Electronic Journal of Differential Equations, Vol. 2005(2005), No. 05, pp. 1-20. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

MULTIPLICITY OF SYMMETRIC SOLUTIONS FOR A NONLINEAR EIGENVALUE PROBLEM IN \mathbb{R}^{n}

DANIELA VISETTI

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we study the nonlinear eigenvalue field equation } \\
& \qquad-\Delta u+V(|x|) u+\varepsilon\left(-\Delta_{p} u+W^{\prime}(u)\right)=\mu u
\end{aligned}
$$

where u is a function from \mathbb{R}^{n} to \mathbb{R}^{n+1} with $n \geq 3, \varepsilon$ is a positive parameter and $p>n$. We find a multiplicity of solutions, symmetric with respect to an action of the orthogonal group $O(n)$: For any $q \in \mathbb{Z}$ we prove the existence of finitely many pairs (u, μ) solutions for ε sufficiently small, where u is symmetric and has topological charge q. The multiplicity of our solutions can be as large as desired, provided that the singular point of W and ε are chosen accordingly.

1. Introduction

In this paper, we find infinitely many solutions of the nonlinear eigenvalue field equation

$$
\begin{equation*}
-\Delta u+V(|x|) u+\varepsilon\left(-\Delta_{p} u+W^{\prime}(u)\right)=\mu u \tag{1.1}
\end{equation*}
$$

where u is a function from \mathbb{R}^{n} to \mathbb{R}^{n+1} with $n \geq 3, \varepsilon$ is a positive parameter and $p \in \mathbb{N}$ with $p>n$.

The choice of the nonlinear operator $-\Delta_{p}+W^{\prime}$ is very important. The presence of the p-Laplacian comes from a conjecture by Derrick (see [14]). He was looking for a model for elementary particles, which extended the features of the sine-Gordon equation in higher dimension; he showed that equation

$$
-\Delta u+W^{\prime}(u)=0
$$

has no nontrivial stable localized solutions for any $W \in C^{1}$ on \mathbb{R}^{n} with $n \geq 2$. He proposed then to consider a higher power of the derivatives in the Lagrangian function and this has been done for the first time in [6]. So the p-Laplacian is responsible for the existence of nontrivial solutions. As concerns W^{\prime}, it denotes the gradient of a function W, which is singular in a point: this fact constitutes a sort of topological constraint and permits to characterize the solutions of (1.1) by a topological invariant, called topological charge (see [6).

The free problem

$$
-\Delta u-\varepsilon \Delta_{6} u+W^{\prime}(u)=0
$$

[^0]has been studied in [6], while the concentration of the solutions has been considered in [1]. In [7] and [8] the authors have studied problem (1.1) respectively in a bounded domain and in \mathbb{R}^{n}. In [3] the authors have proved the existence of infinitely many solutions of the free problem, which are symmetric with respect to the action of the orthogonal group $O(n)$.

In this paper, we find a multiplicity of solutions, symmetric with respect to the action considered in [3], of problem (1.1) in \mathbb{R}^{n} : For any $q \in \mathbb{Z}$ we prove the existence of finitely many pairs (u, μ) solutions of problem (1.1) for ε sufficiently small, where u is symmetric and has topological charge q. The multiplicity of the solutions can be as large as one wants, provided that the singular point $\xi_{\star}=\left(\xi_{0}, 0\right)$ $\left(\xi_{0} \in \mathbb{R}, 0 \in \mathbb{R}^{n}\right.$) of W and ε are chosen accordingly.

The basic idea is to consider problem (1.1) as a perturbation of the linear problem when $\epsilon=0$. In terms of the associated energy functionals, one passes from the non-symmetric functional J_{ϵ} (defined in 2.10) to the symmetric functional J_{0}. Non-symmetric perturbations of a symmetric problem, in order to preserve critical values, have been studied by several authors. We recall only [2], which seems to be the first work on the subject, and the papers [10] and [11].

In fact, the existence result is a result of preservation for the functional J_{ϵ} of some critical values of the functional J_{0}, constrained on the unitary sphere of $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$.

Since the topological charge divides the domain Λ of the energy functional J_{ϵ} into connected components Λ_{q} with $q \in \mathbb{Z}$, the solutions are found in each connected component and in two different ways: as minima and as min-max critical points of the energy functional constrained on the unitary sphere of $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$. More precisely we can state:

Given $q \in \mathbb{Z}$, for any $\xi_{\star}=\left(\xi_{0}, 0\right)$ (with $\xi_{0}>0$ and $0 \in \mathbb{R}^{n}$) and for any $\varepsilon>0$, there exist $\mu_{1}(\varepsilon)$ and $u_{1}(\varepsilon)$ respectively eigenvalue and eigenfunction of the problem (1.1), such that the topological charge of $u_{1}(\varepsilon)$ is q.

Moreover, given $q \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$, we consider $\xi_{\star}=\left(\xi_{0}, 0\right)$ with ξ_{0} large enough and $0 \in \mathbb{R}^{n}$. Let λ_{j} be the eigenvalues of the linear problem (1.1) with $\epsilon=0$. Then for ε sufficiently small and for any $j \leq k$ with $\lambda_{j-1}<\lambda_{j}$, there exist $\mu_{j}(\varepsilon)$ and $u_{j}(\varepsilon)$ respectively eigenvalue and eigenfunction of the problem (1.1), such that the topological charge of $u_{j}(\varepsilon)$ is q.

2. Functional setting

Statement of the problem. We consider from now on the field equation

$$
\begin{equation*}
-\Delta u+V(|x|) u+\varepsilon^{r}\left(-\Delta_{p} u+W^{\prime}(u)\right)=\mu u \tag{2.1}
\end{equation*}
$$

where u is a function from \mathbb{R}^{n} to \mathbb{R}^{n+1} with $n \geq 3, \epsilon$ is a positive parameter and $p, r \in \mathbb{N}$ with $p>n$ and $r>p-n$ (for technical reasons we prefer to re-scale the parameter ϵ). The function V is real and we denote with W^{\prime} the gradient of a function $W: \mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\} \rightarrow \mathbb{R}$, where ξ_{\star} is a point of \mathbb{R}^{n+1}, different from the origin, which for simplicity we choose on the first component:

$$
\begin{equation*}
\xi_{\star}=\left(\xi_{0}, 0\right), \tag{2.2}
\end{equation*}
$$

with $\xi_{0} \in \mathbb{R}, \xi_{0}>0$ and $0 \in \mathbb{R}^{n}$.
Throughout the paper, we assume the following hypotheses on the function V : $[0,+\infty) \rightarrow \mathbb{R}:$
(V1) $\lim _{r \rightarrow+\infty} V(r)=+\infty$
(V2) $V(|x|) e^{-|x|} \in L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)$
(V3) ess inf ${ }_{r \in[0,+\infty)} V(r)>0$
The assumptions on the function $W: \mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\} \rightarrow \mathbb{R}$ are as follows:
(W1) $W \in C^{1}\left(\mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\}, \mathbb{R}\right)$
(W2) $W(\xi) \geq 0$ for all $\xi \in \mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\}$ and $W(0)=0$
(W3) There exist two constants $c_{1}, c_{2}>0$ such that

$$
\xi \in \mathbb{R}^{n+1}, 0<|\xi|<c_{1} \Longrightarrow W\left(\xi_{\star}+\xi\right) \geq \frac{c_{2}}{|\xi|^{\frac{n p}{p-n}}}
$$

(W4) There exist two constants $c_{3}, c_{4}>0$ such that

$$
\xi \in \mathbb{R}^{n+1}, 0 \leq|\xi|<c_{3} \Longrightarrow\left|W^{\prime}(\xi)\right| \leq c_{4}|\xi|
$$

(W5) For all $\xi \in \mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\}, \xi=\left(\xi^{1}, \tilde{\xi}\right)$ with $\xi^{1} \in \mathbb{R}, \tilde{\xi} \in \mathbb{R}^{n}$ and for all $g \in O(n)$, there holds

$$
W\left(\xi^{1}, g \tilde{\xi}\right)=W\left(\xi^{1}, \tilde{\xi}\right)
$$

The space E. We define the following functional spaces:
$\Gamma\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ with respect to the norm

$$
\begin{equation*}
\|z\|_{\Gamma\left(\mathbb{R}^{n}, \mathbb{R}\right)}^{2}=\int_{\mathbb{R}^{n}}\left[V(|x|)|z(x)|^{2}+|\nabla z(x)|^{2}\right] d x \tag{2.3}
\end{equation*}
$$

$\Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{\Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}=\int_{\mathbb{R}^{n}}\left[V(|x|)|u(x)|^{2}+|\nabla u(x)|^{2}\right] d x \tag{2.4}
\end{equation*}
$$

For $s \geq 1$, we set

$$
\begin{equation*}
\|\nabla u\|_{L^{s}}^{s}=\int_{\mathbb{R}^{n}}|\nabla u|^{s} d x=\sum_{i=1}^{n+1}\left\|\nabla u^{i}\right\|_{L^{s}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}^{s} \tag{2.5}
\end{equation*}
$$

with $u=\left(u^{1}, u^{2}, \ldots, u^{n+1}\right)$.
The spaces $\Gamma\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $\Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ are Hilbert spaces, with scalar products

$$
\begin{align*}
\left(z_{1}, z_{2}\right)_{\Gamma\left(\mathbb{R}^{n}, \mathbb{R}\right)} & =\int_{\mathbb{R}^{n}}\left[V(|x|) z_{1} z_{2}+\nabla z_{1} \cdot \nabla z_{2}\right] d x \tag{2.6}\\
\left(u_{1}, u_{2}\right)_{\Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} & =\int_{\mathbb{R}^{n}}\left[V(|x|) u_{1} \cdot u_{2}+\nabla u_{1} \cdot \nabla u_{2}\right] d x \tag{2.7}
\end{align*}
$$

We recall a compact embedding theorem (see for example [4) into L^{2}.
Theorem 2.1. The embedding of the space $\Gamma\left(\mathbb{R}^{n}, \mathbb{R}\right)$ into the space $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is compact.

