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EXISTENCE AND APPROXIMATION OF SOLUTIONS OF
SECOND ORDER NONLINEAR NEUMANN PROBLEMS

RAHMAT ALI KHAN

Abstract. We study existence and approximation of solutions of some Neu-
mann boundary-value problems in the presence of an upper solution β and a

lower solution α in the reversed order (α ≥ β). We use the method of quasi-

linearization for the existence and approximation of solutions. We also discuss
quadratic convergence of the sequence of approximants.

1. Introduction

In this paper, we study existence and approximation of solutions of some second
order nonlinear Neumann problem of the form

−x′′(t) = f(t, x(t)), t ∈ [0, 1],

x′(0) = A, x′(1) = B,

in the presence of a lower solution α and an upper solution β with α ≥ β on
[0, 1]. We use the quasilinearization technique for the existence and approximation
of solutions. We show that under suitable conditions the sequence of approximants
obtained by the method of quasilinearization converges quadratically to a solution
of the original problem.

There is a vast literature dealing with the solvability of nonlinear boundary-value
problems with the method of upper and lower solution and the quasilinearization
technique in the case where the lower solution α and the upper solution β are
ordered by α ≤ β. Recently, the case where the upper and lower solutions are in
the reversed order has also received some attention. Cabada, et al. [6, 5], Cherpion,
et al. [4] have studied existence results for Neumann problems in the presence of
lower and upper solutions in the reversed order. In these papers, they developed
the monotone iterative technique for existence of a solution x such that α ≥ x ≥ β.

The purpose of this paper is to develop the quasilinearization technique for the
solution of the original problem in the case upper and lower solutions are in the
reversed order. The main idea of the method of quasilinearization as developed by
Bellman and Kalaba [3], and generalized by Lakshmikantham [9, 10], has recently
been studied and extended extensively to a variety of nonlinear problems [1, 2, 7,
11, 12]. In all these quoted papers, the key assumption is that the upper and lower
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solutions are ordered with α ≤ β. When α and β are in the reverse order, the
quasilinearization technique seems not to have studied previously.

In section 2, we discuss some basic known existence results for a solution of the
BVP (2.2). The key assumption is that the function f(t, x)− λx is non-increasing
in x for some λ. In section 3, we approximate our problem by a sequence of
linear problems by the method of quasilinearization and prove that under some
suitable conditions there exist monotone sequences of solutions of linear problems
converging to a solution of the BVP (2.2). Moreover, we prove that the convergence
of the sequence of approximants is quadratic. In section 4, we study the generalized
quasilinearization method by allowing weaker hypotheses on f and prove that the
conclusion of section 3 is still valid.

2. Preliminaries

We know that the linear Neumann boundary value problem

−x′′(t) + Mx(t) = 0, t ∈ [0, 1]

x′(0) = 0, x′(1) = 0,

has only the trivial solution if M 6= −n2π2, n ∈ Z. For M 6= −n2π2 and any
σ ∈ C[0, 1], the unique solution of the linear problem

−x′′(t) + Mx(t) = σ(t), t ∈ [0, 1]

x′(0) = A, x′(1) = B
(2.1)

is given by

x(t) = Pλ(t) +
∫ 1

0

Gλ(t, s)σ(s)ds,

where

Pλ(t) =

{
1√

λ sin
√

λ
(A cos

√
λ(1− t)−B cos

√
λt), if M = −λ, λ > 0,

1√
λ sinh

√
λ
(B cosh

√
λt−A cosh

√
λ(1− t)) if M = λ, λ > 0,

and (for M = −λ),

Gλ(t, s) = − 1√
λ sin

√
λ

{
cos

√
λ(1− s) cos

√
λt, if 0 ≤ t ≤ s ≤ 1,

cos
√

λ(1− t) cos
√

λs, if 0 ≤ s ≤ t ≤ 1,

and (for M = λ),

Gλ(t, s) =
1√

λ sinh
√

λ

{
cosh

√
λ(1− s) cosh

√
λt, if 0 ≤ t ≤ s ≤ 1,

cosh
√

λ(1− t) cosh
√

λs, if 0 ≤ s ≤ t ≤ 1,

is the Green’s function of the problem. For M = −λ, we note that Gλ(t, s) ≤ 0
if 0 <

