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STRUCTURAL STABILITY OF POLYNOMIAL SECOND ORDER

DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

ADOLFO W. GUZMÁN

Abstract. This work characterizes the structurally stable second order dif-

ferential equations of the form x′′ = n
i=0

ai(x)(x′)i where ai : ℜ → ℜ are Cr

periodic functions. These equations have naturally the cylinder M = S1×ℜ as

the phase space and are associated to the vector fields X(f) = y ∂
∂x

+f(x, y) ∂
∂y

,

where f(x, y) = n
i=0

ai(x)yi ∂
∂y

. We apply a compactification to M as well

as to X(f) to study the behavior at infinity. For n ≥ 1, we define a set
Σn of X(f) that is open and dense and characterizes the class of structural

differential equations as above.

1. Introduction

We denote by En,r the space of vector fields

X(f) = y
∂

∂x
+

n∑

i=0

ai(x)y
i ∂

∂y

defined on M = S1 ×ℜ where ai(x) are Cr periodic functions, r ≥ 1 and n ≥ 1.
A vector field X(f) is associated naturally, it is in fact equivalent, to the second

order differential equation

Ef : x′′ = f(x, x′) where f(x, y) =

n∑

i=0

ai(x)y
i.

We endow En,r with the structure in which X(f) is identified with the n+ 1-tuple
(a0(x), . . . , an(x)) of its coefficient functions and the norm is defined by

||X(f)|| = sup
1≤k≤r

{|
dk

dxk
ai(x)| : x ∈ S1, 0 ≤ i ≤ n}.

The aim of this paper is to characterize the vector fields X(f) ∈ En,r (therefore,
Ef ) that are structurally stable under small perturbations in the space En,r. See
precise definition below.
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We establish the structural stability of X(f) ∈ En,r on the open surface M
using a compactification of the type u = x and v = arctan(y) (cylindrical com-

pactification). We denote the compactifications of X(f) and M by X̃(f) and M̃
respectively. In section 2, we find the following expressions:

For n = 1, 2, 3, X̃(f) = sin(v) ∂
∂u

+
∑n

i=0 ai(u) cos3−i(v) sini(v) ∂
∂v

;

for n ≥ 4, X̃(f) = sin(v) cosn−3(v) ∂
∂u

+
∑n

i=0 ai(u) sini(v) cosn−i(v) ∂
∂v

.
This allows us to understand the behavior of X(f) at infinity (i.e at the ends) of M

by studying X̃(f) near the boundary of M̃ . Thus we find that on ∂M̃ , X̃(f) has:
periodic orbits when n = 1, 2; tangency points when n = 3; hyperbolic singularities
when n = 4; and semi-hyperbolic or nilpotent singularities when n > 4. See section
3.

The characterization of structurally stable vector fields X(f) on M is expressed

in terms of X̃(f) on M̃ . For that, we give the following definition:

Definition 1.1. A vector field X(f) is structurally stable in M if there is a
neighborhood U in En,r such that ∀X(g) ∈ U , there exists a homeomorphism

hg : M̃ → M̃ which maps trajectories of X̃(f) onto trajectories of X̃(g), preserving

orientation and ∂M̃ .

In section 4, we define for each n ≥ 1 a subset Σn of En,r such that if X(f) ∈ Σn,

its compactification X̃(f) has generic properties with respect to singularities, to

periodic orbits and to connections of singularity separatrix on M̃ . In this way, we
extend the conditions of Peixoto M.M and Peixoto M.C (see [13], also [17]) that
characterize the C1-structurally stable systems on closed surfaces, with singularities
on the boundary. We recall that these conditions include tangencies at the boundary
of a closed surface which insure the C1 structural stability.

The main results of this paper can be formulated as follows:

Theorem 1.2 (Genericity). Σn is open and dense in En,r where r ≥ 2 for n = 1
or n ≥ 5 and r ≥ 1 for n = 2, 3 or 4.

Theorem 1.3 (Characterization). X(f) ∈ En,r is structurally stable if and only if
X(f) ∈ Σn where r ≥ 2 for n = 1 or n ≥ 5 and r ≥ 1 for n = 2, 3 or 4.

We prove Theorems 1.2 and 1.3 in sections 5 and 6 respectively. In section 7,
we present a discussion of the sources that motivate this work. Our results make
a link between the works of Sotomayor [18] and Barreto [2] and Shahshahani [16]
dedicated to Cr-structurally stable second order differential equations. The first
author considered Ef with the uniform topology on compact regions of ℜ2 and M ;
the second two authors considered Ef with the Whitney topology on the whole M .

2. Compactification

In this section, we define a vector field on the cylinder M̃ = S1 × [π
2 ,

π
2 ] induced

by X(f) ∈ En,r, where f(x, y) =
∑n

i=0 ai(x)y
i, and we describe X(f) in coordinate

neighborhoods of the infinity of M . We denote by M̃◦ = S1 × (π
2 ,

π
2 ).

Let C : M → M̃◦ be a diffeomorphism defined by

C(x, y) = (x, arctan(y)).

The ends of M are transformed into the circles C±π

2
= S1 × {±π

2 }.
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Now, we induce the vector field C∗(X(f)) on M̃◦ = S1 × (π
2 ,

π
2 ) by X(f) as

follows
C∗(X(f))(u, v) = DC(x, y) ·X(f)(x, y)

where (u, v) = C(x, y) and DC(x, y) is the derivative of C at (x, y).
Thus we obtain

C∗(X(f))(u, v) =
sin(v)

cos(v)

∂

∂u
+

n∑

i=0

ai(u) sini(v) cos−i+2(v)
∂

∂v
.

Then the following vector field

X̃(f) =

{
cos(v) · C∗(X(f)) for n = 1, 2, 3

cos(v)n−2 · C∗(X(f)) for n ≥ 4

can be extended to the whole M̃ .
We call X̃(f) the cylindrical compactification of X(f). The explicit expressions

of X̃(f) are:
for n = 1, 2, 3,

X̃(f) = sin(v)
∂

∂u
+

n∑

i=0

ai(u) cos3−i(v) sini(v)
∂

∂v
(2.1)

and for n ≥ 4,

X̃(f) = sin(v) cosn−3(v)
∂

∂u
+

n∑

i=0

ai(u) sini(v) cosn−i(v)
∂

∂v
. (2.2)

In the sequel, we write X(f) in coordinate neighborhoods of the ends of M .

Under the map Υ : U± → Ũ± defined by Υ(x, y) = (x, 1
y
) for y 6= 0, the sets

U+ = {(x, y) ∈M : x ∈ S1, y > y0},

U− = {(x, y) ∈M : x ∈ S1, y < −y0}

(where y0 ∈ ℜ+) are transformed into

Ũ+ = {(x, y) ∈M : x ∈ S1, 0 ≤ y < y−1
0 },

Ũ− = {(x, y) ∈M : x ∈ S1,−y−1
0 < y ≤ 0}

respectively. The ends of M are represented by the circle C̃0 = S1 × {0} ⊂ Ũ±.

Now, we induce the vector field Υ∗(X(f)) on Ũ± \ C̃0 by X(f) as follows

Υ∗(X(f))(u, v) = DΥ(x, y) ·X(f)(x, y)

where (u, v) = Υ(x, y). Then the vector field

X̃1(f) =

{
v · Υ∗(X(f)) for n = 1, 2, 3

vn−2 · Υ∗(X(f)) for n ≥ 4

can be extended to the whole Ũ±. The explicit expressions of X̃1(f) are

for n = 1, 2, 3, X̃1(f) =
∂

∂u
−

n∑

i=0

ai(u)v
3−i ∂

∂v
(2.3)

for n ≥ 4, X̃1(f) = vn−3 ∂

∂u
−

n∑

i=0

ai(u)v
n−i ∂

∂v
. (2.4)
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3. Behavior of X(f) at infinity

In this section, we study the behavior of X(f) near infinity by means of its

cylindrical compactification X̃(f).

Proposition 3.1. Let X(f) ∈ En,r(M), where f(x, y) =
∑n

i=0 ai(x)y
i, r ≥ 2 and

n = 1, 2. Then

(a) For n = 1, C±π

2
are periodic orbits of X̃(f) with the first and second

derivatives of the Poincaré map equal to 1 and ±2
∫ τ

0
a1(s)ds respectively.

(b) For n = 2, C±π

2
are periodic orbits of X̃(f) with the first derivative of the

Poincaré map equal to exp(∓
∫ τ

0
a2(s)ds).

Proof. (a) Let γ±(u) = (±u,±π
2 ) be the periodic orbits of X̃(f) on C±π

2
where

u ∈ [0, τ ] and τ is the period of ai(u). Taking the change of variables u = s and

v = ±π
2 − η, X̃(f) is associated to the differential equations

ds

dt
= ± cos(η)

dη

dt
= a0(s) sin3(η) ± a1(s) sin2(η) cos(η)

(3.1)

Dividing the last equation by the first, we obtain

dη

ds
= R(s, η) (3.2)

where R(s, η) = ±a0(s)
sin3(η)
cos(η) + a1(s) sin2(η) and R(s, 0) = 0.

Let η = f(s; s0, η0) be a solution of (3.2) with the initial condition f(s0; s0, η0) =
η0. Without loss of generality we can consider s0 = 0.