We define the Banach space E as the completion of the space $C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{E}=\|u\|_{\Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}+\|\nabla u\|_{L^{p}} . \tag{2.8}
\end{equation*}
$$

The space E satisfies some useful properties which are listed in the next proposition. They follow from Sobolev embedding theorem and from [3, Proposition 8].
Proposition 2.2. The Banach space E has the following properties:
(1) It is continuously embedded into $L^{s}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ for $2 \leq s \leq+\infty$;
(2) It is continuously embedded into $W^{1, p}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$;
(3) There exist two constants $C_{0}, C_{1}>0$ such that for every $u \in E$

$$
\begin{gathered}
\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \leq C_{0}\|u\|_{E} \\
|u(x)-u(y)| \leq C_{1}|x-y|^{1-\frac{n}{p}}\|u\|_{W^{1, p}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}
\end{gathered}
$$

(4) If $u \in E$ then $\lim _{|x| \rightarrow \infty} u(x)=0$.

The energy functional J_{ϵ}. In the space E, by Proposition 2.2, it is possible to consider the open subset

$$
\begin{equation*}
\Lambda=\left\{u \in E: \xi_{\star} \notin u\left(\mathbb{R}^{n}\right)\right\} \tag{2.9}
\end{equation*}
$$

On Λ we consider the functional

$$
\begin{equation*}
J_{\epsilon}(u)=\int_{\mathbb{R}^{n}}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{2} V(|x|)|u|^{2}+\frac{\epsilon^{r}}{p}|\nabla u|^{p}+\epsilon^{r} W(u)\right] d x \tag{2.10}
\end{equation*}
$$

which is the energy functional associated to the problem (2.1).
It is easy to verify the following lemma (see Lemma 2.3 of [8]).
Lemma 2.3. The functional J_{ϵ} is of class C^{1} on the open set Λ of E.
The topological charge. On the open set Λ a topological invariant can be defined. Let Σ be the sphere of center ξ_{\star} and radius ξ_{0} in \mathbb{R}^{n+1}. Let P be the projection of $\mathbb{R}^{n+1} \backslash\left\{\xi_{\star}\right\}$ onto Σ :

$$
\begin{equation*}
P(\xi)=\xi_{\star}+\frac{\xi-\xi_{\star}}{\left|\xi-\xi_{\star}\right|} \tag{2.11}
\end{equation*}
$$

Definition 2.4. For any $u \in \Lambda, u=\left(u^{1}, \ldots, u^{n+1}\right)$ the open and bounded set

$$
K_{u}=\left\{x \in \mathbb{R}^{n}: u^{1}(x)>\xi_{0}\right\}
$$

is called support of u. Then the topological charge of u is the number

$$
\operatorname{ch}(u)=\operatorname{deg}\left(P \circ u, K_{u}, 2 \xi_{\star}\right)
$$

To use some properties of the topological charge, we need to recall the following result, whose proof can be found in [6].

Proposition 2.5. If a sequence $\left\{u_{m}\right\} \subset \Lambda$ converges to $u \in \Lambda$ uniformly on $A \subset$ \mathbb{R}^{n}, then also $P \circ u_{m}$ converges to $P \circ u$ uniformly on A.

This proposition permits to prove the continuity of the charge with respect to the uniform convergence:

Theorem 2.6. For every $u \in \Lambda$ there exists $r=r(u)>0$ such that, for every $v \in \Lambda$

$$
\|v-u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \leq r \Longrightarrow \operatorname{ch}(v)=\operatorname{ch}(u)
$$

The connected components of Λ. The topological charge divides the open set Λ into the following sets, each of them associated to an integer number $q \in \mathbb{Z}$:

$$
\begin{equation*}
\Lambda_{q}=\{u \in \Lambda: \operatorname{ch}(u)=q\} . \tag{2.12}
\end{equation*}
$$

By Theorem 2.6. we can conclude that the sets Λ_{q} are open in E. Moreover it is easy to see that

$$
\Lambda=\bigcup_{q \in \mathbb{Z}} \Lambda_{q}, \quad \Lambda_{p} \cap \Lambda_{q}=\emptyset \text { if } p \neq q
$$

and each Λ_{q} is a connected component of Λ.

3. Symmetry and compactness properties

Action of $O(n)$. We consider the following action of the orthogonal group $O(n)$ on the space of the continuous functions $C\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$:

$$
\begin{align*}
& T: O(n) \times C\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right) \longrightarrow \\
&(g, u) \longmapsto \tag{3.1}\\
&\left.\longmapsto \mathbb{R}^{n}, \mathbb{R}^{n+1}\right) \\
& T_{g} u
\end{align*}
$$

where

$$
\begin{equation*}
T_{g} u(x)=\left(u^{1}(g x), g^{-1} \tilde{u}(g x)\right), \tag{3.2}
\end{equation*}
$$

with

$$
\begin{equation*}
u(x)=\left(u^{1}(x), \tilde{u}(x)\right)=\left(u^{1}(x), u^{2}(x), \ldots, u^{n+1}(x)\right) \tag{3.3}
\end{equation*}
$$

In particular $O(n)$ acts on the space E and so one can prove the following result.
Lemma 3.1. The open subset $\Lambda \subset E$ and the energy functional J_{ϵ} are invariant with respect to the action 3.1 3.3).
Remark 3.2. More precisely every connected component Λ_{q} of Λ is invariant with respect to the action $3.1+3.3$ of the orthogonal group $O(n)$. Moreover for any $u \in E$ and for any $g \in \widehat{O(n)}$

$$
\left\|T_{g} u\right\|_{E}=\|u\|_{E} .
$$

Let F denote the subspace of the fixed points with respect to the action 3.1 3.3 of $O(n)$ on E :

$$
\begin{equation*}
F=\left\{u \in E: \forall g \in O(n) T_{g} u=u\right\} \tag{3.4}
\end{equation*}
$$

Remark 3.3. The set F is a closed subspace.
The set

$$
\Lambda^{F}=\Lambda \cap F
$$

is a natural constraint for the energy functional J_{ϵ}. In fact, if $u \in \Lambda^{F}$ is a critical point for $\left.J_{\epsilon}\right|_{\Lambda^{F}}$, it is a global critical point (see [3]):
Lemma 3.4. For every $u \in \Lambda^{F}$ and $v \in E$, we have

$$
J_{\epsilon}^{\prime}(u)(v)=J_{\epsilon}^{\prime}(u)(P v),
$$

being P the projection of E onto F.
We denote by Λ_{q}^{F} the subset of the invariant functions of topological charge q :

$$
\Lambda_{q}^{F}=\Lambda_{q} \cap F
$$

Results of compactness. Next proposition provides a compact embedding for the subspace of the invariant functions of E into $L^{s}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$:
Proposition 3.5. The space F equipped with the norm $\|\cdot\|_{E}$ is compactly embedded into $L^{s}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ for every $s \in\left[2, \frac{2 n}{n-2}\right)$.

The proof is a consequence of [3, Proposition 4] and of Theorem 2.1.
We set

$$
\begin{equation*}
S=\left\{u \in E:\|u\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=1\right\} . \tag{3.5}
\end{equation*}
$$

To get some critical points of the functional J_{ϵ} on the C^{2} manifold $\Lambda \cap S$ we use the following version of Palais-Smale condition. For $J_{\epsilon} \in C^{1}(\Lambda, \mathbb{R})$, the norm of the derivative at $u \in S$ of the restriction $\hat{J}_{\epsilon}=\left.J_{\epsilon}\right|_{\Lambda \cap S}$ is defined by

$$
\left\|\hat{J}_{\epsilon}^{\prime}(u)\right\|_{\star}=\min _{t \in \mathbb{R}}\left\|J_{\epsilon}^{\prime}(u)-t g^{\prime}(u)\right\|_{E^{*}}
$$

where $g: E \rightarrow \mathbb{R}$ is the function defined by $g(u)=\int_{\mathbb{R}^{n}}|u(x)|^{2} d x$.
Definition 3.6. The functional J_{ϵ} is said to satisfy the Palais-Smale condition in $c \in \mathbb{R}$ on $\Lambda \cap S$ (on $\Lambda_{q} \cap S$, for $q \in \mathbb{Z}$) if, for any sequence $\left\{u_{i}\right\}_{i \in \mathbb{N}} \subset \Lambda \cap S\left(\left\{u_{i}\right\}_{i \in \mathbb{N}} \subset\right.$ $\left.\Lambda_{q} \cap S\right)$ such that $J_{\epsilon}\left(u_{i}\right) \rightarrow c$ and $\left\|\hat{J}_{\epsilon}^{\prime}\left(u_{i}\right)\right\|_{\star} \rightarrow 0$, there exists a subsequence which converges to $u \in \Lambda \cap S\left(u \in \Lambda_{q} \cap S\right)$.