√
λ ≤ π/2. Moreover, for such values of M and λ, we have, Pλ(t) ≤ 0 if

A ≤ 0 ≤ B, and Pλ(t) ≥ 0 if A ≥ 0 ≥ B. Thus we have the following anti-maximum
principle
Anti-maximum Principle. Let −π2/4 ≤ M < 0. If A ≤ 0 ≤ B and σ(t) ≥ 0,
then a solution x(t) of (2.1) is such that x(t) ≤ 0. If A ≥ 0 ≥ B and σ(t) ≤ 0, then
x(t) ≥ 0.
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Consider the nonlinear Neumann problem

−x′′(t) = f(t, x(t)), t ∈ [0, 1],

x′(0) = A, x′(1) = B,
(2.2)

where f : [0, 1] × R → R is continuous and A, B ∈ R. We recall the concept of
lower and upper solutions.
Definition. Let α ∈ C2[0, 1]. We say that α is a lower solution of (2.2), if

−α′′(t) ≤ f(t, α(t)), t ∈ [0, 1],

α′(0) ≥ A, α′(1) ≤ B.

An upper solution β ∈ C2[0, 1] of the BVP (2.2) is defined similarly by reversing
the inequalities.

Theorem 2.1 (Upper and Lower solutions method). Let 0 < λ ≤ π2/4. Assume
that α and β are respectively lower and upper solutions of (2.2) such that α(t) ≥
β(t), t ∈ [0, 1]. If f(t, x)− λx is non-increasing in x, then there exists a solution x
of the boundary value problem (2.2) such that

α(t) ≥ x(t) ≥ β(t), t ∈ [0, 1].

Proof. This result is known [6] and we provide a proof for completeness. Define
p(α(t), x, β(t)) = min

{
α(t),max{x, β(t)}

}
, then p(α(t), x, β(t)) satisfies β(t) ≤

p(α(t), x, β(t)) ≤ α(t), x ∈ R, t ∈ [0, 1]. Consider the modified boundary value
problem

−x′′(t)− λx(t) = F (t, x(t)), t ∈ [0, 1],

x′(0) = A, x′(1) = B,
(2.3)

where
F (t, x) = f(t, p(α(t), x, β(t)))− λp(α(t), x, β(t)).

This is equivalent to the integral equation

x(t) = Pλ(t) +
∫ 1

0

Gλ(t, s)F (s, x(s))ds. (2.4)

Since Pλ(t) and F (t, x(t)) are continuous and bounded, this integral equation has
a fixed point by the Schauder fixed point theorem. Thus, problem (2.3) has a
solution. Moreover,

F (t, α(t)) = f(t, α(t))− λα(t) ≥ −α′′(t)− λα(t), t ∈ [0, 1],

F (t, β(t)) = f(t, β(t))− λβ(t) ≤ −β′′(t)− λβ(t), t ∈ [0, 1].

Thus, α, β are lower and upper solutions of (2.3). Further, we note that any
solution x(t) of (2.3) with the property β(t) ≤ x(t) ≤ α(t), t ∈ [0, 1], is also a
solution of (2.2). Now, we show that any solution x of (2.3) does satisfy β(t) ≤
x(t) ≤ α(t), t ∈ [0, 1]. For this, set v(t) = α(t)− x(t), then v′(0) ≥ 0, v′(1) ≤ 0. In
view of the non-increasing property of the function f(t, x)− λx in x, the definition
of lower solution and the fact that p(α(t), x, β(t)) ≤ α(t), we have

− v′′(t)− λv(t)

= (−α′′(t)− λα(t))− (−x′′(t)− λx(t))

≤ (f(t, α(t))− λα(t))− (f(t, p(α(t), x(t), β(t)))− λp(α(t), x(t), β(t))) ≤ 0.
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By the anti-maximum principle, we obtain v(t) ≥ 0, t ∈ [0, 1]. Similarly, x(t) ≥
β(t), t ∈ [0, 1]. �

Theorem 2.2. Assume that α and β are lower and upper solutions of the boundary
value problem (2.2) respectively. If f : [0, 1]× R → R is continuous and

f(t, α(t))− λα(t) ≤ f(t, β(t))− λβ(t) for some 0 < λ ≤ π2/4, t ∈ [0, 1], (2.5)

then α(t) ≥ β(t), t ∈ [0, 1].

