definition of the weak solution for system (1.1) is stated as follows:
Definition. A pair of functions (u, v) ∈ S2

1,0(Ω) is called weak solution for system
(1.1) if ∫

Ω

[∇xu∇xϕ+ |x|2k∇yu∇yϕ] dx dy =
∫

Ω

f(x, y, u, v)ϕdx dy,∫
Ω

[∇xv∇xψ + |x|2k∇yv∇yψ] dx dy =
∫

Ω

g(x, y, u, v)ψ dx dy

for all ϕ,ψ ∈ C1
0 (Ω).

The following definition describes the comparison on boundary ∂Ω of two func-
tions in S2

1(Ω).
Definition Let (u, v) ∈ S2

1(Ω). A function v is said to be less than or equal a
function u on ∂Ω if (max{0, v − u}, 0) ∈ S2

1,0(Ω).
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The proof of the following assertion is standard and therefore omitted.

Proposition 4.1. Consider the pair of functions (u1, u2) ∈ S2
1(Ω)∩(L∞(Ω))2 such

that, for all ϕ satisfying ϕ ∈ C1
0 (Ω), ϕ ≥ 0 in Ω,∫

Ω

[∇xu1∇xϕ+ |x|2k∇yu1∇yϕ] dx dy ≤
∫

Ω

[∇xu2∇xϕ+ |x|2k∇yu2∇yϕ] dx dy,

u1 ≤ u2 on ∂Ω.

Then u1 ≤ u2 a.e in Ω.

Proposition 4.2. For every h1, h2 ∈ L2(Ω), the problem

−Gku = h1(x, y), (x, y) ∈ Ω,

−Gkv = h2(x, y), (x, y) ∈ Ω,

u = v = 0, (x, y) ∈ ∂Ω,
(4.1)

admits a unique weak solution (u, v) ∈ S2
1,0(Ω). Moreover, the associated operator

W : (h1, h2) 7→ (u, v) is continuous and nondecreasing.

Proof. The problem (4.1) is written in the form of system in order to construct
operator W . The proof of existence and uniqueness can be proceeded using the
Riesz representation theorem in Hilbert space S2

1,0(Ω) (as in [5, page 150]). The
continuous property of W follows from the estimate

‖(u, v)‖S2
1,0(Ω) ≤ C‖(h1, h2)‖(L2(Ω))2 = C

[ ∫
Ω

(|h1(x, y)|2 + |h2(x, y)|2) dx dy
]1/2

,

where C is a positive constant. Assume that (h1, h2), (l1, l2) ∈ (L2(Ω))2 and
(uh, vh), (ul, vl) ∈ S2

1,0(Ω) are solutions of (4.1) respectively, then we have∫
Ω

[
(l1 − h1)ϕ

]
dx dy =

∫
Ω

[
∇x(ul − uh)∇xϕ+ |x|2k∇y(ul − uh)∇yϕ

]
dx dy,∫

Ω

[
(l2 − h2)ψ

]
dx dy =

∫
Ω

[
∇x(vl − vh)∇xψ + |x|2k∇y(vl − vh)∇yψ

]
dx dy,

for all ϕ,ψ ∈ C1
0 (Ω) satisfying ϕ,ψ ≥ 0 in Ω. Applying Proposition 4.1, we obtain

the nondecreasing property of W . �

Before stating the results for this section, we replace hypothesis (S3) by
(S3’) f(x, y, s, t), g(x, y, s, t) are Caratheodory functions: f(x, y, ., .), g(x, y, ., .)

are continuous for a.e. (x, y) ∈ Ω, f(., ., s, t), g(., ., s, t) are measurable
for all (s, t) ∈ R2 and f(., ., s, t), g(., ., s, t) are bounded if (s, t) belong
to bounded sets. In addition, f(x, y, ., t), g(x, y, ., t) for fixed t ∈ R and
f(x, y, s, .), g(x, y, s, .) for fixed s ∈ R are nondecreasing for a.e. (x, y) ∈ Ω.

Now let us define the subsolutions and supersolutions for (1.1) in the weak sense.
The comparison on ∂Ω is realized by the definition above.
Definition. Let (u, v), (u, v) ∈ S2

1(Ω) ∩ (L∞(Ω))2. These pairs of functions are
said to be a system of subsolution and supersolution in the weak sense for (1.1) if
they satisfy:

(a) u(x, y) ≤ u(x, y), u(x, y) ≤ u(x, y) a.e. in Ω, u(x, y) ≤ 0 ≤ u(x, y),
u(x, y) ≤ 0 ≤ u(x, y) on ∂Ω,
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(b) For all ϕ ∈ C1
0 (Ω) : ϕ ≥ 0 in Ω,∫

Ω

[∇xu∇xϕ+ |x|2k∇yu∇ϕ] dx dy ≥
∫

Ω

f(x, y, u, v)ϕdx dy,∫
Ω

[∇xu∇xϕ+ |x|2k∇yu∇ϕ] dx dy ≤
∫

Ω

f(x, y, u, v)ϕdx dy,

and∫
Ω

[∇xv∇xϕ+ |x|2k∇yv∇ϕ] dx dy ≥
∫

Ω

g(x, y, u, v)ϕdx dy,∫
Ω

[∇xv∇xϕ+ |x|2k∇yv∇ϕ] dx dy ≤
∫

Ω

g(x, y, u, v)ϕdx dy.

The following theorem is the main result of this section.