To obtain the Palais-Smale condition, we need a few technical lemmas (see [8] and [6]).
Lemma 3.7. Let $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ be a sequence in Λ_{q} (with $q \in \mathbb{Z}$) such that the sequence $\left\{J_{\epsilon}\left(u_{i}\right)\right\}_{i \in \mathbb{N}}$ is bounded. We consider the open bounded sets

$$
\begin{equation*}
Z_{i}=\left\{x \in \mathbb{R}^{n}:\left|u_{i}(x)\right|>c_{3}\right\} \tag{3.6}
\end{equation*}
$$

Then the set $\cup_{i \in \mathbb{N}} Z_{i} \subset \mathbb{R}^{n}$ is bounded.
Lemma 3.8. Let $\left\{u_{i}\right\}_{i \in \mathbb{N}} \subset \Lambda$ be a sequence weakly converging to u and such that $\left\{J_{\epsilon}\left(u_{i}\right)\right\}_{i \in \mathbb{N}} \subset \mathbb{R}$ is bounded, then $u \in \Lambda$.
Lemma 3.9. For any $a>0$, there exists $d>0$ such that for every $u \in \Lambda$

$$
J_{\epsilon}(u) \leq a \quad \Rightarrow \quad \inf _{x \in \mathbb{R}^{n}}\left|u(x)-\xi_{\star}\right| \geq d
$$

Now it is possible to prove (see [8]) that the functional J_{ϵ} satisfies the PalaisSmale condition on $\Lambda \cap S$ for any $c \in \mathbb{R}$ and $0<\epsilon \leq 1$. As a consequence the following proposition holds:

Proposition 3.10. The functional J_{ϵ} satisfies the Palais-Smale condition on $\Lambda^{F} \cap S$ (on $\Lambda_{q}^{F} \cap S$ for $q \in \mathbb{Z}$) for any $c \in \mathbb{R}$ and $0<\epsilon \leq 1$.

Proof. Given a Palais-Smale sequence $\left\{u_{m}\right\}_{m \in \mathbb{N}}$ for J_{ϵ} on $\Lambda^{F} \cap S \subset \Lambda \cap S$, it strongly converges to a function $u \in \Lambda \cap S$ by Proposition 2.1 of [8]. As the subspace F is closed (see Remark 3.3), $u \in \Lambda^{F}$.

4. Eigenvalues of the Schrödinger operator

Existence of the eigenvalues. We define the following subspace of invariant functions with respect to the action of $O(n)$ (see 3.1 3.3) :

$$
\begin{equation*}
\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)=\left\{u \in \Gamma\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right): \forall g \in O(n) T_{g} u=u\right\} \tag{4.1}
\end{equation*}
$$

By Proposition 3.5 the identical embedding of $\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ into $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ is continuous and compact. Then there exists a monotone increasing sequence $\left\{\tilde{\lambda}_{m}\right\}_{m \in \mathbb{N}}$ of eigenvalues

$$
0<\tilde{\lambda}_{1} \leq \tilde{\lambda}_{2} \leq \cdots \leq \tilde{\lambda}_{m} \xrightarrow{m \rightarrow \infty}+\infty
$$

with

$$
\tilde{\lambda}_{m}=\inf _{E_{m} \in \mathcal{E}_{m}} \max _{v \in E_{m}, v \neq 0} \frac{\|v\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\|v\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}
$$

where \mathcal{E}_{m} is the family of all m-dimensional subspaces E_{m} of $\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$. Also there exists a sequence $\left\{\varphi_{m}\right\}_{m \in \mathbb{N}} \subset \Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ of eigenfunctions, orthonormal in $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$, such that

$$
\left(\varphi_{m}, v\right)_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=\tilde{\lambda}_{m}\left(\varphi_{m}, v\right)_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}, \quad \forall v \in \Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right), \quad \forall m \in \mathbb{N}
$$

Regularity of the eigenfunctions. The eigenfunctions φ_{m} have been found in the space $\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$. Nevertheless they possess some more regularity properties, as it can be shown using the following theorem:
Theorem 4.1. If $V(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$, then for any $z \in H^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that

$$
-\Delta z+V(x) z=\lambda z
$$

the following estimate holds:

$$
\begin{equation*}
|z(x)| \leq C_{a} e^{-a|x|} \tag{4.2}
\end{equation*}
$$

where $a>0$ is arbitrary and $C_{a}>0$ depends on a.
For the proof of this theorem, see [9, p. 169].
Proposition 4.2. The eigenfunctions $\varphi_{m} \in \Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$ of the Schrödinger operator $-\Delta+V(|x|)$ belong to the Banach space E.

Proof. We prove the result for the real-valued eigenfunctions e_{m} so that the statement of the proposition follows immediately. By the regularity result of Agmon-Douglis-Nirenberg, if $z \in \Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is such that $-\Delta z-\lambda z=-V z$ and if $V z \in$ $L^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right) \cap L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, then $z \in W^{2, p}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

So we only have to verify that $V z \in L^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right) \cap L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. By Theorem 4.1 and $\left(V_{2}\right)$ we get

$$
\int_{\mathbb{R}^{n}}|V(|x|) z(x)|^{p} d x \leq C\left\|V(|x|) e^{-|x|}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)}^{p}<+\infty
$$

Moreover, if $R>0$ is such that for $x \in \mathbb{R}^{n} \backslash B_{\mathbb{R}^{n}}(0, R) V(|x|)>1$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}|V(|x|) z(x)|^{2} d x \\
& <C\left(\int_{B_{\mathbb{R}^{n}(0, R)}}|V(|x|)|^{2} e^{-p|x|} d x+\int_{\mathbb{R}^{n} \backslash B_{\mathbb{R}^{n}}(0, R)}|V(|x|)|^{p} e^{-p|x|} d x\right)<+\infty
\end{aligned}
$$

Useful properties. We give here another variational characterization of the eigenvalues (see for example [13] and [16]) and we introduce the subspaces spanned by the eigenfunctions.
Definition 4.3. For $m \in \mathbb{N}$ we consider the following subspaces of $\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)$:

$$
\begin{align*}
& F_{m}=\operatorname{span}\left[\varphi_{1}, \ldots, \varphi_{m}\right] \tag{4.3}\\
& F_{m}^{\perp}=\left\{u \in \Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right):\left(u, \varphi_{i}\right)_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=0 \text { for } 1 \leq i \leq m\right\} \tag{4.4}
\end{align*}
$$

Lemma 4.4. The following properties hold:

$$
\begin{equation*}
\tilde{\lambda}_{m}=\min _{\substack{\left.u \in \Gamma_{F} \mathbb{R}^{n} \mathbb{R}^{n+1}\right), u \neq 0 \\\left(u, \varphi_{i}\right)_{L^{2}}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)=0 \\ \forall i=1, \ldots, m-1}} \frac{\|u\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\|u\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varphi_{i}, \varphi_{j}\right)_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=\tilde{\lambda}_{i} \delta_{i j} \quad \forall i, j \in \mathbb{N} \tag{4.6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
u \in F_{m}, u \neq 0 \quad \Longrightarrow \quad \tilde{\lambda}_{1} \leq \frac{\|u\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\|u\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}} \leq \tilde{\lambda}_{m} \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
u \in F_{m}^{\perp}, u \neq 0 \Longrightarrow \frac{\|u\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\|u\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}} \geq \tilde{\lambda}_{m+1} \tag{4.8}
\end{equation*}
$$

5. Min-max values

The functions Φ_{ϵ}^{q}. We introduce here a particular class of functions in E, which are invariant with respect to the action of the orthogonal group $O(n)$. Let us consider the functions $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ defined in the following way (see [12]):

$$
\varphi(x)= \begin{cases}\binom{\varphi_{1}(|x|)}{\varphi_{2}(|x|) \frac{x}{|x|}} & \text { for } x \neq 0 \tag{5.1}\\ \binom{\varphi_{1}(0)}{0} & \text { for } x=0\end{cases}
$$

where $\varphi_{i}:[0,+\infty) \rightarrow \mathbb{R}$ for $i=1,2$. In fact for any $g \in O(n)$ and $x \in \mathbb{R}^{n}$

$$
T_{g} \varphi(x)=\varphi(x)
$$

By Proposition 4.2, the set F_{m} defined in 4.3) is a subset of E. Then, for any $m \in \mathbb{N}$, let $S(m)$ denote the m-dimensional sphere:

$$
\begin{equation*}
S(m)=F_{m} \cap S \tag{5.2}
\end{equation*}
$$

where S has been defined in 3.5 .
Fixed an integer $k \in \mathbb{N}$, we introduce the number

$$
\begin{equation*}
M_{k}=\sup _{u \in S(k)}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \tag{5.3}
\end{equation*}
$$