Now, we consider the function d(η0) = φ(η0) − η0 where φ(η0) = f(τ ; 0, η0) is
the first return map, which is defined on an arc normal to γ±. The integral expres-
sions for d′(η0) and d′′(η0) can be found in [1] page 252. Their calculation is in-

cluded here for the sake of completeness. From the relation dη
ds

= R(s, f(s; 0, η0)) =
d
ds
f(s; 0, η0), we obtain

d

ds
(
∂f

∂η0
) =

∂

∂η
R(s, f(s; 0, η0)) ·

∂f

∂η0
(s; 0, η0) (3.3)

d

ds
(
∂2f

∂η2
0

) =
∂2

∂η2
R(s, f(s; 0, η0)) · (

∂f

∂η0
(s; 0, η0))

2

+
∂

∂η
R(s, f(s; 0, η0))

∂2f

∂η2
0

(s; 0, η0)

(3.4)

The solutions of (3.3) and (3.4) are given by

∂f

∂η0
(s; 0, η0) = exp(

∫ s

0

∂

∂η
R(t, f(t; 0, η0))dt) (3.5)

∂2f

∂η2
0

(s; 0, η0) = exp(

∫ s

0

∂

∂η
R(t, f(t; 0, η0))dt) ·

∫ s

0

∂2

∂η2
R(t, f(t; 0, η0))

· (
∂f

∂η0
(t; 0, η0))

2 · exp(−

∫ t

0

∂

∂η
R(t̃, f(t; 0, η0))dt̃)dt

(3.6)



EJDE-2004/98 STRUCTURAL STABILITY 5

The partial derivatives of R(s, η) with respect to η are:

∂R

∂η
(s, η) = ±a0(s)(3 sin2(η) +

sin4(η)

cos2(η)
) + 2a1(s) sin(η) cos(η) (3.7)

∂2R

∂η2
(s, η) = ±a0(s)(6

sin(η)

cos3(η)
+ 4

sin3(η)

cos(η)
+ 2

sin5(η)

cos3(η)
)

+ 2a1(s)(cos2(η) − sin(η)).

(3.8)

Since η0 = 0 and f(s; 0, η0) = η0, it follows from (3.5)-(3.8),

d(η0) = f(τ ; 0, η0) − η = 0

d′(η0) = 0

d′′(η0) = ±2

∫ τ

0

a1(s)ds

(b) It follows from a straightforward computation of the divergence of

X̃(f) = sin(v)
∂

∂u
+ (a0(u) cos3(v) + a1(u) sin(v) cos2(v)

+ a2(u) sin2(v) cos(v))
∂

∂v

i.e. for a periodic orbit γ± = (±u,±π
2 )), divDX̃(γ±) = ∓a2(u). �

We say that X̃(f) is transversal to ∂M̃ at (u, v) if

X̃(f) · b(u, v)
.
= 〈X̃(f)(u, v),∇b(u, v)〉 6= 0,

where b(u, v) is a C2 function such that b(u, v) = 0 on ∂M̃ , b(u, v) > 0 on M̃◦

(interior of M̃) and ∇b(u, v) 6= 0 at (u, v) ∈ ∂M̃ .

When X̃(f) · b(u, v) = 0, we say that X̃(f) is tangent to ∂M̃ . Moreover, we say
that the tangency is parabolic if

X̃2(f) · b(u, v)
.
= X̃(f) · (X̃(f) · b(u, v)) 6= 0.

Proposition 3.2. Let X̃(f) ∈ E3,r(M̃), where f(x, y) =
∑3

i=0 ai(x)y
i and r ≥ 1.

Then the trajectories of X̃(f) are transversal to the circles C±π

2
, except at points

(u∗,±
π
2 ) in which they are tangent, with a3(u∗) = 0. The tangency is parabolic if

a′3(u∗) 6= 0. The tangency is external (resp. internal) in C+ π

2
and internal (resp.

external) in C−π

2
when a′3(u∗) > 0 (resp. a′3(u∗) < 0).

Proof. We consider the function b : M̃ → ℜ defined by b(u, v) = cos(v). It satisfies

b(u, v) > 0 on M̃◦ and b(u, v) = 0 for (u, v) ∈ C±π

2
.

Here, the condition of the transversality of X̃(f) to C±π

2
is given by

X̃(f) · b(u, v) = −
3∑

i=0

ai(u) sini+1(v) cos3−i(v) = −a3(u) 6= 0

for (u, v) ∈ C±π

2
.

The condition of parabolic tangency is given by X̃(f) · b(u, v) = 0 and X̃2(f) ·
b(u,±π

2 ) = ∓a′3(u) ∓ a3(u)a2(u) 6= 0. Hence we have a parabolic tangency if
a3(u∗) = 0 and a′3(u∗) 6= 0, where u∗ is a root of a3(u). �
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We say that a singularity, (u, v), of X̃(f) is semi-hyperbolic if DX̃(f)(u, v) has

exactly one zero eigenvalue. Also we say that a singularity, (u, v) of X̃(f) is nilpotent

if DX̃(f)(u, v) is nilpotent.

Proposition 3.3. Let X(f) ∈ En,r(M), where f(x, y) =
∑n

i=0 ai(x)y
i, r ≥ 1 and

n ≥ 4. Then

(1) For n = 4, X̃(f) has singularities, (u∗,±
π
2 ), on C±π

2
where u∗ is root of

a4(u). The singularities are hyperbolic if a′4(u∗) 6= 0 and a3(u∗) 6= 0, semi-
hyperbolic if a′4(u∗) = 0 and a3(u∗) 6= 0, and nilpotent if a′4(u∗) = 0 and
a3(u∗) = 0.

(2) For n > 4, X̃(f) has singularities, (u∗,±
π
2 ), on C±π

2
where u∗ is a root of

an(u). The singularities are semi-hyperbolic if an−1(u∗) 6= 0, and nilpotent
if an−1(u∗) = 0 and a′n(u∗) 6= 0.

Proof. (1) For n = 4, the Jacobian matrix of

X̃(f) = sin(v) cos(v)
∂

∂u
+

4∑

i=0

ai(u) sini(v) cos4−i(v)
∂

∂v

at a singularity (u∗,±
π
2 ) is

DX̃(f)(u∗,±
π

2
) =

(
0 −1

a′4(u∗) −a3(u∗)

)

The proof is finished by analyzing det(DX̃(f)) = a′4(u∗) and trace(DX̃(f)) =
−a3(u∗).

(2). For n > 4, X̃(f) = sin(v) cosn−3(v) ∂
∂u

+
n∑

i=0

ai(u) sini(v) cosn−i(v) ∂
∂v

has the

Jacobian matrix at (u∗,±
π
2 )

DX̃(f)(u∗,±
π

2
) =

(
0 0

(±1)na′n(u∗) (±1)nan−1(u∗)

)

Hence this singularity is semi-hyperbolic when an−1(u∗) 6= 0 and nilpotent when
an−1(u∗) = 0 and a′n(u∗) 6= 0. �

Remark 3.4. The Propositions 3.1-3.3 also hold if we consider X̃1(f) given by

(2.3) and (2.4) instead of X̃(f). In this case, the singularities or periodic orbits of

X̃1(f) lie on C̃0.

For simplicity, in the following propositions, we use X̃1(f) as (2.4) to describe the
phase portrait of the semi-hyperbolic singularities of X(f) at infinity when n ≥ 4.

Proposition 3.5. Let X(f) ∈ E4,r, where f(x, y) =
∑4

i=0 ai(x)y
i, r ≥ 2. Let

(u∗, 0) be a semi-hyperbolic singularity of X̃1(f) in C̃0 and let k ∈ N , k ≥ 2, such
that

a
(k)
4 (u∗) 6= 0 and a

(j)
4 (u∗) = 0, for j < k.

Then (u∗, 0) is one of the following topological types:

(a) a node, if k is odd and a
(k)
4 (u∗) > 0, figure 1 (a);

(b) a saddle, if k is odd and a
(k)
4 (u∗) < 0, figure 1 (b);

(c) a saddle-node, if k is even, figure 2.
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Figure 1. Phase portraits of semi-hyperbolic singularities in C̃0

for n = 4. (a) Node , (b) Saddle.

a)

b)

uu

uu

vv

vv

WuWu

WsWs

Wc

Wc

Wc

Figure 2. Phase portraits of semi-hyperbolic singularities saddle-

node in C̃0 for n = 4: (a) a3(u∗) > 0, (b) a3(u∗) < 0.

Proof. We can suppose that u∗ = 0. We calculate the restriction of

X̃1(f) = v
∂

∂u
−

4∑

i=0

ai(u)v
4−i ∂

∂v

to the center manifold Wc in (u∗, 0) when a′4(u∗) = 0 and a3(u∗) 6= 0.

The center manifold of X̃1(f) is tangent to eigenspace Tc associated to null
eigenvalue and is spanned by the vector (1, 0). Then Wc is the graph of a Cr-
function h : ℜ → ℜ,

Wc = {(u, v) ∈ ℜ2 : v = h(u)}.

By the condition of tangency of Wc, h(u∗) = h′(u∗) = 0.