Proof. Define m(t) = α(t) − β(t), t ∈ [0, 1], then m(t) ∈ C2[0, 1] and m′(0) ≥ 0,
m′(1) ≤ 0. In view of (2.5) and the definition of upper and lower solution, we have

−m′′(t)− λm(t) = (−α′′(t)− λα(t))− (−β′′(t)− λβ(t))

≤ (f(t, α(t))− λα(t))− (f(t, β(t))− λβ(t)) ≤ 0.

Thus, by anti-maximum principle, m(t) ≥ 0, t ∈ [0, 1]. �

3. Quasilinearization Technique

We now approximate our problem by the method of quasilinearization. Lets
state the following assumption.

(A1) α, β ∈ C2[0, 1] are respectively lower and upper solutions of (2.2) such that
α(t) ≥ β(t), t ∈ [0, 1] = I.

(A2) f(t, x), fx(t, x), fxx(t, x) are continuous on I × R and are such that 0 <

fx(t, x) ≤ π2

4 and fxx(t, x) ≤ 0 for (t, x) ∈ I × [minβ(t),max α(t)].

Theorem 3.1. Under assumptions (A1)-(A2), there exists a monotone sequence
{wn} of solutions converging uniformly and quadratically to a solution of the prob-
lem (2.2).

Proof. Taylor’s theorem and the condition fxx(t, x) ≤ 0 imply that

f(t, x) ≤ f(t, y) + fx(t, y)(x− y), (3.1)

for (t, x), (t, y) ∈ I × [minβ(t),max α(t)]. Define

F (t, x, y) = f(t, y) + fx(t, y)(x− y), (3.2)

x, y ∈ R, t ∈ I. Then, F (t, x, y) is continuous and satisfies the relations

f(t, x) ≤ F (t, x, y)

f(t, x) = F (t, x, x),
(3.3)

for (t, x), (t, y) ∈ I × [minβ(t),max α(t)]. Let λ = max{fx(t, x) : (t, x) ∈ I ×
[minβ(t),max α(t)]}, then 0 < λ ≤ π2

4 . Now, set w0 = β and consider the linear
problem

−x′′(t)− λx(t) = F (t, p(α(t), x(t), w0(t)), w0(t))− λp(α(t), x(t), w0(t)), t ∈ I,

x′(0) = A, x′(1) = B.

(3.4)
This is equivalent to the integral equation

x(t)

= Pλ(t) +
∫ 1

0

Gλ(t, s)
[
F (s, p(α(s), x(s), w0(s)), w0(s))− λp(α(s), x(s), w0(s))

]
ds.
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Since Pλ(t) and F (t, p(α, x, w0), w0)−λp(α, x, w0) are continuous and bounded, this
integral equation has a fixed point w1 (say) by the Schauder fixed point theorem.
Moreover,

F (t, p(α(t), w0(t), w0(t)), w0(t))− λp(α(t), w0(t), w0(t))

= f(t, w0(t))− λw0(t)

≤ −w′′0 (t)− λw0(t), t ∈ I,

and

F (t, p(α(t), α(t), w0(t)), w0(t))− λp(α(t), α(t), w0(t))

≥ f(t, α(t))− λα(t)

≥ −α′′(t)− λα(t), t ∈ I.

This implies that α, w0 are lower and upper solutions of (3.4). Now, we show that

w0(t) ≤ w1(t) ≤ α(t) on I.

For this, set v(t) = w1(t)−w0(t), then the boundary conditions imply that v′(0) ≥
0, v′(1) ≤ 0. Further, in view of the condition fx(t, x) ≤ λ for (t, x) ∈ I ×
[minβ(t),max α(t)] and (3.2), we have

−v′′(t)− λv(t) = (−w′′1 (t)− λw1(t))− (−w′′0 (t)− λw0(t))

≤ (fx(t, w0(t))− λ)(p(α(t), w1(t), w0(t))− w0(t)) ≤ 0.