Then we choose the first coordinate ξ_{0} of the point $\xi_{\star}=\left(\xi_{0}, 0\right)$ in such a way that

$$
\begin{equation*}
\xi_{0}>2 M_{k} \tag{5.4}
\end{equation*}
$$

We can now introduce for any $q \in \mathbb{Z} \backslash\{0\}$ the functions $\Phi_{a}^{q}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ of type (5.1):

$$
\Phi_{a}^{q}(x)= \begin{cases}\binom{\Phi_{a, 1}^{q}(|x|)}{\Phi_{a, 2}^{q}(|x|) \frac{x}{|x|}} & \text { for } x \neq 0 \tag{5.5}\\ \binom{\Phi_{a, 1}^{q}(0)}{0} & \text { for } x=0\end{cases}
$$

where

$$
\begin{gather*}
\Phi_{a, 1}^{q}(|x|)= \begin{cases}2 \xi_{0}[\cos (\pi|x|)+1] & \text { for } R_{1} \leq|x| \leq R_{2} \\
0 & \text { for } 0 \leq|x| \leq R_{1} \text { or }|x| \geq R_{2}\end{cases} \tag{5.6}\\
\qquad \Phi_{a, 2}^{q}(|x|)=a|x| e^{-|x|} \sin (\pm \pi|x|)
\end{gather*}
$$

with
(i) $a>0$
(ii) The sign in the argument of the sine in $\Phi_{a, 2}^{q}$ is equal to the sign of q,
(iii) R_{1} is a constant depending on the parity of q :

$$
R_{1}=R_{1}(q)= \begin{cases}0 & \text { if } q \text { is odd } \\ 1 & \text { if } q \text { is even }\end{cases}
$$

(iv) R_{2} is a positive constant depending on q :

$$
R_{2}=R_{2}(q)= \begin{cases}|q| & \text { if } q \text { is odd } \\ |q|+1 & \text { if } q \text { is even. }\end{cases}
$$

Next lemma computes the topological charge of the functions just defined (see [3).

Lemma 5.1. For any $q \in \mathbb{Z} \backslash\{0\}$, the functions Φ_{a}^{q} defined in (5.5), 5.6), with the hypotheses (i)-(iv), belong to E and have topological charge

$$
\operatorname{ch}\left(\Phi_{a}^{q}\right)=q
$$

Proof. The functions Φ_{a}^{q} belong to the space E. If we consider the components

$$
\begin{aligned}
f_{1}\left(x^{1}, x^{2}, \ldots, x^{n}\right) & =\Phi_{a, 1}^{q}(|x|) \\
f_{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right) & =\Phi_{a, 2}^{q}(|x|) \frac{x^{i}}{|x|}
\end{aligned}
$$

where $2 \leq i \leq n+1$, we have

$$
\begin{gathered}
\left|\nabla_{x} f_{1}\right|^{2}=\left|\Phi_{a, 1}^{q}{ }^{\prime}(|x|)\right|^{2} \\
\left|\nabla_{x} f_{i}\right|^{2} \leq C\left(\left|\Phi_{a, 2}^{q}{ }^{\prime}(|x|)\right|^{2}+\frac{\left|\Phi_{a, 2}^{q}(|x|)\right|^{2}}{|x|^{2}}\right)
\end{gathered}
$$

and consequently

$$
\begin{aligned}
\sum_{i=1}^{n+1}\left\|\nabla f_{i}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}^{2} & \leq C \int_{0}^{\infty}\left(\left|\Phi_{a, 1}^{q}{ }^{\prime}(r)\right|^{2}+\left|\Phi_{a, 2}^{q}{ }^{\prime}(r)\right|^{2}+\frac{\left|\Phi_{a, 2}^{q}(r)\right|^{2}}{r^{2}}\right) r^{n-1} d r \\
& <+\infty \\
\sum_{i=1}^{n+1}\left\|\nabla f_{i}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}^{p} & \leq C \int_{0}^{\infty}\left(\left|\Phi_{a, 1}^{q}{ }^{\prime}(r)\right|^{p}+\left|\Phi_{a, 2}^{q}{ }^{\prime}(r)\right|^{p}+\frac{\left|\Phi_{a, 2}^{q}(r)\right|^{p}}{r^{p}}\right) r^{n-1} d r \\
& <+\infty
\end{aligned}
$$

Moreover the following inequalities hold:

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} V(|x|) \sum_{i=0}^{n}\left|f_{i}(x)\right|^{2} d x \\
& \leq C \int_{R_{1}}^{R_{2}} V(r)\left(\Phi_{a, 1}^{q}(r)\right)^{2} r^{n-1} d r+\int_{\mathbb{R}^{n}} V(|x|)\left(\Phi_{a, 2}^{q}(|x|)\right)^{2} d x \\
& \leq C^{\prime}+\left\|V(|x|) e^{-|x|}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)}\left\|a^{2}|x|^{2} e^{-|x|}\right\|_{L^{q}\left(\mathbb{R}^{n}, \mathbb{R}\right)}<+\infty
\end{aligned}
$$

where $q=\frac{p}{p-1}$.
The functions Φ_{a}^{q} belong to the space Λ. In fact, if $\Phi_{a, 2}^{q}(|x|)=0$, then $|x| \in$ $\mathbb{N} \cup\{0\}$ and hence $\Phi_{a, 1}^{q}(|x|) \in\left\{0,4 \xi_{0}\right\}$, so that $\Phi_{a}^{q}\left(\mathbb{R}^{n}\right) \not \supset \xi_{\star}$.

The functions Φ_{a}^{q} have topological charge q. Let P be the projection introduced in 2.11) of \mathbb{R}^{n+1} onto the sphere Σ of center ξ_{\star} and radius ξ_{0} in \mathbb{R}^{n+1}; then

$$
P \circ \Phi_{a}^{q}(x)=\binom{\frac{\Phi_{a, 1}^{q}(|x|)-\xi_{0}}{\sqrt{\left(\Phi_{a, 1}^{q}(|x|)-\xi_{0}\right)^{2}+\left(\Phi_{a, 2}^{q}(|x|)\right)^{2}}}+\xi_{0}}{\frac{\Phi_{a, 2}^{q}(|x|)}{\sqrt{\left(\Phi_{a, 1}^{q}(|x|)-\xi_{0}\right)^{2}+\left(\Phi_{a, 2}^{q}(|x|)\right)^{2}}} \frac{x}{|x|}}
$$

If $K_{\Phi_{a}^{q}}$ is the support of Φ_{a}^{q}, we can consider on it the local coordinates obtained by the stereographic projection of the sphere Σ from the origin onto the plane $\Pi=\left\{\xi^{1}=2 \xi_{0}\right\}$:

$$
\begin{array}{cccc}
p: & \Sigma & \longrightarrow & \Pi \\
& \left(\xi^{1}, \xi^{2}, \ldots, \xi^{n+1}\right) & \longmapsto & 2 \xi_{0}\left(\frac{\xi^{2}}{\xi^{1}}, \frac{\xi^{3}}{\xi^{1}}, \ldots, \frac{\xi^{n+1}}{\xi^{1}}\right) .
\end{array}
$$

Then the function Φ_{a}^{q} in the new coordinates becomes

$$
\bar{\Phi}_{a}^{q}(x)=p \circ P \circ \Phi_{a}^{q}(x)=f_{a}^{q}(|x|) \frac{x}{|x|}
$$

where

$$
\begin{equation*}
f_{a}^{q}(|x|)=\frac{\Phi_{a, 2}^{q}(|x|)}{\Phi_{a, 1}^{q}(|x|)-\xi_{0}+\xi_{0} \sqrt{\left(\Phi_{a, 1}^{q}(|x|)-\xi_{0}\right)^{2}+\left(\Phi_{a, 2}^{q}(|x|)\right)^{2}}} \tag{5.7}
\end{equation*}
$$

The topological charge is therefore

$$
\operatorname{ch}\left(\Phi_{a}^{q}\right)=\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{\Phi_{a}^{q}}, 0\right)
$$

Let δ be a positive parameter, $\delta<\frac{3}{4}$ and let $i_{1}, i_{2} \in \mathbb{N} \cup\{0\}$, with

$$
i_{1}=R_{1}, \quad i_{2}=\max \left\{i \in \mathbb{N} \cup\{0\}: 2 i+1 \leq R_{2}\right\} .
$$

Then the sets

$$
K_{i}=\left\{x \in \mathbb{R}^{n}: 2 i-\delta<|x|<2 i+\delta\right\}
$$

for $i \in \mathbb{N} \cup\{0\}, i_{1} \leq i \leq i_{2}$, are disjoint and their union satisfies the inclusion:

$$
\bigcup_{i=i_{1}}^{i_{2}} K_{i} \subset K_{\Phi_{a}^{q}}
$$

Moreover this subset of $K_{\Phi_{a}^{q}}$ contains all the zeros of the function $\bar{\Phi}_{a}^{q}$, that is:

$$
\left\{x \in K_{\Phi_{a}^{q}}: \bar{\Phi}_{a}^{q}=0\right\} \subset \bigcup_{i=i_{1}}^{i_{2}} K_{i}
$$