The restriction of X̃1(f) to the center manifold is of the form

u′ = h(u) (3.9)

Replacing v = h(u) in the second component of X̃1(f), we obtain φ(u) = h′(u)h(u)+∑4
i=0 ai(u)h

4−i(u) = 0 for all u.
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Let k ∈ N , k ≥ 2 such that a
(k)
4 (u∗) 6= 0 and a

(j)
4 (u∗) = 0 as j < k. Writing

h(u) = h2u
2 + · · · + hku

k + · · · , we have

φ(u∗) = 0, φ′(u∗) = 0, φ′′(u∗) = 2a3(u∗)h2 = 0,

φ′′′(u∗) = 3!(2h2
2 + a3(u∗)h3) = 0, . . . ,

φ(k)(u∗) = k!(a
(k)
4 (u∗ + a3(u∗)hk) + a′3(u∗)hk−1 + · · · + a

(k−2)
3 (u∗)h2)

+A3k(h2, · · · , hk−1) +A2k(h2, · · · , hk−2) +A1k(h2, · · · , hk−3)

+A0k(h2, . . . , hk−4) = 0

where Aik(h2, . . . ) = dk

duk (ai · h
4−i)(u∗) as i = 0, . . . , 3.

We solve these equations with respect to hi as follows

h2 = h3 = · · · = hk−1 = 0 and hk = −
a
(k)
4

a3(u∗)
.

Then h(u) ≡ αuk +O(uk+1), where α = −
a
(k)
4 (u∗)
a3(u∗) . Hence, (3.9) is of the form

u′ = αuk +O(uk+1).

The proposition follows by analyzing the sign of α and the orientation of the hyper-
bolic manifold (unstable Wu or stable Ws) which is tangent to v = −a3(u∗)u. �

Proposition 3.6. Let X(f) ∈ En,r, where f(x, y) =
∑n

i=0 ai(x)y
i, r ≥ 2 and

n > 4. Let (u∗, 0) be a semi-hyperbolic singularity of X̃1(f) and let k ∈ N , k ≥ 1,
such that

a(k)
n (u∗) 6= 0 and a(j)

n (u∗) = 0 for j < k.

Then (u∗, 0) is one of the following topological types:

(a) a node, if n is even, k is odd and a
(k)
n (u∗) > 0, figures 3 (a) and 3 (b);

(b) a saddle, if n is even, k is odd and a
(k)
n (u∗) < 0, figures 3 (c) and 3 d);

(c) a saddle-node, if (n− 3) · k is even, figures 4 and 5.

a)

d)

b)

c)

uu

uu

vv

vv
Wu

Wu

Ws

Ws

Figure 3. Phase portraits of semi-hyperbolic singularities saddle

and node in C̃0 for n ≥ 5
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b)

u u

uu

v

v v
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Figure 4. Phase portraits of semi-hyperbolic singularities saddle-

node for in C̃0 n ≥ 5 and k ≥ 2

a)

b)
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u

u

v
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v
Wu

Wu
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Ws

Wc

Wc

Wc

Figure 5. Phase portraits of semi-hyperbolic singularities saddle-

node in C̃0 for n ≥ 5 and k = 1

Proof. We use the method of the center manifold as in Proposition 3.5. We find

that the restriction of X̃1(f) to the center manifold, Wc, is of the form

g(u) = αn−3uk(n−3) +O(uk+1(n−2))

where α = − a(k)
n

(u∗)
an−1(u∗) .

The proof is finished by analyzing the sign of α and the orientation of the hy-
perbolic manifold (unstable Wu or stable Ws) which is tangent to v-axis. �

4. Definition of the sets Σn

According to section 3, the behaviors of X̃(f) on C±π

2
, under non-degeneracy

conditions on the periodic orbits, singularities and tangencies, split in the following
cases.

A: C±π

2
are periodic orbits of X̃(f) with the first and second derivatives of

the Poincaré map equal 1 and ±
∫ τ

0
a1(s)ds respectively. This occurs when

n = 1.
B: C±π

2
are hyperbolic periodic orbits of X̃(f) with second derivative of the

Poincaré map equals ±2
∫ τ

0
a2(s)ds. This occurs when n = 2.

C: the trajectories of X̃(f) are either transversal or tangent to C±π

2
. This

case occurs when n = 3.
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D: X̃(f) has hyperbolic singularities in C±π

2
. This cases occurs when n = 4.

E: X̃(f) has semi-hyperbolic singularities in C±π

2
. This occurs when n ≥ 5.

With these cases in mind, in the subsections 4.1-4.5, we define for the corre-
sponding n the set Σn ⊂ En,r and we prove its density in the space En,r.

Throughout this section, we denote by X̃(f) and M̃ = S1 × [−π
2 ,

π
2 ] the cylin-

drical compactification of X(f) and M respectively. Also we consider the following
notation:
C±π

2
= S1 × {±π

2 }, C0 = S1 × 0,

∆X̃(f) = detDX̃(f) and σX̃(f) = traceDX̃(f) where DX̃(f) is the Jacobian

matrix of X̃(f).
In the first subsection, we present several lemmas which hold for all cases.

Preliminary lemmas. The first lemma is a particular and easy case of Sard’s
Theorem [15].

Lemma 4.1. Let h : I → ℜ be a C1 function. The set of critical values of h, given
by Crit(h) = {h(x) : h′(x) = 0}, has zero Lebesgue measure in ℜ.

Lemma 4.2. Let X(f) ∈ En,r(M) with r ≥ 2 and n ≥ 1. Then the set

Bn
1 (X(f)) = {µ0 ∈ ℜ : X̃(f + µ0) has some singularity

(u∗, 0) ∈ C0 with ∆X̃(f + µ0) = 0}

has Lebesgue measure zero in ℜ.

Proof. Let f(x, y) =
∑n

i=0 ai(x)y
i. The set of critical value of −a0 is given by

Crit(−a0) = {µ0 ∈ ℜ : ∃xµ0
such that − a0(xµ0

) = µ0 e a′0(xµ0
) = 0}.

By Lemma 4.1, Crit(−a0) has zero Lebesgue measure in ℜ. On the other hand, we
can write

Crit(−a0) = {µ0 ∈ ℜ : ∃(xµ0
, 0) ∈ C0 such that X̃(f + µ0)(xµ0

, 0) = (0, 0)

with ∆X̃(f + µ0)(xµ0
, 0) = 0}.

It follows that Bn
1 (X(f)) = Crit(−a0). �

Lemma 4.3. Let X(f) ∈ En,r(M), with r ≥ 1, n ≥ 1, and µ0 /∈ Bn
1 (X(f)). Then

the set

Bn
2 (X(f);µ0) ={µ1 ∈ ℜ : X̃(f + µ0 + µ1y) has some

non-hyperbolic singularity}

has zero Lebesgue measure in ℜ.

Proof. Let f(x, y) =
∑n

i=0 ai(x)y
i. For µ0 /∈ Bn

1 (X(f)), all singularities of X̃(f +

µ0) in C0, say (u∗, 0), satisfy ∆X̃(f + µ0)(u∗, 0) 6= 0.

Thus X̃(f + µ0 + µ1y) has in C0 a finite number of singularities. For each one,

(u∗, 0), there is a single value µ∗
1 ∈ ℜ such that σX̃(f + µ0 + µ∗

1y) = 0, since

σX̃(f + µ0 + µ1y) = a1(u) + µ1. Hence, (u∗, 0) is a non-hyperbolic singularity of

X̃(f + µ0 + µ∗
1y).

Then Bn
2 (X(f);µ0) can be written of the form

Bn
2 (X(f);µ0) = {µ1 ∈ ℜ : a1(x) + µ1 = 0, a0(x) + µ0 = 0 e a′0(x) > 0}

It follows that Bn
2 (X(f);µ0) is a finite set and has therefore zero measure in ℜ. �
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Lemma 4.4. Let X(f) ∈ En,r(M), n ≥ 1. Then for µ0 ∈ ℜ and r ≥ 1, the set

Bn
3 (X(f);µ0) = {µ1 ∈ ℜ : X̃(f + µ0 + µ1y) has some non-hyperbolic

periodic orbit contained in M}

has zero Lebesgue measure in ℜ.

Proof. A period orbit γ of X̃(f + µ0 + µ1y) is one of the following types:

(a) homotopic to zero. It contains in its interior a singularity and cuts the
x-axis transversally.

(b) non-homotopic to zero. It circles the cylinder without intercepting the x-
axis.

For each type we find expressions for the derivatives of the first return map with
respect to a parameter.

We consider X(f) with f(x, y) =
∑n

i=0 ai(x)y
i and n ≥ 1.

Case (a). For µ0 ∈ ℜ, we consider a periodic orbit of X̃(f+µ0+µ1y), γ(t, p, µ1) =
(ϕ(t, p, µ1), ψ(t, p, µ1)) through p = (x0, 0) with period τ = τ(x0, µ1).

Let π(x, µ1) be the Poincaré map defined in an interval I ⊂ C0, where x0 ∈ I,
and associated to X(f + µ0 + µ1y).

The derivatives of π(x, µ1) with respect to x and µ1 were calculated in [1] by
Andronov et al. Here, we write them in terms of the coefficients of f(x, y)+µ0+µ1y
as follows

∂π

∂x
(x0, µ1) =

n∏

i=1

exp(

∫ τ(x0,µ1)

0

(iai(ϕ(s))ψi−1(s) + µ1)ds)

∂π

∂µ1
(x0, µ1) =

∂π
∂x

(x0, µ1)

−|γ′(0, x0, µ1)|

∫ τ(x0,µ1)

0

∏n
i=1 exp(−

∫ s

0

(iai(ϕ(t))ψi−1(t)

+ µ1)dt)ψ
2(s)ds.

Since ∂π
∂µ1

(x0, µ1) 6= 0 (and by the Implicit Function Theorem) there is a function

µ1(x) defined in a neighborhood Ix0
of x0 such that π(x, µ1(x))−x = 0 for ∀x ∈ Ix0

.
The derivative of the last equation with respect to x is

∂π

∂x
(x0, µ1) +

∂π

∂µ1
(x0, µ1)

∂µ1

∂x
− 1 = 0.