Thus, by anti-maximum principle, we obtain v(t) ≥ 0, t ∈ I. Similarly, α(t) ≥
w1(t). Thus,

w0(t) ≤ w1(t) ≤ α(t), t ∈ I. (3.5)
In view of (3.3) and the fact that w1 is a solution of (3.4) with the property (3.5),
we have

−w′′1 (t) = F (t, w1(t), w0(t)) ≥ f(t, w1(t))

w′1(0) = A, w′1(1) = B,
(3.6)

which implies that w1 is an upper solution of (2.2).
Now, consider the problem

−x′′(t)− λx(t) = F (t, p(α(t), x(t), w1(t)), w1(t))− λp(α(t), x(t), w1(t)), t ∈ I,

x′(0) = A, x′(1) = B.

(3.7)
Denote by w2 a solution of (3.7). In order to show that

w1(t) ≤ w2(t) ≤ α(t), t ∈ I, (3.8)

set v(t) = w2(t) − w1(t), then v′(0) = 0, v′(1) = 0. Further, in view of (3.2) and
the condition fx(t, x) ≤ λ for (t, x) ∈ I × [minβ(t),max α(t)], we obtain

− v′′(t)− λv(t)

≤ F (t, p(α(t), w2(t), w1(t)), w1(t))− λp(α(t), w2(t), w1(t))− (f(t, w1(t))− λw1(t))

≤ (fx(t, w1(t))− λ)(p(α(t), w2(t), w1(t))− w1(t)) ≤ 0, t ∈ I.

Hence w2(t) ≥ w1(t) follows from the anti-maximum principle. Similarly, we can
show that w2(t) ≤ α(t) on I.

Continuing this process, we obtain a monotone sequence {wn} of solutions sat-
isfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ · · · ≤ wn(t) ≤ α(t), t ∈ I, (3.9)
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where, the element wn of the sequence {wn} that for t ∈ I, satisfies

−x′′(t)− λx(t) = F (t, p(α(t), x(t), wn−1(t)), wn−1(t))− λp(α(t), x(t), wn−1(t)),

x′(0) = A, x′(1) = B.

That is,

−w′′n(t) = F (t, wn(t), wn−1(t)), t ∈ I,

w′n(0) = A, w′n(1) = B.

Employing the standard argument [8], it follows that the convergence of the se-
quence is uniform. If x(t) is the limit point of the sequence, since F is continuous,
we have

lim
n→∞

F (t, wn(t), wn−1(t)) = F (t, x(t), x(t)) = f(t, x(t))

which implies that, x is a solution the boundary value problem (2.2).
Now, we show that the convergence of the sequence is quadratic. For this,

set en(t) = x(t) − wn(t), t ∈ I, n ∈ N, where x is a solution of (2.2). Note
that, en(t) ≥ 0 on I and e′n(0) = 0, e′n(1) = 0. Let ρ = min

{
fx(t, x) : (t, x) ∈

I × [minβ(t),max α(t)]
}
, then 0 < ρ < π2

4 . Using Taylor’s theorem and (3.2), we
obtain
− e′′n(t)

= −x′′(t) + w′′n(t) = f(t, x(t))− F (t, wn(t), wn−1(t))

= f(t, wn−1(t)) + fx(t, wn−1(t))(x(t)− wn−1(t)) +
fxx(t, ξ(t))

2!
(x(t)− wn−1(t))2

− [f(t, wn−1(t)) + fx(t, wn−1(t))(wn(t)− wn−1(t))]

= fx(t, wn−1(t))en(t) +
fxx(t, ξ(t))

2!
e2
n−1(t)

≥ ρen(t) +
fxx(t, ξ(t))

2!
‖en−1‖2, t ∈ I

(3.10)
where, wn−1(t) < ξ(t) < x(t). Thus, by comparison results, the error function en

satisfies en(t) ≤ r(t), t ∈ I, where r is the unique solution of the boundary-value
problem

−r′′(t)− ρr(t) =
fxx(t, ξ(t))