By the excision and the additive properties of the topological degree we can write

$$
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{\Phi_{a}^{q}}, 0\right)=\sum_{i=i_{1}}^{i_{2}} \operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}, 0\right)
$$

To conclude we want to prove that

$$
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}, 0\right)= \begin{cases}\operatorname{sign}(q) & \text { for } i=0 \\ 2 \operatorname{sign}(q) & \text { for } i \in \mathbb{N}\end{cases}
$$

In fact consider the function

$$
v_{0}(x)=\frac{f_{a}^{q}(\delta)}{\delta} x
$$

where $f_{a}^{q}(|x|)$ is defined in 5.7 . Since v_{0} coincides with $\bar{\Phi}_{a}^{q}$ on the boundary of K_{0}, i.e. for any $x \in \partial K_{0}$

$$
\bar{\Phi}_{a}^{q}(x)=f_{a}^{q}(|x|) \frac{x}{|x|}=v_{0}(x)
$$

the degrees of the two functions coincide too, so

$$
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{0}, 0\right)=\operatorname{deg}\left(v_{0}, K_{0}, 0\right)=\operatorname{sign}(q)
$$

Finally, for $1 \leq i \leq i_{2}$, set

$$
K_{i}^{+}=\left\{x \in \mathbb{R}^{n}:|x|<2 i+\delta\right\}, \quad K_{i}^{-}=\left\{x \in \mathbb{R}^{n}:|x|<2 i-\delta\right\} ;
$$

then the degrees satisfy

$$
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}, 0\right)=\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}^{+}, 0\right)-\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}^{-}, 0\right)
$$

Analogously to the previous argument, we introduce the functions:

$$
v_{i}^{+}(x)=\frac{f_{a}^{q}(2 i+\delta)}{2 i+\delta} x, \quad v_{i}^{-}(x)=\frac{f_{a}^{q}(2 i-\delta)}{2 i-\delta} x
$$

As $v_{i}^{ \pm}$coincides with $\bar{\Phi}_{a}^{q}$ on the boundary of $K_{i}^{ \pm}$, we conclude that

$$
\begin{gathered}
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}^{+}, 0\right)=\operatorname{deg}\left(v_{i}^{+}, K_{i}^{+}, 0\right)=\operatorname{sign}(q) \\
\operatorname{deg}\left(\bar{\Phi}_{a}^{q}, K_{i}^{-}, 0\right)=\operatorname{deg}\left(v_{i}^{-}, K_{i}^{-}, 0\right)=-\operatorname{sign}(q)
\end{gathered}
$$

This completes the proof.
The following corollary is now immediate.
Corollary 5.2. For all $q \in \mathbb{Z}$ the connected component Λ_{q}^{F} is not empty.
Lemma 5.3. Fixed $q \in \mathbb{Z} \backslash\{0\}$, there exists $\hat{a}_{q}>0$ such that for every $a \geq \hat{a}_{q}$ the functions Φ_{a}^{q} have the following properties:
(i) The distance of Φ_{a}^{q} from the point ξ_{\star} is ξ_{0}, i.e.

$$
d\left(\Phi_{a}^{q}, \xi_{\star}\right)=\inf _{x \in \mathbb{R}^{n}}\left|\Phi_{a}^{q}(x)-\xi_{\star}\right|=\xi_{0}
$$

(ii) If we expand Φ_{a}^{q} of a factor $t \geq 1, t \Phi_{a}^{q} \in \Lambda^{F}$ and

$$
d\left(t \Phi_{a}^{q}, \xi_{\star}\right)=\inf _{x \in \mathbb{R}^{n}}\left|t \Phi_{a}^{q}(x)-\xi_{\star}\right|=\xi_{0}
$$

Proof. (i) We prove that there exists a sufficiently large such that

$$
\left|\Phi_{a}^{q}(x)-\xi_{\star}\right| \geq \xi_{0}
$$

for all $x \in \mathbb{R}^{n}$. For $x \in \mathbb{R}^{n}$ with $0 \leq|x| \leq R_{1}$ or $|x| \geq R_{2}$, it is immediate that

$$
\left|\Phi_{a}^{q}(x)-\xi_{\star}\right|^{2}=a^{2}|x|^{2} e^{-2|x|} \sin ^{2}(\pi|x|)+\xi_{0}^{2} \geq \xi_{0}^{2} .
$$

As for $x \in \mathbb{R}^{n}$ with $R_{1} \leq|x| \leq R_{2}$ there holds:

$$
\begin{aligned}
\left|\Phi_{a}^{q}(x)-\xi_{\star}\right|^{2} & =\xi_{0}^{2}[2 \cos (\pi|x|)+1]^{2}+a^{2}|x|^{2} e^{-2|x|} \sin ^{2}(\pi|x|) \\
& =\left(4 \xi_{0}^{2}-a^{2}|x|^{2} e^{-2|x|}\right) \cos ^{2}(\pi|x|)+4 \xi_{0}^{2} \cos (\pi|x|)+\xi_{0}^{2}+a^{2}|x|^{2} e^{-2|x|}
\end{aligned}
$$

Let $f_{a}:[0,+\infty) \rightarrow \mathbb{R}$ be the function

$$
f_{a}(r)=\left(4 \xi_{0}^{2}-a^{2} r^{2} e^{-2 r}\right) \cos ^{2}(\pi r)+4 \xi_{0}^{2} \cos (\pi r)+a^{2} r^{2} e^{-2 r}
$$

We consider the polynomial

$$
P(y)=P_{\alpha}(y)=\left(4 \xi_{0}^{2}-\alpha^{2}\right) y^{2}+4 \xi_{0}^{2} y+\alpha^{2}
$$

where $\alpha=\alpha_{a}(r)=a r e^{-r}$, on the interval $[-1,+1]$.
Now, if $\alpha^{2}=4 \xi_{0}^{2}$, the only zero of $P(y)$ is $y=-1$ and therefore on $[-1,1] P(y)$ is nonnegative. On the contrary, if $\alpha^{2} \neq 4 \xi_{0}^{2}$, the zeros of $P(y)$ are:

$$
y_{1,2}=\frac{-2 \xi_{0}^{2} \pm\left(\alpha^{2}-2 \xi_{0}^{2}\right)}{4 \xi_{0}^{2}-\alpha^{2}}=\left\{\begin{array}{l}
-1 \\
\frac{\alpha^{2}}{\alpha^{2}-4 \xi_{0}^{2}}
\end{array}\right.
$$

For $\alpha^{2}>4 \xi_{0}^{2}$ we have $y_{1}=-1$ and $y_{2}>1$, so $P(y) \geq 0$ on $[-1,1]$. For $2 \xi_{0}^{2} \leq \alpha^{2}<$ $4 \xi_{0}^{2}$, we have $y_{2} \leq-1$, so $P(y) \geq 0$ and consequently

$$
a^{2} r^{2} e^{-2 r} \geq 2 \xi_{0}^{2} \Longrightarrow f_{a}(r) \geq 0
$$

If we consider

$$
\begin{equation*}
a \geq \frac{\sqrt{2} \xi_{0}}{R_{2} e^{-R_{2}}} \tag{5.8}
\end{equation*}
$$

and $R_{1}=1$ (i.e. q even), there always holds $\alpha^{2} \geq 2 \xi_{0}^{2}$.
If on the contrary q is odd and so $R_{1}=0$, for a as in $5.8\left(\alpha_{a}(r)\right)^{2}<2 \xi_{0}^{2}$ for $0 \leq r<r_{1}$, where r_{1} is such that

$$
\begin{equation*}
\left(\alpha_{a}\left(r_{1}\right)\right)^{2}=2 \xi_{0}^{2} \tag{5.9}
\end{equation*}
$$

We choose a sufficiently large to have $r_{1} \leq \frac{1}{2}$: then $\cos (\pi r) \in(0,1]$ for any $r \in\left[0, r_{1}\right)$ and so

$$
\min _{r \in\left[0, r_{1}\right)} f_{a}(r) \geq 0
$$

(ii) For any $x \in \mathbb{R}^{n}$ with $0 \leq|x| \leq R_{1}$ or $|x| \geq R_{2}$, it is immediate that

$$
\left|t \Phi_{a}^{q}(x)-\xi_{\star}\right|^{2}=t^{2} a^{2}|x|^{2} e^{-2|x|} \sin ^{2}(\pi|x|)+\xi_{0}^{2} \geq \xi_{0}^{2}
$$

On the contrary for $x \in \mathbb{R}^{n}, R_{1} \leq|x| \leq R_{2}$, there holds:

$$
\begin{aligned}
\left|t \Phi_{a}^{q}(x)-\xi_{\star}\right|^{2}= & \xi_{0}^{2}[2 t \cos (\pi|x|)+2 t-1]^{2}+t^{2} a^{2}|x|^{2} e^{-2|x|} \sin ^{2}(\pi|x|) \\
= & t^{2}\left(4 \xi_{0}^{2}-a^{2}|x|^{2} e^{-2|x|}\right) \cos ^{2}(\pi|x|)+4 t(2 t-1) \xi_{0}^{2} \cos (\pi|x|) \\
& +\xi_{0}^{2}(2 t-1)^{2}+t^{2} a^{2}|x|^{2} e^{-2|x|}
\end{aligned}
$$