Thus γ is non-hyperbolic if and only if ∂µ1

∂x
= 0.

We remark that for each x ∈ Ix0
, µ1(x) is a value of the parameter such that

X(f + µ0 + µ1(x)y) has a periodic orbit through (x, 0). This periodic orbit is
non-hyperbolic when µ1(x) is a critical value.

Then, for each µ0 ∈ ℜ fixed, the set of critical values of µ1(x) is written as

O1 ={µ1(x) ∈ ℜ : X(f + µ0 + µ1(x)y) has a homotopic to zero periodic orbit

non-hyperbolic through (x, 0)}.

Case (b). Let γ(t) = (ϕ(t), ψ(t)) be a non-homotopic to zero periodic orbit, with
period τ , through (0, y0) where y0 6= 0. The Poincaré map, π(y, µ1), is defined by

π(y, µ1) = Ψ(τ, y, µ1) (4.1)
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where Ψ(x, y, µ1) is a solution of differential equation

dΨ

dx
(x, y, µ1) =

1

Ψ

(
n∑

i=0

ai(x)Ψ
i + µ1Ψ

)
= F (x, y, µ1)

with the initial condition Ψ(0, y, µ1) = y.
The derivative of Ψ(x, y, µ1) with respect to µ1 is the solution of linear equation

d

dx
(
∂Ψ

∂µ1
) = D2F (x,Ψ(x, y, µ1), µ1)

∂Ψ

∂µ1
(x, y, µ1) +D3F (x,Ψ(x, y, µ1), µ1)

where D2F (x, y, µ1) = −a0(x)
y2 and D3F (x, y, µ1) = 1.

By equation (4.1) the derivative of π(y, µ1) with respect to µ1 is given by

∂π

∂µ1
(y, µ1) = exp(I(τ, y, µ1))

∫ τ

0

exp(−I(s, y, µ1))ds

where I(t, y, µ1) =
∫ t

0
D2F (s,Ψ(s, y, µ1), µ1)ds

Similarly to (a), we find a function µ1 : Iy0
→ ℜ where Iy0

is an interval of y-axis
containing y0 and without intersection with the x-axis such that π(y, µ1(y))−y = 0.

Hence, γ is non-hyperbolic if and only if ∂µ1

∂y
= 0.

The critical value set of µ1(y) is given by

O2 ={µ1(ξ) ∈ ℜ : X(f + µ0 + µ1(ξ)y) has a non-hyperbolic periodic orbit

circling the cylinder through (0, ξ)}

The proof of i) is complete by observing that

B1
3(X(f);µ0) = O1 ∪O2

and by applying the Sard Lemma to sets O1 e O2. �

4.1. Case A. In this case, Xµ(f) denotes the vector field X(f + µ0 + µ1y) where
µ = (µ0, µ1) ∈ ℜ2.

Definition 4.5. Let Σ1 be the set of Cr-vector fields X(f) ∈ E1,r with r ≥ 2 such

that X̃(f) satisfies:

(1) the singularities are hyperbolic and contained in C0.

(2) the periodic orbits in the M̃◦ are hyperbolic and the periodic orbits in C±π

2

are semi-stable.
(3) no saddle connection.

Next, we give the measure of the complementary set of Σ1 in the parameter
space ℜ2.

Theorem 4.6. Let X(f) ∈ E1,r, with r ≥ 2. Then the set

B1(X(f)) = {µ ∈ ℜ2 : Xµ(f) /∈ Σ1}

has zero Lebesgue measure in ℜ2.

We have divided the proof in a sequence of lemmas.

Lemma 4.7. Let X(f) ∈ E1,r. Then for r ≥ 2, the set

B1
4(X(f)) = {µ1 ∈ ℜ : X̃(f + µ1y) has some non semi-hyperbolic

periodic orbit in C±π

2
}

has zero Lebesgue measure in ℜ.
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Proof. We observe that the periodic orbits of X̃(f+µ0+µ1y) in C±π

2
do not depend

of µ0. Moreover, the second derivative of the Poincaré map of these periodic orbits
is π′′ = ±2

∫ τ

0
a1(s)ds+ 2µ1τ (see Proposition 3.1).

Thus π′′ = 0 only for a finite number of µ1. Then B1
4(X(f)) has zero Lebesgue

measure in ℜ. �

Lemma 4.8. Let X(f) ∈ E1,r, r ≥ 1 and µ0 /∈ B1
1(X(f)). Then the set

B1
5(X(f);µ0) = {µ1 ∈ ℜ : X̃(f + µ0 + µ1y) has not the condition 3 of Σ1}

has zero Lebesgue measure in ℜ.

Proof. Fix µ0 /∈ B1(X(f)). The number of singularities of X̃(f+µ0) is finite. Thus

the saddle connections of X̃µ(f) also are finite in number for values of µ1.
We claim that all connections can be broken with perturbations of the form

X̃(f + µ0 + µ1y). Suppose that for µ∗
1, X̃(f + µ0 + µ∗

1y) has a trajectory p̂q in the

superior part of M̃ connecting the saddles p and q in C0. We denote by SE(q) the
stable separatrix of q and by SI(p) the unstable separatrix of p. See figure 6.

a)

C0

C+ π

2

C−π

2

p q

SI(p)

SE(q)

Figure 6. Breaking connection of saddles p and q for µ1 > µ∗
1

Let sep(µ1) be the separation function of SI(p, X̃(f+µ0+µ1y)) and SE(q, X̃(f+
µ0 + µ1y)). It is defined on a transversal section to the trajectory that links the
saddles. The derivative of sep(µ1) with respect to µ1 is of the form

sep
µ1

(µ∗
1) =

∫ +∞

−∞

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y)(u(s), v(s)))ds)

· X̃(f + µ0 + µ∗
1y) ∧

d

dµ1
X̃(f + µ0 + µ∗

1y)(u(s), v(s))dt

where ∧ is the vectorial product defined by (v1, v2) ∧ (w1, w2) = −det

(
v1 v2
w1 w2

)

and (u(s), v(s)) is an orbit connecting the saddles p and q. For a treatment of
the integral formula of sepµ1

(·) we refer the reader to Guckeheimer-Holmes [9] and
Chicone [4].
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In our case,

sep
µ1

(µ∗
1) = −

∫ +∞

−∞

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y)(u(s), v(s)))ds)

× sin2(v(t)) cos2(v(t))dt.

(4.2)

Since v(t) ∈ [−π
2 ,

π
2 ], the integrand in (4.2) is a non-negative function. Therefore

sepµ1
(µ∗

1) < 0. Then the connection of p and q saddles is broken, without another

connection to arise. Thus B1
5(X(f);µ0) is a discrete set. This ends the proof. �

Proof of Theorem 4.6. The set B1(X(f)) is the union of the following sets

B1 = B1
1(X(f)) ×ℜ, B2 =

⋃

µ0∈ℜ−B1
1(X(f))

{µ0} ×B1
2(X(f), µ0),

B3 =
⋃

µ0∈ℜ

{µ0} ×B1
3(X(f);µ0), B4 = ℜ×B1

4(X(f)),

B5 =
⋃

µ0∈ℜ−B1
1(X(f))

{µ0} ×B1
5(X(f), µ0),

where B1
i (X(f), ·), i = 1, . . . , 5 are given by Lemmas 4.2-4.8 respectively.

Each set Bi:

• contains parameters (µ0, µ1) ∈ ℜ2 such that X(f + µ0 + µ1y) violates at
least a condition of Σ1.

• is measurable. Because its complement in ℜ2 is open.
• has measure zero in ℜ2. Because B1 and B4 are products of ℜ times a zero

measure set in ℜ. To calculate the measure of Bi for i = 2, 3 and 5, we use
Fubini’s Theorem [14]:

∫

ℜ2

χ(Bi)dµ0dµ1 =

∫
(

∫
χ(·, B1

i (X(f), µ0))dµ1)dµ0 = 0

where χ(·) is the characteristic function of sets in ℜ2.

Then B1(X(f)) is measurable with zero Lebesgue measure in ℜ2. �

4.2. Case B. In this case, Xµ(f) denotes the vector field X(f + µ0 + µ1y + µ2y
2)

where µ = (µ0, µ1, µ2) ∈ ℜ3.

Definition 4.9. Let Σ2 be the set of Cr-vector fields X(f) ∈ E2,r with r ≥ 1 such

that X̃(f) satisfies:

(1) the singularities are hyperbolic and contained in C0.

(2) the periodic orbits are hyperbolic and contained in M̃ .
(3) no saddle connection.

We now give the measure of the complement of Σ2 in the parameter space ℜ3.

Theorem 4.10. Let X(f) ∈ E2,r, with r ≥ 1. Then the set

B2(X(f)) = {µ ∈ ℜ3 : Xµ(f) /∈ Σ2}

has zero Lebesgue measure in ℜ3.

We have divided the proof in a sequence of lemmas.
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Lemma 4.11. Let X(f) ∈ E2,r with r ≥ 1. Then, the set

B2
4(X(f)) = {µ2 ∈ ℜ : X̃(f + µ2y

2) has some non semi-hyperbolic

periodic orbit in C±π

2
}

has zero Lebesgue measure in ℜ.