2!
‖en−1‖2, t ∈ I

r′(0) = 0, r′(1) = 0,
(3.11)

and

r(t) =
∫ 1

0

Gρ(t, s)
fxx(t, ξ(s))

2!
‖en−1‖2ds ≤ δ‖en−1‖2,

where δ = max{ 1
2 |Gρ(t, s)fxx(s, x)| : (t, x) ∈ I×[minβ(t),max α(t)]}. Thus ‖en‖ ≤

δ‖en−1‖2. �

Remark 3.2. In (A2), if we replace the concavity assumption fxx(t, x) ≤ 0
on I × [minβ(t),max α(t)] by the convexity assumption fxx(t, x) ≥ 0 on I ×
[minβ(t),max α(t)]. Then we have the relations

f(t, x) ≥ F (t, x, y)

f(t, x) = F (t, x, x),
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for x, y ∈ [minβ(t),max α(t)], t ∈ [0, 1], instead of (3.3) and we obtain a monoton-
ically nonincreasing sequence

α(t) ≥ w1(t) ≥ w2(t) ≥ · · · ≥ wn(t) ≥ β(t), t ∈ I,

of solutions of linear problems which converges uniformly and quadratically to a
solution of (2.2).

4. Generalized quasilinearization technique

Now we introduce an auxiliary function φ to relax the concavity(convexity) con-
ditions on the function f and hence prove results on the generalized quasilineariza-
tion. Let

(B1) α, β ∈ C2(I) are lower and upper solutions of (2.2) respectively, such that
α(t) ≥ β(t) on I.

(B2) f ∈ C2(I × R) and is such that 0 < fx(t, x) ≤ π2

4 for (t, x) ∈ I ×
[minβ(t),max α(t)] and

∂2

∂2x
(f(t, x) + φ(t, x)) ≤ 0

on I × [minβ(t),max α(t)], for some function φ ∈ C2(I × R) satisfies
φxx(t, x) ≤ 0 on I × [minβ(t),max α(t)].

Theorem 4.1. Under assumptions (B1)-(B2), there exists a monotone sequence
{wn} of solutions converging uniformly and quadratically to a solution of the prob-
lem (2.2).

Proof. Define F : I × R → R by

F (t, x) = f(t, x) + φ(t, x). (4.1)

Then, in view of (B2), we have F (t, x) ∈ C2(I × R) and

Fxx(t, x) ≤ 0 on I × [minβ(t),max α(t)], (4.2)

which implies
f(t, x) ≤ F (t, y) + Fx(t, y)(x− y)− φ(t, x), (4.3)

for (t, x), (t, y) ∈ I × [minβ(t),max α(t)]. Using Taylor’s theorem on φ, we obtain

φ(t, x) = φ(t, y) + φx(t, y)(x− y) +
φxx(t, η)

2!
(x− y)2,

where x, y ∈ R, t ∈ I and η lies between x and y. In view of (B2), we have

φ(t, x) ≤ φ(t, y) + φx(t, y)(x− y), (4.4)

for (t, x), (t, y) ∈ I × [minβ(t),max α(t)] and

φ(t, x) ≥ φ(t, y) + φx(t, y)(x− y)− M

2
‖x− y‖2, (4.5)

for (t, x), (t, y) ∈ I × [minβ(t),max α(t)], where

M = max{|φxx(t, x)| : (t, x) ∈ I × [minβ(t),max α(t)]}.

Using (4.5) in (4.3), we obtain

f(t, x) ≤ f(t, y) + fx(t, y)(x− y) +
M

2
‖x− y‖2, (4.6)
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for (t, x), (t, y) ∈ I × [minβ(t),max α(t)]. Define

F ∗(t, x, y) = f(t, y) + fx(t, y)(x− y) +
M

2
‖x− y‖2, (4.7)

for t ∈ I, x, y ∈ R. then, F ∗(t, x, y) is continuous and for (t, x), (t, y) ∈ I ×
[minβ(t),max α(t)], satisfies the following relations

f(t, x) ≤ F ∗(t, x, y)

f(t, x) = F ∗(t, x, x).
(4.8)