As before we consider $\widetilde{f}_{a}:[0,+\infty) \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
& \widetilde{f}_{a}(r) \\
& =t^{2}\left(4 \xi_{0}^{2}-a^{2} r^{2} e^{-2 r}\right) \cos ^{2}(\pi r)+4 t(2 t-1) \xi_{0}^{2} \cos (\pi r)+4 t(t-1) \xi_{0}^{2}+t^{2} a^{2} r^{2} e^{-2 r}
\end{aligned}
$$

The polynomial $P(y)$ becomes

$$
\widetilde{P}(y)=\widetilde{P}_{\alpha}(y)=t^{2}\left(4 \xi_{0}^{2}-\alpha^{2}\right) y^{2}+4 t(2 t-1) \xi_{0}^{2} y+4 t(t-1) \xi_{0}^{2}+t^{2} \alpha^{2}
$$

If $\alpha^{2}=4 \xi_{0}^{2}$, the only zero of $\widetilde{P}(y)$ is $y=-1$ and so on $[-1,1] \widetilde{P}(y)$ is nonnegative. If $\alpha^{2} \neq 4 \xi_{0}^{2}$, the zeros of $\widetilde{P}(y)$ are

$$
y_{1,2}=\frac{(2-4 t) \xi_{0}^{2} \pm\left(2 \xi_{0}^{2}-t \alpha^{2}\right)}{t\left(4 \xi_{0}^{2}-\alpha^{2}\right)}=\left\{\begin{array}{l}
-1 \\
\frac{4(1-t) \xi_{0}^{2}-t \alpha^{2}}{t\left(4 \xi_{0}^{2}-\alpha^{2}\right)}
\end{array}\right.
$$

For $\alpha^{2}>4 \xi_{0}^{2}$ we have $y_{1}=-1$ and $\underset{\sim}{y_{2}}>1$, then $\widetilde{P}(y) \geq 0$ in $[-1,1]$. For $2 \xi_{0}^{2} \leq \alpha^{2}<4 \xi_{0}^{2}$, there holds $y_{2} \leq-1$, so $\widetilde{P}(y) \geq 0$ and consequently

$$
a^{2} r^{2} e^{-2 r} \geq 2 \xi_{0}^{2} \Longrightarrow \tilde{f}_{a}(r) \geq 0
$$

Now, with the choice of a done in (i) and $R_{1}=1$ (q even), $\alpha^{2} \geq 2 \xi_{0}^{2}$.
Finally, if $R_{1}=0$ and a is as in $(i), \alpha^{2}<2 \xi_{0}^{2}$ for $0 \leq r<r_{1} \leq \frac{1}{2}$ (where r_{1} is as in 5.9.),

$$
\min _{r \in\left[0, r_{1}\right)} \widetilde{f}_{a}(r) \geq 0
$$

This completes the proof.

Definition 5.4. For any $q \in \mathbb{Z} \backslash\{0\}$ and for \hat{a}_{q} as in Lemma 5.3, we define the function

$$
\begin{equation*}
\Phi^{q}=\Phi_{\hat{a}_{q}}^{q} . \tag{5.10}
\end{equation*}
$$

Evidently for $i=1,2$ we pose $\left(\Phi^{q}\right)_{i}=\Phi_{\hat{a}_{q}, i}^{q}$.
Moreover we introduce the rescaled functions Φ_{ϵ}^{q}, with $q \in \mathbb{Z} \backslash\{0\}$ and $0<\epsilon \leq 1$:

$$
\begin{equation*}
\Phi_{\epsilon}^{q}(x)=\Phi^{q}\left(\frac{x}{\epsilon}\right) \tag{5.11}
\end{equation*}
$$

Remark 5.5. (1) The functions Φ_{ϵ}^{q} belong to Λ_{q}^{F}.
(2) By definition of Φ_{ϵ}^{q} and by Lemma 5.3 the image of Φ_{ϵ}^{q} does not intersect the point ξ_{\star} and the distance of the image from the point is ξ_{0}.
(3) Even if we expand the functions $\Phi_{\epsilon}^{q}(0<\epsilon \leq 1)$ of a factor $t \geq 1$, their image is such that they do not meet the point ξ_{\star} and the distance is still ξ_{0}. Hence $t \Phi_{\epsilon}^{q} \in \Lambda_{q}^{F}$ for all $t \geq 1$ and $\epsilon \in(0,1]$.

Remark 5.6. The norms of the functions Φ_{ϵ}^{q} satisfy the following equalities depending on the parameter ϵ :

$$
\begin{gather*}
\left\|\Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}=\epsilon^{n}\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \tag{5.12}\\
\left\|\nabla \Phi_{\epsilon}^{q}\right\|_{L^{2}}^{2}=\epsilon^{n-2}\left\|\nabla \Phi^{q}\right\|_{L^{2}}^{2} \tag{5.13}\\
\left\|\nabla \Phi_{\epsilon}^{q}\right\|_{L^{p}}^{p}=\frac{1}{\epsilon^{p-n}}\left\|\nabla \Phi^{q}\right\|_{L^{p}}^{p} \tag{5.14}
\end{gather*}
$$

The functions Φ_{ϵ}^{q} own some fundamental properties, which are presented in the following lemma.

Lemma 5.7. Given $q \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$, we consider $\xi_{\star}=\left(\xi_{0}, 0\right)$ with $\xi_{0}>2 M_{k}$, where

$$
M_{k}=\sup _{u \in S(k)}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}
$$

and $0 \in \mathbb{R}^{n}$. There exist $\hat{\rho}_{q}>0$ and $\bar{\epsilon}_{q}$, with $0<\bar{\epsilon}_{q} \leq 1$, such that for all $0<\epsilon \leq \bar{\epsilon}_{q}$ we have
(i) $\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \leq 1$ for all $u \in S(k)$,
(ii) $\inf _{\substack{\epsilon \in\left(0, \epsilon_{q}\right] \\ u \in S(k)}}\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}>0$,
(iii) $\inf _{\substack{x \in \mathbb{R}^{n} \\ \epsilon \in\left(\epsilon_{q}\right] \\ u \in S(k)}} \left\lvert\, \frac{\Phi_{\epsilon}^{q}(x)+\hat{\rho}_{q} u(x)}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}-\xi_{\star} \left\lvert\,>\frac{\xi_{0}}{2}\right., ~}\right.$
(iv) $\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} \in \Lambda_{q} \cap S$ for all $u \in S(k)$.

Proof. (i) For any $\rho>0$ and $0<\epsilon \leq 1$ we have

$$
\left\|\Phi_{\epsilon}^{q}+\rho u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \leq \epsilon^{\frac{n}{2}}\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}+\rho
$$

Let $\bar{\epsilon}_{q}$ be such that

$$
\begin{equation*}
\bar{\epsilon}_{q}<\left(\frac{1}{\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right)^{\frac{2}{n}}, \tag{5.15}
\end{equation*}
$$

Then there exists $\hat{\rho}_{q}>0$ such that $\left\|\Phi_{\bar{\epsilon}_{q}}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}+\hat{\rho}_{q} \leq 1$.
(ii) As $\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \geq \hat{\rho}_{q}-\left\|\Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}$, reducing if necessary $\bar{\epsilon}_{q}$, we get $\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}>0$.
(iii) By (ii) of Lemma 5.3 we deduce that for all $u \in S(k)$

$$
\inf _{\substack{x \in \in_{n} \\ \epsilon \in \in\left(0, \tau_{q}\right]}} \left\lvert\, \frac{\Phi_{\epsilon}^{q}(x)}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}-\xi_{\star} \mid=\xi_{0} .}\right.
$$

To get (iii) it is sufficient to prove that, reducing if necessary $\bar{\epsilon}_{q}$, for all $\epsilon \leq \bar{\epsilon}_{q}$

$$
\sup _{u \in S(k)} \frac{\hat{\rho}_{q}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}<\frac{\xi_{0}}{2}
$$

We observe that

$$
\begin{aligned}
\sup _{u \in S(k)} \frac{\hat{\rho}_{q}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} & \leq \frac{\hat{\rho}_{q} M_{k}}{\inf _{u \in S(k)}\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} \\
& \leq \frac{M_{k}}{1-\frac{\epsilon^{\frac{n}{2}}}{\hat{\rho}_{q}}\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} .
\end{aligned}
$$

Since $M_{k}<\frac{\xi_{0}}{2}$, for $\bar{\epsilon}_{q}$ sufficiently small we have (iii).
(iv) follows immediately from (iii).