Proof. Let f(x, y) = a0(x) + a1(x)y + a2(x)y
2. By Proposition 3.1, X̃(f) has two

periodic orbits of period τ (the same period of function ai(u)) on C±π

2
with first

derivative of the Poincaré maps equals to exp(∓
∫ τ

0
a2(u)du). Then, X̃(f + µ2y

2)

has a periodic orbit on C±π

2
non-hyperbolic if and only if µ2 = ± 1

τ

∫ τ

0
a2(u)du. It

follows that B2
4(X(f)) is discrete and has therefore zero measure in ℜ. �

We remark that for every (µ0, µ1) ∈ ℜ2, B2
4(X(f + µ0 + µ1y)) = B2

4(X(f)).

Lemma 4.12. Let X(f) ∈ E2,r(M), where r ≥ 1 and let µ0 /∈ B2
1(X(f)). Then

the set

B2
5(X(f);µ0) = {µ1 ∈ ℜ : X̃(f + µ0 + µ1y) has not the condition 3 of Σ2}

has zero Lebesgue measure in ℜ.

For the proof of this lemma; see proof of Lemma 4.8.

Proof of Theorem 4.10. The set B2(X(f)) is union of following sets:

B1 = B2
1(X(f)) ×ℜ2, B2 =

⋃

µ0∈ℜ−B2
1(X(f))

{µ0} ×B2
2(X(f), µ0) ×ℜ,

B3 =
⋃

µ0∈ℜ

{µ0} ×B2
3(X(f);µ0) ×ℜ, B4 = ℜ2 ×B2

4(X(f)),

B5 =
⋃

µ0∈ℜ−B2
1(X(f))

{µ0} ×B2
5(X(f), µ0) ×ℜ,

where B2
i (X(f), ·), i = 1, . . . , 5, are given by Lemmas 4.2-4.4, 4.11 and 4.12 respec-

tively.
Each Bi

• contains parameters (µ0, µ1, µ2) ∈ ℜ3 such that X(f + µ0 + µ1y + µ2y
2)

violates at least a condition of Σ2.
• is measurable. Because its complement in ℜ3 is open.
• has zero measure in ℜ3. Because B1 and B4 are product of ℜ2 times a zero

measure set in ℜ. To measure Bi for i = 2, 3 and 5, we apply the Fubini
Theorem as follows
∫

ℜ3

χ(Bi)dµ0dµ1dµ2 =

∫

ℜ2

(

∫
χ(·, B2

i (X(f), µ0), ·)dµ1)dµ0dµ2 = 0

where χ(·) is characteristic function in ℜ3.

Then B2(X(f)) has zero measure in ℜ3. �
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4.3. Case C. Here Xµ(f) denotes the vector field X(f + µ0 + µ1y + µ2y
3) where

µ = (µ0, µ1, µ2) ∈ ℜ3.

Definition 4.13. Let Σ3 be the set of X(f) ∈ E3,r, r ≥ 1 such that X̃(f) satisfies:

(1) the singularities are hyperbolic and contained in C0.

(2) the periodic orbits are hyperbolic and contained in M̃◦.

(3) the tangency points of X̃(f) with C±π

2
are parabolic.

(4) (a) there are no saddle connection of X̃(f).
(b) the separatrix of the singularity points in C0 can be only transversal

to C±π

2
.

(c) The trajectories are tangent to C±π

2
at most one point.

Theorem 4.14. Let X(f) ∈ E3,r with r ≥ 1. Then the set

B3(X(f)) = {(µ0, µ1, µ2) ∈ ℜ3 : X(f + µ0 + µ1y + µ2y
3) /∈ Σ3}

has Lebesgue measure zero in ℜ3.

The proof of this Theorem needs the following lemmas.

Lemma 4.15. Let X(f) ∈ E3,r with r ≥ 1. Then, the set

B3
4(X(f)) = {µ2 ∈ ℜ : X̃(f + µ2y

3) has not the condition 3 of Σ3}

has Lebesgue measure zero in ℜ.

Proof. Let X(f) with f(x, y) =
∑3

i=0 ai(x)y
i. By Proposition 3.2, (u∗,±

π
2 ) ∈ C±π

2

is a tangency point of X̃(f + µ2y
3) if a3(u∗) + µ2 = 0. Moreover the tangency is

parabolic when a′3(u∗) 6= 0.
The set of critical values of −a3(u),

Crit(−a3(u)) = {µ2 ∈ ℜ : ∃ (u∗, 0) such that a3(u∗) + µ2 = 0 e a′3(u∗) = 0},

describes the set of µ2 ∈ ℜ such that X(f + µ0 + µ1y + µ2y
3) does not satisfy the

condition 3 of Σ3.
By Sard’s Lemma, B3

4(X(f);µ0, µ1) has Lebesgue measure zero in ℜ. �

Lemma 4.16. Let X(f) ∈ E3,r, r ≥ 1, µ0 /∈ B3
1(X(f)) and µ2 /∈ B3

4(X(f)). Then
the set

B3
5(X(f);µ0, µ2) = {µ1 ∈ ℜ : X̃(f+µ0+µ1y+µ2y

3) has not the condition 4 of Σ3}

has zero Lebesgue measure in ℜ.

Proof. Fix µ0 /∈ B3
1(X(f)) and µ2 /∈ B3

3(X(f)) as in Lemmas 4.2 and 4.15.
There are three types of connections (see figure 7).

(a) Connections of saddles in C0.
(b) A saddle separatrix that is tangent to C+ π

2
or C−π

2
with parabolic tangency.

(c) A trajectory with two parabolic tangencies to C±π

2
.

The saddle connections of X̃(f + µ0 + µ1y+ µ2y
3) happen in a number finite of

µ1, since the number of singularities is finite.
The Lemma 4.7 applies straightforwardly to (a), (b) and (c). In fact, we can

break these connections with perturbations of the form X̃(f + µ0 + µ1y + µ2y
3)
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a) b) c)

pp
p

p

q
q

q q

qq

C0

C+ π

2

C−π

2

Figure 7. Saddle connections in C0 and tangency points in C±π

2
.

where µ0 and µ2 are fixed. The derivative of the separation function of the stable
and unstable manifolds is

sep
µ1

(µ∗
1) = −

∫ +∞

−∞

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y + µ2y

3)(u(s), v(s)))ds)

× sin2(v(t)) cos2(v(t))dt.

(4.3)

For (b) and (c) we must consider the time T taken by a trajectory from q ∈ M̃◦ to
a tangency point p ∈ C±π

2
. Thus we have

sep
µ1

(µ∗
1) = −

1

|X̃(f)(q)|

∫ T

0

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y + µ2y

3)(u(s), v(s)))ds)

× sin2(v(t)) cos2(v(t))dt.

(4.4)
The integrands in (4.3) and (4.4) are non-negative functions for v(t) ∈ [−π

2 ,
π
2 ].

Since sepµ1
(µ∗

1) < 0, the connections are broken and no other one can arise. Then
B4(X(f);µ0, µ2) is a discrete subset of ℜ and has zero Lebesgue measure. �

Proof of Theorem 4.14. The set B3(X(f)) is union of

B1 = B3
1(X(f)) ×ℜ2, B2 =

⋃

µ0∈ℜ−B3
1(X(f))

{µ0} ×B3
2(X(f), µ0) ×ℜ,

B3 =
⋃

µ0∈ℜ

{µ0} ×B3
3(X(f);µ0) ×ℜ, B4 = ℜ2 ×B3

4(X(f)),

B5 =
⋃

(µ0,µ2)∈S

{µ0} ×B3
5(X(f), µ0, µ2) × {µ2},

where S = ℜ−B3
1(X(f)) ×ℜ−B3

4(X(f)) and B3
i (X(f), ·), i = 1, . . . , 5, are given

by the Lemmas 4.2-4.4 and 4.15-4.16 respectively.
Each Bi:

• contains (µ0, µ1, µ2) ∈ ℜ3 such that the X(f +µ0 +µ1y+µ2y
3) violates at

least some condition of Σ3.
• is mensurable. Because its complement in ℜ3 is open.
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• has zero measure in ℜ3. Because B1 and B4 are products of ℜ2 times a
set of zero measure in ℜ. For Bi with i = 2, 3 e 5, we apply the Fubini
Theorem.

This completes the proof. �

4.4. Case D. In this case, Xµ(f) denotes the vector field X(f +µ0 +µ1y+µ2y
3 +

µ3y
4) where µ = (µ0, µ1, µ2, µ3) ∈ ℜ4.

Definition 4.17. Let Σ4 be the set of X(f) ∈ E4,r with r ≥ 1 such that X̃(f)
satisfies:

(1) the singularities (u∗, ·) ∈ C0 ∪ C±π

2
are hyperbolic and the eigenvalues

associated to singularities in C±π

2
are distinct.

(2) the periodic orbits are hyperbolic and contained in M̃◦.
(3) there are no connection of singularity separatrix. More specifically

(a) no connection of saddle that belongs to C0 or C±π

2
,

(b) separatrices of saddle in C0 or in C±π

2
are not weak manifolds of a

node in C±π

2
.

Theorem 4.18. Let X(f) ∈ E4,r, where r ≥ 1. Then

B4(X(f)) = {µ ∈ ℜ4 : X(f + µ0 + µ1y + µ2y
3 + µ3y

4) /∈ Σ4}

has Lebesgue measure zero in ℜ4.

The proof of this Theorem needs the following lemmas.

Lemma 4.19. Let X(f) = X(
∑4

i=0 ai(x)y
i) ∈ E4,r with r ≥ 1. Then, the set

B4
4(X(f)) = {µ3 ∈ ℜ : X̃(f + µ3y

4) has some singularity in

C±π

2
with ∆X̃(f + µ3y

4) = 0}

has Lebesgue measure zero in ℜ.