Now, we set β = w0 and consider the Neumann problem

−x′′(t)− λx(t) = F ∗(t, p(α(t), x(t), w0(t)), w0(t))− λp(α(t), x(t), w0(t)), t ∈ I,

x′(0) = A, x′(1) = B,

(4.9)
where λ and p are the same as defined in Theorem 3.1. Since F ∗(t, p(α, x, w0), w0)−
λp(α, x, w0) is continuous and bounded, it follows that the problem (4.9) has a
solution. Also, we note that any solution x of (4.9) which satisfies

w0(t) ≤ x(t) ≤ α(t), t ∈ I, (4.10)

is a solution of

−x′′(t) = F ∗(t, x(t), w0(t)), t ∈ I,

x′(0) = A, x′(1) = B,

and in view of (4.8), F ∗(t, x(t), w0(t)) ≥ f(t, x(t)). It follows that any solution x
of (4.9) with the property (4.10) is an upper solution of (2.2). Now, set v(t) =
α(t) − x(t), where x is a solution of (4.9), then v′(0) ≥ 0, v′(1) ≤ 0. Moreover,
using (B2) and (4.8), we obtain

− v′′(t)− λv(t)

= (−α′′(t)− λα(t))− (−x′′(t)− λx(t))

≤ (f(t, α(t))− λα(t))− [F ∗(t, p(α(t), x(t), w0(t)), w0(t))− λp(α(t), x(t), w0(t))]

≤ (f(t, α(t))− λα(t))− [f(t, p(α(t), x(t), w0(t)))− λp(α(t), x(t), w0(t))] ≤ 0.

Hence, by anti-maximum principle, α(t) ≥ x(t), t ∈ I. Similarly, w0(t) ≤ x(t),
t ∈ I. Continuing this process we obtain a monotone sequence {wn} of solutions
satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ w3(t) ≤ · · · ≤ wn−1(t) ≤ wn(t) ≤ α(t), t ∈ I.

The same arguments as in Theorem 3.1, shows that the sequence converges to a
solution x of the boundary value problem (2.2).

Now we show that the convergence of the sequence of solutions is quadratic. For
this, we set en(t) = x(t)−wn(t), t ∈ I, where x is a solution of the boundary-value
problem (2.2). Note that, en(t) ≥ 0 on I and, e′n(0) = 0, e′n(1) = 0. Using Taylor’s
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theorem, (4.4) and the fact that ‖wn − wn−1‖ ≤ ‖en−1‖, we obtain

− e′′n(t)

= −x′′(t) + w′′n(t)

= (F (t, x(t))− φ(t, x(t)))− F ∗(t, wn(t), wn−1(t))

= F (t, wn−1(t)) + Fx(t, wn−1(t))(x(t)− wn−1(t)) +
Fxx(t, ξ(t))

2
(x(t)− wn−1(t))2

− [φ(t, wn−1(t)) + φx(t, wn−1(t))(x(t)− wn−1(t))]

− [f(t, wn−1(t)) + fx(t, wn−1(t))(wn(t)− wn−1(t)) +
M

2
‖wn − wn−1‖2]

= fx(t, wn−1(t))en(t) +
Fxx(t, ξ(t))

2
e2
n−1(t)−

M

2
‖wn − wn−1‖2

≥ fx(t, wn−1(t))en(t)− (
|Fxx(t, ξ(t))|

2
+

M

2
)‖en−1‖2

≥ ρen(t)−Q‖en−1‖2, t ∈ I,

where, wn−1(t) ≤ ξ(t) ≤ x(t),

Q = max{ |Fxx(t, x)|
2

+
M

2
: (t, x) ∈ I × [minβ(t),max α(t)]}

and ρ is defined as in Theorem 3.1. Thus, by comparison results en(t) ≤ r(t), t ∈ I,
where r is a unique solution of the linear problem

−r′′(t)− ρr(t) = −Q‖en−1‖2, t ∈ I

r′(0) = 0, r′(1) = 0,

and

r(t) = Q

∫ 1

0

|Gρ(t, s)|‖en−1‖2ds ≤ σ‖en−1‖2,

where σ = Qmax{|Gρ(t, s)| : (t, s) ∈ I × I}. Thus ‖en‖ ≤ σ‖en−1‖2. �
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