Theorem 4.3. Assume (S3’) and let (u, v), (u, v) be a system of subsolution and
supersolution of (1.1). Then, there exists a minimal (and, respectively, a maximal)
weak solution (u∗, v∗) (respectively (u∗, v∗)) for problem (1.1) in the set

[(u, v), (u, v)] =
{
(u, v) ∈ (L∞(Ω))2 : u(x, y) ≤ u(x, y) ≤ u(x, y),

v(x, y) ≤ v(x, y) ≤ v(x, y), a.e. in Ω
}
.

Precisely, every weak solution (u, v) ∈ [(u, v), (u, v)] of (1.1) satisfies u∗(x, y) ≤
u(x, y) ≤ u∗(x, y), v∗(x, y) ≤ v(x, y) ≤ v∗(x, y) for a.e. (x, y) ∈ Ω.

Proof. Note that the set [(u, v), (u, v)] is a subset of (L∞(Ω))2 with the topology
of a.e. convergence. We define the operator Z : [(u, v), (u, v)] → (L2(Ω))2 by

Z(ũ, ṽ) =
(
f(., ., ũ(., .), ṽ(., .)), g(., ., ũ(., .), ṽ(., .))

)
. (4.2)

By hypothesis (S3’), we get that Z is nondecreasing and bounded. Moreover, if
(ũn, ṽn), (ũ, ṽ) is in [(u, v), (u, v)] then

‖Z(ũn, ṽn)− Z(ũ, ṽ)‖2
(L2(Ω))2 =

∫
Ω

|f(x, y, ũn, ṽn)− f(x, y, ũ, ṽ)|2 dx dy

+
∫

Ω

|g(x, y, ũn, ṽn)− g(x, y, ũ, ṽ)|2 dx dy.

Let (ũn, ṽn) → (ũ, ṽ) a.e in Ω. Applying the Lebesgue dominated theorem, we
obtain that ‖Z(ũn, ṽn)− Z(ũ, ṽ)‖(L2(Ω))2 → 0 and Z is continuous.

The constructions of the operator W in Proposition 4.2 and operator Z in (4.2)
allow us to define the operator T : [(u, v), (u, v)] → S2

1,0(Ω) by T = W ◦Z. It’s easy
to see that, for a pair (ũ, ṽ) in [(u, v), (u, v)], T (ũ, ṽ) is the unique weak solution of
the boundary-value problem

−Gku = f(x, y, ũ, ṽ), (x, y) ∈ Ω,

−Gkv = g(x, y, ũ, ṽ), (x, y) ∈ Ω,

u = v = 0, (x, y) ∈ ∂Ω.
(4.3)
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Putting (u1, v1) = T (u, v), (u1, v1) = T (u, v), we deduce that, for all ϕ satisfying
ϕ ∈ C1

0 (Ω), ϕ ≥ 0 in Ω,∫
Ω

[∇xu1∇xϕ+ |x|2k∇yu1∇yϕ] dx dy =
∫

Ω

f(x, y, u, v)ϕdx dy

≥
∫

Ω

[∇xu∇xϕ+ |x|2k∇yu∇yϕ] dx dy,

∫
Ω

[∇xv1∇xϕ+ |x|2k∇yv1∇yϕ] dx dy =
∫

Ω

g(x, y, u, v)ϕdx dy

≥
∫

Ω

[∇xv∇xϕ+ |x|2k∇yv∇yϕ] dx dy.

By applying Proposition 4.1, we obtain u ≤ u1, v ≤ v1, or briefly, (u, v) ≤ T (u, v).
By the same arguments, we get that T (u, v) ≤ (u, v). Taking into account that T
is nondecreasing, we have

(u, v) ≤ T (u, v) ≤ T (u, v) ≤ T (u, v) ≤ (u, v),

for all (u, v) ∈ [(u, v), (u, v)]. It’s now to construct two sequences (un, vn) and
(un, vn) as follows

(u0, v0) = (u, v), (un+1, vn+1) = T (un, vn),

(u0, v0) = (u, v), (un+1, vn+1) = T (un, vn).

Repeating the same process, we can prove that

(u0, v0) ≤ (u1, v1) ≤ · · · ≤ (un, vn) ≤ (u, v) ≤ (un, vn) ≤ · · · ≤ (u1, v1) ≤ (u0, v0)

a.e. in Ω, for every weak solution (u, v) ∈ [(u, v), (u, v)]. Then (un, vn) → (u∗, v∗),
(un, vn) → (u∗, v∗), a.e. in Ω. Obviously, (u∗, v∗) and (u∗, v∗) ∈ (L∞(Ω))2 and
(u∗, v∗), (u∗, v∗) ∈ [(u, v), (u, v)]. Then, by the fact of T (ũ, ṽ) commented in (4.3),
we have that T (u∗, v∗) (respectively T (u∗, v∗)) is the unique weak solution of (4.3)
when (ũ, ṽ) is replaced by (u∗, v∗) (respectively by (u∗, v∗)). Considering (4.3) as
the linear problem in Proposition 4.2, we have the conclusion that T (u∗, v∗) and
T (u∗, v∗) ∈ S2

1,0(Ω). Since the continuity of Z and W ensures the continuity of T ,
we deduce that (un+1, vn+1) = T (un, vn) → T (u∗, v∗) = (u∗, v∗), (un+1, vn+1) =
T (un, vn) → T (u∗, v∗) = (u∗, v∗) in S2

1,0(Ω). This completes the proof. �
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