Proof. The set Crit(−a4) = {µ3 = −a4(x) : a′4(x) = 0} determines the set of µ3

such that X̃(f +µ3y
4) has singularities in C±π

2
with ∆X̃(f +µ3y

4) = 0. By Sard’s
theorem, this set has Lebesgue measure zero in ℜ. �

Lemma 4.20. Let X(f) = X(
∑4

i=0 ai(x)y
i) ∈ E4,r with r ≥ 1, and let µ0 /∈

B4
1(X(f)) and µ3 /∈ B4

2(X(f)). Then the set

B4
5(X(f);µ3) = {µ2 ∈ ℜ : X̃(f + µ2y

3 + µ3y
4) has some hyperbolic, with equal

eigenvalues, or non-hyperbolic singularity in C±π

2
}

has Lebesgue measure zero in ℜ.

Proof. Let µ3 /∈ B4
4(X(f)). Since

a3(u∗) + µ2 = 2
√
a′4(u∗), (4.5)

X̃(f + µ2y
3 + µ3y

4) has a hyperbolic singularity (u∗,±
π
2 ) with equal eigenvalues.

Then there exists a single value µ∗
2 that satisfies the condition (4.5).

On the other hand, for each non-hyperbolic singularity (u∗,±
π
2 ) of X̃(f+µ2y

3 +

µ3y
4), there exists a unique value µ∗

2 such that σ(X̃(f+µ∗
2y

3+µ3y
4)) = −(a3(u∗)+

µ2) = 0. It follows that B4
5(X(f);µ3) is discrete in ℜ and has therefore zero

Lebesgue measure. �
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Lemma 4.21. Let X(f) ∈ E4,r with r ≥ 1, µ0 /∈ B4
1(X(f)) and µ3 /∈ B4

4(X(f)).
Then, the set

B4
6(X(f);µ0, µ3) = {µ1 ∈ ℜ : X̃(f + µ0 + µ1y + µ3y

4) has not

the condition 3 of Σ4}

has Lebesgue measure zero in ℜ.

Proof. All singularity connections of X̃(f) can be broken with perturbations of the

form X̃(f + µ0 + µ1y + µ3y
4). The derivative of the separation function is of the

form

sep
µ1

(µ∗
1) = −

∫ +∞

−∞

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y + µ3y

4))ds)

× sin2(v(t)) cos3(v(t))dt.

(4.6)

The integrand in (4.6) is non-negative for v(t) ∈ [−π
2 ,

π
2 ]. Then sepµ1

(0) < 0. This
ends the proof. �

Proof of Theorem 4.18. The set B4(X(f)) is union of

B1 = B4
1(X(f)) ×ℜ3, B2 =

⋃

µ0∈ℜ−B4
2(X(f))

{µ0} ×B4
3(X(f), µ0) ×ℜ2,

B3 =
⋃

µ0∈ℜ

{µ0} ×B4
3(X(f);µ0) ×ℜ2,

B4 = ℜ3 ×B4
4(X(f)), B5 = ℜ2 ×B4

5(X(f), µ3) ×
⋃

µ3∈ℜ−B4
4(X(f))

{µ3},

B6 =
⋃

(µ0,µ3)∈S

{µ0} ×B4
6(X(f), µ0, µ3) ×ℜ× {µ3},

where S = ℜ−B4
1(X(f)) ×ℜ−B4

4(X(f)) and B4
i (X(f), ·), i = 1, . . . , 6, are given

by the Lemmas 4.2-4.4 and 4.19-4.21.
Each Bi

• contains (µ0, µ1, µ2, µ3) ∈ ℜ4 such that X(f + µ0 + µ1y + µ2y
3 + µ3y

4)
violates at least a condition of Σ4.

• is measurable. Because its complement in ℜ4 is open.
• has measure zero in ℜ4. Because B1 and B4 are products of ℜ3 times a set

of measure zero in ℜ. For other Bi, we apply the Fubini Theorem.

This completes the proof. �

4.5. Case E. In this case, Xµ(f) denotes the vector field X(f+µ0+µ1y+µ2y
n−1),

where µ = (µ0, µ1, µ2) ∈ ℜ3 and n ≥ 5.

Definition 4.22. Let Σn be the set of X(f) ∈ En,r for n ≥ 5 and r ≥ 2 such that

X̃(f) satisfies:

(1) the singularities (u∗, 0) ∈ C0 are hyperbolic and the singularities (u∗,±
π
2 ) ∈

C±π

2
are semi-hyperbolic.

(2) the periodic orbits are hyperbolic and contained in M̃ .
(3) no connections of singularity separatrix. More specifically

(a) no connection of saddles that belong to C0,
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(b) saddle separatrices in C0 are not invariant manifolds of singularities in
C±π

2
.

(c) no connection between singularities that belong to C±π

2
by invariant

manifolds.

Theorem 4.23. Let X(f) ∈ En,r with n ≥ 5 and r ≥ 2. Then the set

Bn(X(f)) = {(µ0, µ1, µ2) ∈ ℜ3 : X(f + µ0 + µ1y + µ2y
n−1) /∈ Σn}

has zero Lebesgue measure in ℜ3.

Lemma 4.24. Let X(f) = X(
∑n

i=0 ai(x)y
i) ∈ En,r with n ≥ 5, r ≥ 1. Then the

set

Bn
4 (X(f)) = {µ2 ∈ ℜ : X̃(f + µ2y

n−1) has some singularity in

C±π

2
with σX̃(f + µ2y

n−1) = 0}

has zero Lebesgue measure in ℜ.

Proof. Each singularity (u,±π
2 ) of X̃(f + µ2y

n−1) that satisfies an−1(u) + µ2 = 0,
determines a non semi-hyperbolic singularity. Then, Bn

4 (X(f)) must be a discrete
set with measure zero in ℜ. �

Lemma 4.25. Let X(f) ∈ En,r with n ≥ 5, r ≥ 2, µ0 /∈ Bn
1 (X(f)) and µ2 /∈

Bn
2 (X(f)). Then the set

Bn
5 (X(f);µ0, µ2) =

{
µ1 ∈ ℜ : X̃(f + µ0 + µ1y + µ2y

n−1)

does not satisfying property 3 of Σn
}

has zero Lebesgue measure in ℜ.

Proof. It follows by the same way as in Lemma 4.21. In this case, the derivative of
the separation function of the stable and unstable manifolds is of the form

sep
µ1

(µ∗
1) = −

∫ +∞

−∞

exp(−

∫ t

0

div(X̃(f + µ0 + µ∗
1y + µ2y

n−1))ds)

× sin2(v(t)) cosn−1(v(t))dt.

(4.7)

The integrand in (4.7) is a non-negative function. �

Proof of Theorem 4.23. The set Bn(X(f)) is union of:

B1 = Bn
1 (X(f)) ×ℜ2, B2 =

⋃

µ0∈ℜ−Bn

1 (X(f))

{µ0} ×Bn
2 (X(f), µ0) ×ℜ,

B3 =
⋃

µ0∈ℜ

{µ0} ×Bn
3 (X(f);µ0) ×ℜ, B4 = ℜ2 ×Bn

4 (X(f)),

B5 =
⋃

(µ0,µ2)∈S

{µ0} ×Bn
5 (X(f);µ0, µ2) × {µ2}

where S = ℜ−Bn
1 (X(f))×ℜ−Bn

4 (X(f)) and Bn
i (X(f), ·), i = 1, . . . , 5, are given

by Lemmas 4.2-4.4 and 4.24-4.25.
Each Bi

• contains (µ0, µ1, µ2) ∈ ℜ3 such that X(f + µ0 + µ1y + µ2y
n−1) violates at

least a condition of Σn.
• is measurable. Because its complement in ℜ3 is open.
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• has measure zero in ℜ3. (As in the proof of Theorem 4.18 by the Fubini
Theorem).

This completes the proof. �

Remark 4.26. Theorems 4.6 to 4.23 express the measure of the complementary
set of Σn for n ≥ 1. They may be summarized by stating that

Bn(X(f)) = {(µ0, µ1, µn−1, µn) : X(f + µ0 + µ1y + µn−1y
n−1 + µny

n) /∈ Σn}

has zero Lebesgue measure. However, we observe that for n > 4 three parameters
only are sufficient. In the present work, the proof has been divided in cases A-E
to make the presentation more accessible.

5. Genericity of Σn.

In this section, we prove the genericity of Σn.

Proof of Theorem 1.2. The density of Σn follows straightforwardly from Theorems
4.6-4.23 for corresponding n. In fact, for X(f) ∈ En,r and ∀ ǫ > 0 we can find

Xµ(f) ∈ Σn such that |X̃µ(f) − X̃(f)| < ǫ. µ ∈ ℜk where k = 2 for n = 1; k = 3
for n = 2, 3 and ≥ 5; and k = 4 for n = 4.

To see that Σn is open in En,r we write X(f) = y ∂
∂x

+
∑n

i=0 ai(x)y
i ∂
∂y

. In C0,

a singularity of X̃(f), say (u∗, 0), satisfies a0(u∗) = 0 and a′0(u∗) 6= 0. In C±π

2
, we

must consider the following cases:

(1) n = 3, since X̃(f) has a parabolic tangency at (u∗, ·), it satisfies a3(u∗) = 0
and a′3(u∗) 6= 0.