The values $c_{\epsilon, j}^{q}$. Using the properties of the functions Φ_{ϵ}^{q} seen in Lemma 5.7, it is possible to introduce the following subsets of $\Lambda^{F} \cap S$:

Definition 5.8. Fixed $k \in \mathbb{N}, q \in \mathbb{Z} \backslash\{0\}$ and $0<\epsilon \leq \bar{\epsilon}_{q}$, where $\bar{\epsilon}_{q}$ is defined in Lemma 5.7. we set

$$
\begin{equation*}
\mathcal{M}_{\epsilon, j}^{q}=\left\{\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}: u \in S(j)\right\} \tag{5.16}
\end{equation*}
$$

with $j \leq k$ and $\hat{\rho}_{q}$ defined in Lemma 5.7. We pose by convention $\mathcal{M}_{\epsilon, 0}^{q}=\emptyset$.
Remark 5.9. We outline the following properties of the sets $\mathcal{M}_{\epsilon, j}^{q}$:
(i) $\mathcal{M}_{\epsilon, j-1}^{q} \subset \mathcal{M}_{\epsilon, j}^{q}$;
(ii) $\mathcal{M}_{\epsilon, j}^{q} \subset \Lambda_{q}^{F} \cap S$;
(iii) $\mathcal{M}_{\epsilon, j}^{q}$ is a compact set;
(iv) $\mathcal{M}_{\epsilon, j}^{q}$ is a sub-manifold of Λ_{q}^{F} for $0<\epsilon \leq \bar{\epsilon}_{q}$ (see Lemma 5.7.).

Next definition introduces the min-max values $c_{\epsilon, j}^{q}$.
Definition 5.10. Fixed $k \in \mathbb{N}$, for all $q \in \mathbb{Z} \backslash\{0\}, j \leq k$ and $0<\epsilon \leq \bar{\epsilon}_{q}\left(\bar{\epsilon}_{q}\right.$ is defined in Lemma 5.7), we define the following values:

$$
\begin{equation*}
c_{\epsilon, j}^{q}=\inf _{h \in \mathcal{H}_{\epsilon, j}^{q}} \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(h(v)), \tag{5.17}
\end{equation*}
$$

where $\mathcal{H}_{\epsilon, j}^{q}$ are the following sets of continuous transformations:

$$
\mathcal{H}_{\epsilon, j}^{q}=\left\{h: \Lambda_{q}^{F} \cap S \rightarrow \Lambda_{q}^{F} \cap S: h \text { continuous, }\left.h\right|_{\mathcal{M}_{\epsilon, j-1}^{q}}=\operatorname{id}_{\mathcal{M}_{\epsilon, j-1}^{q}}\right\} .
$$

We observe that $\mathcal{H}_{\epsilon, j+1}^{q} \subset \mathcal{H}_{\epsilon, j}^{q}$.
Lemma 5.11. Fixed $k \in \mathbb{N}$, for all $q \in \mathbb{Z} \backslash\{0\}, j<k$ and $0<\epsilon \leq \bar{\epsilon}_{q}$, we have
(i) $c_{\epsilon, j}^{q} \in \mathbb{R}$,
(ii) $c_{\epsilon, j}^{q} \leq c_{\epsilon, j+1}^{q}$.

6. Main Results

Minima. We recall now the Deformation Lemma:
Lemma 6.1 (Deformation Lemma). Let J be a C^{1}-functional defined on a C^{2} Finsler manifold E. Let c be a regular value for J. We assume that:
(i) J satisfies the Palais-Smale condition in c on M,
(ii) there exists $k>0$ such that the sublevel J^{c+k} is complete.

Then there exist $\delta>0$ and a deformation $\eta:[0,1] \times E \longrightarrow E$ such that:
(a) $\eta(0, u)=u$ for all $u \in E$,
(b) $\eta(t, u)=u$ for all $t \in[0,1]$ and u such that $|J(u)-c| \geq 2 \delta$,
(c) $J(\eta(t, u))$ is non-increasing in t for any $u \in E$,
(d) $\eta\left(1, J^{c+\delta}\right) \subset J^{c-\delta}$.

To apply Lemma 6.1 on each connected component Λ_{q}^{F}, with $q \in \mathbb{Z} \backslash\{0\}$, intersected with the unitary sphere S we need the completeness of the sub-levels of the functional J_{ϵ}. It is simple to verify next:
Lemma 6.2. For any $q \in \mathbb{Z}, \epsilon \in(0,1]$ and $c \in \mathbb{R}$, the subset $\Lambda_{q}^{F} \cap S \cap J_{\epsilon}^{c}$ of the Banach space E is complete.

Now we get easily the minimum values of the functional J_{ϵ} on each set $\Lambda_{q}^{F} \cap S$:
Theorem 6.3. Given $q \in \mathbb{Z}$, for any $\xi_{\star}=\left(\xi_{0}, 0\right)$ with $\xi_{0}>0$ and $0 \in \mathbb{R}^{n}$ and for any $\epsilon>0$, there exists a minimum for the functional J_{ϵ} on the subset $\Lambda_{q}^{F} \cap S$ of $\Lambda \cap S$.
Proof. For any $t \geq 1$ we have that $t \Phi^{q} \in \Lambda_{q}^{F}$ (see (iii) of Remark 5.5 and in particular the function $\frac{\Phi^{q}}{\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}$ is in $\Lambda_{q}^{F} \cap S$. This means that $\Lambda_{q}^{F} \cap S$ is not empty for all $q \in \mathbb{Z}$, since it is obvious that $\Lambda_{0}^{F} \cap S \neq \emptyset$.

The claim follows by the fact that $\Lambda_{q}^{F} \cap S$ is not empty, the functional J_{ϵ} is bounded from below and satisfies the Palais-Smale condition on $\Lambda_{q}^{F} \cap S$ (see Proposition 3.10 .
Remark 6.4. We point out that to have this result there is no need to require that the first coordinate ξ_{0} of the point ξ_{\star} is sufficiently large (see (5.4)). In fact this assumption is necessary to have properties (iii) and (iv) of Lemma 5.7. while here we only have to show that $\Lambda_{q}^{F} \cap S$ is not empty for all $q \in \mathbb{Z}$.
Critical values. The next theorem is an existence and multiplicity result of solutions for the problem $\left(P_{\epsilon}\right)$.

Theorem 6.5. Given $q \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$, we consider $\xi_{\star}=\left(\xi_{0}, 0\right)$ with $\xi_{0}>2 M_{k}$, where

$$
M_{k}=\sup _{u \in S(k)}\|u\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}
$$

and $0 \in \mathbb{R}^{n}$.
Then there exists $\hat{\epsilon}_{q} \in(0,1]$ such that for any $\epsilon \in\left(0, \hat{\epsilon}_{q}\right]$ and for any $2 \leq j \leq k$ with $\tilde{\lambda}_{j-1}<\tilde{\lambda}_{j}$, we get that $c_{\epsilon, j}^{q}$ is a critical value for the functional J_{ϵ} restricted to the manifold $\Lambda_{q}^{F} \cap S$. Moreover $c_{\epsilon, j-1}^{q}<c_{\epsilon, j}^{q}$.

The proof of this theorem is similar to the proof of Theorem 3.1 in [8], but for the convenience of the reader we summarize it here.

Proof. We begin with some notation: if $u \in F$ we define the projections

$$
\begin{equation*}
P_{F_{j}} u=\sum_{i=1}^{j}\left(u, \varphi_{i}\right)_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)} \varphi_{i}, \quad Q_{F_{j}} u=u-P_{F_{j}} u \tag{6.1}
\end{equation*}
$$

It is immediate that

$$
\begin{equation*}
\left(Q_{F_{j}} u, \varphi_{i}\right)_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=\tilde{\lambda}_{i}\left(Q_{F_{j}} u, \varphi_{i}\right)_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=0 \quad \forall i=1, \ldots, j \tag{6.2}
\end{equation*}
$$

We divide the argument into five steps.
Step 1 For any $h \in \mathcal{H}_{\epsilon, j}^{q}$ the intersection of the set $h\left(\mathcal{M}_{\epsilon, j}^{q}\right)$ with the set $\{u \in F$: $\left.\left(u, \varphi_{i}\right)_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}=0 \forall i=1, \ldots, j-1\right\}$ is not empty: in fact there exists $v \in \mathcal{M}_{\epsilon, j}^{q}$ such that $P_{F_{j-1}} h(v)=0$.