(2) n = 4, a singularity of X̃(f), say (u∗, ·), satisfies a4(u∗) = 0 and a′4(u∗) 6= 0,

and, also, a3(u∗) 6= 2
√
a′4(u∗) if a′4(u∗) > 0.

(3) n ≥ 5, a singularity of X̃(f), say (u∗, ·), satisfies an(u∗) = 0 and an−1(u∗) 6=
0.

In all those cases, we can choose µ0, µ1, µ2 and µ3 sufficiently small such that
X(
∑n

i=0 bi(x)y
i), where b0 = a0 + µ0, b1 = a1 + µ1, bn−1 = an−1 + µ2 and bn =

an + µ3, has singularities or tangencies of the same type than X(f).
If X(f) has a hyperbolic periodic orbit, X(g) with b1 = a1(u)+µ1 will also have

a hyperbolic periodic orbit for small values of µ1. For n = 1 and 2, we obtain the
same type of periodic orbits in C±π

2
, taking b1 = a1 + µ1 and b2 = a2 + µ2. �

6. Characterization

We will prove the necessity of Theorem 1.3 in detail. For the sufficiency, we
will only touch on some aspects with respect to new canonical regions and to the
building of homeomorphism.

6.1. Necessity. There is a neighborhood U of X(f) in En,r such that for X(g) ∈ U

there is a homeomorphism hg : M̃ → M̃ that transforms trajectories of X̃(f) in

trajectories of X̃(g).
By density of Σn, there is X(

∑n
i=0 bi(x)y

i) ∈ Σn∩U such that it is topologically
equivalent toX(f). ThenX(f) inherits the following properties ofX(

∑n
i=0 bi(x)y

i):

• In C0, X(f) has a finite number of singularities and all topologically equiv-
alent to saddles, focus or nodes.
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• In C±π

2
, X(f) has a finite number of tangencies (when n = 3) or of singu-

larities (when n ≥ 4). The tangencies are internal or external.
• The periodic orbits are finite in number, all are attractors or repellors and

are contained in the interior of M̃ .
• X(f) has no connection of singularity separatrix, nor separatrix of saddle

tangent to C±π

2
.

The following properties of X(f) remain to be proved.

(a) The singularities in C0 are all hyperbolic. In fact, if ∆X̃(f) = 0 at some

singularity, say (u∗, 0), we can consider X̃(f + ǫβ(u)(u − u∗)) where β is a non-
negative periodic function on a neighborhood V of u∗ and with the compact support
contained in V , β(u∗) = 1 and V does not contain other singularities. Consequently,

∆X̃(f)(u∗, 0) = −ǫβ(u∗). Then, by choosing the adequate sign for ǫ, (u∗, 0) is also

a singularity of X̃(f + ǫβ(u)(u− u∗)), but it has the different index as singularity

of X̃(f). This contradicts the structural stability of X(f).

(b) In C±π

2
, depending on n, we have hyperbolic and semi-hyperbolic singularities,

or parabolic tangency points.
For n = 3, suppose that (u∗,

π
2 ) is a point of non-parabolic tangency but it is

internal or external. That is, (u∗,
π
2 ) satisfies a3(u∗) = 0 and a′3(u∗) = 0.

Let V be a neighborhood of u∗ in ℜ such that it contains no other tangency

points of X̃(f). For ǫ to be small, X̃(f + ǫ(x − u∗)β(x)y3) is sufficiently close to
X(f), where β(x) is a non-negative Cr periodic function with support contained in

V . Since X̃(f+ǫ(x−u∗)β(x)y3)·b(u∗,
π
2 ) = 0, (u∗,

π
2 ) is a tangency point. Moreover

the tangency is parabolic, since X̃2(f + ǫ(x− u∗)β(x)y3) · b(u∗,
π
2 ) = ǫ 6= 0, where

b : M̃ → ℜ is defined by b(u, v) = cos(v), see the Proposition 3.2.

Then, if (u∗,
π
2 ) is an external (respectively internal) tangency point of X̃(f),

we take ǫ positive (respectively, negative) such that X̃(f + ǫ(x − u∗)β(x)y3) has
at (u∗,

π
2 ) an internal (respectively, external) tangency point, contradicting the

structural stability of X(f).

For n = 4, the hyperbolicity of all singularities of X̃(f) in C±π

2
can be shown

in the same way that (a), considering the system X̃(f + ǫ(x− u∗)β(x)y4) close to

X̃(f) and (u∗,±
π
2 ) is a singularity of X̃(f).

We need to treat here only the case thatDX̃(f) at a singularity of X̃(f) has equal
eigenvectors. In the fact, if (u∗,±

π
2 ) is one such singularity then a′4(u∗) > 0 and

a3(u∗) = 2
√
a′4(u∗). Thus taking X(f + ǫ(x−u∗)β(x)y3) sufficiently near to X̃(f),

where β(x) is a non-negative periodic function with support in a neighborhood of
u∗ and without any other singularity, we find that (u∗,±

π
2 ) is also a singularity

of X(f + ǫ(x − u∗)β(x)y3), but with non-equal eigenvalues. More specifically, if

ǫ < 2
√
a′4(u∗)− a3(u∗), the singularity is a focus and if ǫ > 2

√
a′4(u∗)− a3(u∗) the

singularity is a hyperbolic node. Therefore, X(f + ǫ(x− u∗)β(x)y3) and X(f) can
not be topologically equivalent.

For n ≥ 5, if (u∗,±
π
2 ) is a singularity of X̃(f) non-semi-hyperbolic then an(u∗) =

0 and an−1(u∗) = 0. Now, X(f + ǫ(x− u∗)β(x)yn−1) sufficiently close to X̃(f) has
(u∗,±

π
2 ) as a semi-hyperbolic singularity. This contradicts the structural stability

of X(f).
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(c) The periodic orbits in M̃◦ are all hyperbolic. In fact, we suppose that γ(s) =
(ϕ(s), ξ(s)) is a periodic orbit of X(f) with period τ such that χ(γ,X(f)) = 0. We
will obtain a field X(f + g) sufficiently near to X(f) in which γ is a periodic orbit
but χ(γ,X(f + g)) 6= 0.

Then, we search a function g(x, y) = b0(x) + b1(x)y, where b0 and b1 are Cr-
periodic such that

(i) X(f + g) is near to X(f), we say at a distance |ǫ| 6= 0.
(ii) X(f + g)(γ) = X(f)(γ) (i.e. γ is a periodic orbit of both vector fields).
(iii) χ(γ,X(f + g)) 6= 0

The conditions i), ii), and iii) determine:

∗ sup |b
(k)
i (x)| < |ǫ| for i = 1, 2, 0 ≤ k ≤ r and x ∈ S1.

∗ b0(ϕ(s)) + b1(ϕ(s))ξ(s) = 0.
∗ b1(ϕ(s)) is not identically null in ℜ.

The task is now to find a function b1 : ℜ → ℜ which is Cr-periodic and not
identically null. Thus we can choose b0 : ℜ → ℜ Cr-periodic such that b0(ϕ(s)) =
−b1(ϕ(s))ξ(s) for s ∈ ℜ.

We should consider the following three situations:

(1) b0 can not be null. Because, in otherwise, ξ(s) = 0 for s ∈ ℜ and C0 should
be a periodic orbit of X(f), contradicting the fact that all periodic orbits
only can intercept C0 at isolated points.

(2) If ξ(s) is not a non-null constant, say ξ0, then we can put b1(x) = ǫ 6= 0
and b0(x) = −ǫξ0 both constant. Thus, g(x, y) = −ǫξ0 + ǫy defines a
perturbation |ǫ|-close to X(f) such that χ(γ,X(f + g)) = ǫ.

(3) If ξ(s) is not constant, we can choose some s0 ∈ (0, τ) such that ξ(s0) 6= 0
and ϕ(s0) 6= 0. LetW = ϕ([0, τ ]) ⊂ ℜ. Then there is an open neighborhood
U of s0 contained in [0, τ ] such that ϕ|U has differentiable inverse (since
ϕ′(s0) = ξ(s0) 6= 0).

We suppose that ξ(s0) > 0. We denote Ũ = ϕ(U) ⊂ W and let V =

(α, β) be a neighborhood of ϕ(s0) such that V ⊂ V ⊂ Ũ . (See figure 8).
Now, we can take a function b1 : ℜ → ℜ with the following properties:
∗ b1(x) > 0 for x ∈ V and b1(x) = 0 for x ∈W − V ,
∗ Cr with r ≥ 1,
∗ periodically extended to whole ℜ.
Next, we define b0 : ℜ → ℜ by b0(x) = −b1(x)ϕ

′(ϕ−1(x)) for x ∈ V and
b0 = 0 for x ∈ W − V . b0 can be extended periodically to all ℜ and of Cr

class. It follows that g(x, y) = ǫb0(x) + ǫb1(x)y is a perturbation of f(x, y),
as we wanted. In fact, X(f + g) has γ as a period orbit with characteristic
index

χ(γ,X(f + g)) = ǫ

∫ ϕ−1(β)

ϕ−1(α)

b1(ϕ(s))ds 6= 0.

It follows from (1)-(3) that if γ is attractor for X(f) then by taking ǫ > 0, X(f+g)
has at least two periodic orbits more than X(f). This contradicts the structural
stability of X(f). The proof of (c) is complete. Finally (a), (b) and (c) together
with the properties described above show that X(f) ∈ Σn.
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Figure 8. (a) Homotopic to zero periodic orbit. (b) Periodic orbit
circling the cylinder. The points a and b are identified

6.2. Sufficiency. The proof of the sufficiency of Theorem 1.3 is essentially the
same given by Peixoto-Peixoto in [13] and later by Sotomayor in [17]. Here we
indicate some important aspects of this Theorem.

Every X(f) ∈ Σn determines a decomposition of M̃ in connected components,
called canonical regions, whose boundary are formed by separatrices (i.e. an arc of

trajectory, a singularity, a limit cycle, a saddle separatrix and a portion of ∂M̃).

An attractor (resp. a source) of X̃(f) associated to a canonical region R ⊂ M̃

is a node, a focus or a limit cycle of X̃(f) or is an arc of ∂R where the trajectories

in R tend as t→ +∞ (resp. t→ −∞). A critical region of a singularity p of X̃(f)

is a neighborhood D of p such that the systems sufficiently near to X̃(f) have a
single singularity and of the same type as p. A critical region of a limit cycle Γ of

X̃(f) is a ring A contained Γ such that the systems sufficiently close to X̃(f) have
a limit cycle and of the same stability that Γ.

Every canonical region has in its boundary only a source and an attractor. This
property plays a very important role in the classification of canonical regions. See

[13]. We denote by α, ω and γ a source, an attractor and a separatrix of X̃(f) re-
spectively. A separatrix can be a point (e.g. a singularity or an external tangency).

Then we classify a canonical region R by the number and type of separatrices
contained in ∂R, as follows (see figure 9).

• Type i. ∂R = {α, ω}.
• Type ii. ∂R = {α, ω, γ1} where γ1 is a trajectory that is transversal to ∂M ,

and α and ω belong to ∂M .
• Type iii. ∂R = {α, ω, γ1, p1} where γ1 is a trajectory with internal tangency

to ∂M and p1 is a point of external tangency.
• Type iv. ∂R = {α, ω, γ1, γ2} where γ1 and γ2 are arcs of trajectories.
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• Type v. ∂R = {α, ω, p1, γ1, γ2} where p1 is a saddle, γ1 and γ2 are trajec-
tories tending to p1.

• Type vi. ∂R = {α, ω, p1, γ1, γ2, γ3} where p1 is a saddle, γ1, γ2 are trajec-
tories tending to p1 and γ3 is a trajectory that does not tend to p1.

• Type vii. ∂R = {α, ω, p1, γ1, γ2, γ3} where p1 is a saddle, γ1, γ2 and γ3 are
trajectories tending to p1.

• Type viii. ∂R = {α, ω, p1, γ1, γ2, p2, γ3} where p1 and p2 are saddles, γ1, γ2

trajectories tending to p1 and γ3 trajectory tending to p2.
• Type ix. ∂R = {α, ω, p1, γ1, γ2, p2, γ3, γ4} where p1 and p2 are saddles, γ1,
γ2 trajectories tending to p1, γ3 and γ4 are trajectories tending to p2.

Tipo i.

Tipo v.

Tipo vii.

Tipo iii.
Tipo ii.

Tipo vi.Tipo iv.

Tipo viii.

Tipo ix.
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ω

ω
ω

ω

ω

ω

ω
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Figure 9. Canonical regions classified by the number and the type
of separatrices.

In [13], Peixoto and Peixoto showed five types of canonical regions of C1 vector
fields in the plane. Later, Sotomayor in [17] extended to seven regions considering
external and internal tangencies of trajectories (that are not saddle separatrices)
with the boundary.

We remark that the types ii, v and viii are new ones, which arise by considering

singularities on the boundary of M̃ . In Table 1 we compare the classifications of
Peixoto-Peixoto, Sotomayor and ours.

Now we define a homeomorphism between same type canonical regions of two
vector fields of Σn which are sufficiently close to each other. We present details of

homeomorphism between two canonical regions R and R̃ of the type v. For that we

consider the function ZAB : AB → [0, 1] defined by ZAB(m) = l(Am)
l(AB) where l(AB)

is the length of arc AB that links the points A and B, and m ∈ AB (see figure 10).

Let D (respectively D̃) be a critical region of α ∈ R (resp. α̃ ∈ R̃) and let

B0 = γ1 ∩ ∂D (resp. B̃0 = γ̃1 ∩ ∂D̃) and A0 = γ2 ∩ ω (resp. Ã0 = γ̃2 ∩ ω̃). Hence,

the boundary of R-D◦ (respectively R̃-D̃◦) is formed by the singularity p1 (resp.
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Type Peixoto-Peixoto Sotomayor
i. ∂R = {α, ω} I 1
ii. ∂R = {α, ω, γ1}
iii. ∂R = {α, ω, γ1, p1} 6
iv. ∂R = {α, ω, γ1, γ2} II 7
v. ∂R = {α, ω, p1, γ1, γ2}
vi. ∂R = {α, ω, p1, γ1, γ2, γ3} III 4, 5
vii. ∂R = {α, ω, p1, γ1, γ2, γ3} IV 3
viii. ∂R = {α, ω, p1, γ1, γ2, p2, γ3}
ix. ∂R = {α, ω, p1, γ1, γ2, p2, γ3, γ4} V 2
Table 1. Classification of canonical regions with the notation
given by Peixoto-Peixoto (I-V ), by Sotomayor (1-7) and by us
(i-ix).

α

ω

α̃

ω̃

γ1

γ2

γ̃1

γ̃2

∂M̃

p1 p̃1

R R̃

A0 Ã0

B0 B̃0

Figure 10. Canonical regions of the type v.

p̃1), the arcs of trajectory p1A0 (resp. p̃1Ã0) and B0p1 (resp. B̃0p̃1) and the arcs

B0B0 (i.e. ∂D) and A0p1 (resp. B̃0B̃0 and Ã0p̃1).

Each arc of ∂(R-D◦) is mapped to the corresponding one of ∂(R̃-D̃◦) by

ϕ(A) =





Z−1

A0p1
◦ ZA0p1

(A) if A ∈ A0p1

Z−1

p1A0
◦ Zp1A0

(A) if A ∈ p1A0

Z−1

B0p1
◦ ZB0p1

(A) if A ∈ B0p1

We extend ϕ to interior of R-D◦ as follows. For P ∈ (R-D◦)◦, there is a trajectory
BA through P where B ∈ B0B0 and A ∈ A0p1. Hence,

ϕ(P ) = Z−1

BA
◦ ZBA(P ).

The function ϕ : R-D◦ → R̃-D̃◦ is bijective. ϕ−1 is defined in the same way.
The continuity of ϕ follows from that of solutions with respect to the initial values.

On the other hand, the homeomorphism of the critical region D, say ψ, also is
built using the function ZAB . See [13, 17] for more details. We observe that ϕ and
ψ coincide in ∂D, since both are defined in the same way. This finishes the building
of the homeomorphism.
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7. Concluding remarks

A study of the structural stability of second order differential equation Ef on
M = S1 ×ℜ for C1 functions f(x, y) periodic in x and with the Whitney topology
was carried out by Barreto in [2] (see also Shahshahani [16]). Below we review the
conditions for the structurally stable equations Ef proposed by Barreto:

(1) All singularities are hyperbolic and, therefore, finite in number
(2) If a trajectory λ has a saddle as its α-limit (resp. ω-limit), then every

trajectory in some tubular neighborhood of λ has the same ω-limit (resp.
α-limit). In particular, no trajectory joins saddle points.

(3) All periodic orbits are hyperbolic and, therefore, countable in number. Only
a finite number of these intersect C0.

(4) The α and ω-limit set of any trajectory can be only singularities, periodic
orbits or infinite.

Among the conditions above, (2) is the most difficult, if not impossible, to verify
in concrete cases. It corresponds to the asymptotic behavior of trajectory near
infinity. In this context, Camacho et al. in [3] and Kotus et al. in [11] and
[10] formulated analogous conditions of those by Peixoto for Cr vector fields on
open surfaces with finite genus and a countable space of ends. They distinguish
a behavior at infinity of the type “saddle at infinity” formed by two unbounded
semi-trajectories with prolongational limit sets contained in the space of ends.

On compact regions of ℜ2 and M , in [18], Sotomayor established a characteri-
zation theorem for C1-structurally stable second order differential equations, using
the uniform topology in the space of equations and the tangency conditions between
the orbits and the boundary of the regions.

The purpose of our work is to establish a link between [2] and [18], obtaining
conditions that allow verification in a simple calculatory fashion, when restricted
to the class En,r. This is done by applying a compactification to the open surface
M and to the equation Ef , as explained in section 2. This compactification allows
us to obtain a large class of stable equations Ef that have behaviors at infinity
not exhibited by the conditions studied in [2], and also to obtain some patterns
of behavior at infinity described in terms of the tangency conditions between the
orbits and the boundary of the compactification of M , as given in [18].

Other compactifications present discouraging results. For example, by applying a
two-point compactification, we would be able to induce a field with two singularities
at the infinite. In order to know the topological type of those singularities, we would
need to apply a blow-up [7]. We would expect the same topological types already
calculated in section 3.

Another example is the known Poincaré compactification that is applied success-
fully when the vector field on ℜ2

(1) is polynomial in the variables x and y (see [17], [8], [6], [5], [12], among
other works); or

(2) has the Lojasiewicz property at infinity (see [19]).

The vector field X(f) is not completely polynomial. However, it can be proven
that X(f) has the property of Lojasiewicz at infinity. Then, M and X(f) can be
compactified by the Poincaré compactification as a compact cylinder, and a vector
field with two lines of singularities on the border of the cylinder.
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