This is obtained by an argument of degree theory (for the proof see [7]).
Step 2 We prove that

$$
\begin{gather*}
\sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(v) \leq \tilde{\lambda}_{j}+\sigma(\epsilon) \tag{6.3}\\
c_{\epsilon, j}^{q} \leq \tilde{\lambda}_{j}+\sigma(\epsilon) \tag{6.4}
\end{gather*}
$$

where $\lim _{\epsilon \rightarrow 0} \sigma(\epsilon)=0$. First of all we verify that

$$
\begin{equation*}
\sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{0}(v) \leq \tilde{\lambda}_{j}+\sup _{u \in S(j)} \frac{\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}} . \tag{6.5}
\end{equation*}
$$

In fact by Definition 5.8 , 6.1 and 6.2 we have:

$$
\begin{aligned}
& \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{0}(v)= \sup _{u \in S(j)}\left\|\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
&= \sup _{u \in S(j)} \frac{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} \\
& \leq \sup _{u \in S(j)}\left(\frac{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}\right. \\
&\left.+\frac{\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}\right) \\
& \leq\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
& \leq \tilde{\lambda}_{j}+\sup _{u \in S(j)} \frac{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{}
\end{aligned}
$$

Using the definition of J_{ϵ} and 6.5, we prove the following inequalities:

$$
\begin{align*}
c_{\epsilon, j}^{q}= & \inf _{h \in \mathcal{H}_{\epsilon, j}^{q}} \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(h(v)) \\
\leq & \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(v) \\
\leq & \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{0}(v)+\epsilon^{r} \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} \int_{\mathbb{R}^{n}}\left(\frac{1}{p}|\nabla v|^{p}+W(v)\right) d x \\
\leq & \tilde{\lambda}_{j}+\sup _{u \in S(j)} \frac{\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}} \tag{6.6}\\
& +\frac{\epsilon^{r}}{p} \sup _{u \in S(j)} \frac{\left\|\nabla\left(\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right)\right\|_{L^{p}}^{p}}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{p}} \\
& +\epsilon^{r} \sup _{u \in S(j)} \int_{\mathbb{R}^{n}} W\left(\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right) d x .
\end{align*}
$$

At this point we note that $\lim _{\epsilon \rightarrow 0}\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}=0$, in fact

$$
\begin{aligned}
\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} & \leq\left\|\Phi_{\epsilon}^{q}\right\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
& =\int_{\mathbb{R}^{n}}\left|\nabla \Phi_{\epsilon}^{q}(x)\right|^{2} d x+\int_{\mathbb{R}^{n}} V(|x|)\left|\Phi_{\epsilon}^{q}(x)\right|^{2} d x
\end{aligned}
$$

where the right-hand side tends to zero for $\epsilon \rightarrow 0$, because 5.13 holds and

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} V(|x|)\left|\Phi_{\epsilon}^{q}(x)\right|^{2} d x= & \int_{\mathbb{R}^{n}} V(|x|)\left[\left|\left(\Phi^{q}\right)_{1}\left(\frac{|x|}{\epsilon}\right)\right|^{2}+\left|\left(\Phi^{q}\right)_{2}\left(\frac{|x|}{\epsilon}\right)\right|^{2}\right] d x \\
\leq & c \int_{\epsilon R_{1}}^{\epsilon R_{2}} V(r)\left|\left(\Phi^{q}\right)_{1}\left(\frac{r}{\epsilon}\right)\right|^{2} r^{n-1} d r \\
& +\left\|V(|x|) e^{-|x|}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)}\left\|e^{|x|}\left|\left(\Phi^{q}\right)_{2}\left(\frac{|x|}{\epsilon}\right)\right|^{2}\right\|_{L^{q}\left(\mathbb{R}^{n}, \mathbb{R}\right)} \\
\leq & \left(c \max _{r \in\left[0, R_{2}\right]} V(r) R_{2}^{n-1}\left(R_{2}-R_{1}\right)\right) \epsilon^{n} \\
& +\left(\left\|V(|x|) e^{-|x|}\right\|_{L^{p}\left(\mathbb{R}^{n}, \mathbb{R}\right)}\left\||x|^{2} e^{-|x|}\right\|_{L^{q}\left(\mathbb{R}^{n}, \mathbb{R}\right)}\right) \epsilon^{\frac{n}{q}}
\end{aligned}
$$

where q denotes the dual exponent of p.
Moreover by (ii) of Lemma 5.7 we obtain

$$
\sup _{0<\epsilon \leq \bar{\epsilon}} \sup _{u \in S(j)} \frac{1}{\left\|P_{F_{j}} \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}+\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}<+\infty
$$

in fact

$$
\begin{aligned}
&\left\|P_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \leq \epsilon^{n}\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
&\left\|Q_{F_{j}} \Phi_{\epsilon}^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \leq \epsilon^{n}\left\|\Phi^{q}\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}
\end{aligned}
$$

Therefore the second term of the last inequality of 6.6 goes to zero when ϵ goes to zero.

Now we observe that the following inequality holds:

$$
\epsilon^{r}\left\|\nabla \Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{p}}^{p} \leq\left(\epsilon^{\frac{r-(p-n)}{p}}\left\|\nabla \Phi^{q}\right\|_{L^{p}}+\epsilon^{\frac{r}{p}} \hat{\rho}_{q}\|\nabla u\|_{L^{p}}\right)^{p} .
$$

Then by this inequality and (ii) of Lemma 5.7 (we recall that $r>p-n$), we have that the third term of the last inequality of (6.6) tends to zero when ϵ tends to zero.

Regarding the last term, we verify that

$$
\int_{\mathbb{R}^{n}} W\left(\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right) d x
$$

is bounded uniformly with respect to $\epsilon \in(0, \bar{\epsilon}]$ and $u \in S(k)$. In fact by definition of Φ_{ϵ}^{q} and by the exponential decay of the eigenfunctions (see Theorem 4.1) there exists a ball $B_{\mathbb{R}^{n}}(0, R)$ such that, if we write $u=\sum_{m=1}^{j} a_{m} \varphi_{m}$ with $\sum_{m=1}^{j} a_{m}^{2}=1$, for all $x \in \mathbb{R}^{n} \backslash B_{\mathbb{R}^{n}}(0, R)$ the following inequalities hold

$$
\begin{aligned}
\left|\frac{\Phi_{\epsilon}^{q}(x)+\hat{\rho}_{q} u(x)}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right| & =\frac{\hat{\rho}_{q}|u(x)|}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} \\
& \leq \frac{C \hat{\rho}_{q}\left(\sum_{m=1}^{j}\left|a_{m}\right|\right) e^{-|x|}}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}} \\
& \leq M e^{-|x|}<c_{3}
\end{aligned}
$$

where the constant M does not depend on $u \in S(j)$ nor on ϵ for ϵ small enough (see the point (ii) of Lemma 5.7). By $\left(W_{4}\right)$ we get

$$
\left|W\left(\frac{\Phi_{\epsilon}^{q}(x)+\hat{\rho}_{q} u(x)}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right)\right| \leq c_{4} \frac{\left|\Phi_{\epsilon}^{q}(x)+\hat{\rho}_{q} u(x)\right|^{2}}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2}}
$$

for any $x \in \mathbb{R}^{n} \backslash B_{\mathbb{R}^{n}}(0, R)$. Concluding we have

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{n}} W\left(\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right) d x\right| \\
& \quad \leq \quad c_{4}+\int_{B_{\mathbb{R}^{n}(0, R)}}\left|W\left(\frac{\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u}{\left\|\Phi_{\epsilon}^{q}+\hat{\rho}_{q} u\right\|_{L^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}}\right)\right| d x
\end{aligned}
$$

where the integral on the right hand side is bounded by (iii) of Lemma 5.7. So we have the claim.
Step 3 We prove that $c_{\epsilon, j}^{q} \geq \tilde{\lambda}_{j}$. By Step 1 and by the positivity of W we get

$$
\begin{aligned}
c_{\epsilon, j}^{q} & \geq \inf _{h \in \mathcal{H}_{\epsilon, j}^{q}} \sup _{v \in \mathcal{M}_{\epsilon, j}^{q}}\|h(v)\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
& \geq \inf _{h \in \mathcal{H}_{\epsilon, j}^{q}} \sup _{\substack{v \in \mathcal{M}_{\epsilon, j}^{q} \\
P_{F_{j-1}} h(v)=0}}\|h(v)\|_{\Gamma_{F}\left(\mathbb{R}^{n}, \mathbb{R}^{n+1}\right)}^{2} \\
& \geq \tilde{\lambda}_{j}
\end{aligned}
$$

In fact by Step 1 for all $h \in \mathcal{H}_{\epsilon, j}^{q}$ we have that the set $h\left(\mathcal{M}_{\epsilon, j}^{q}\right)$ intersects the set $\left\{u \in F:\left(u, \varphi_{i}\right)=0 \forall i=1, \ldots, j-1\right\}$ and so from 4.8 we get the claim.
Step 4 If $\tilde{\lambda}_{j-1}<\tilde{\lambda}_{j}$, then for ϵ small enough we have:

$$
\begin{align*}
c_{\epsilon, j-1}^{q} & <c_{\epsilon, j}^{q}, \tag{6.7}\\
\sup _{v \in \mathcal{M}_{\epsilon, j-1}^{q}} J_{\epsilon}(v) & <c_{\epsilon, j}^{q} . \tag{6.8}
\end{align*}
$$

By Step 2 and 3 we obtain for ϵ small enough

$$
c_{\epsilon, j-1}^{q} \leq \tilde{\lambda}_{j-1}+\sigma(\epsilon)<\tilde{\lambda}_{j} \leq c_{\epsilon, j}^{q}
$$

$$
\sup _{v \in \mathcal{M}_{\epsilon, j-1}^{q}} J_{\epsilon}(v) \leq \tilde{\lambda}_{j-1}+\sigma(\epsilon)<\tilde{\lambda}_{j} \leq c_{\epsilon, j}^{q}
$$

Step 5 If $\tilde{\lambda}_{j-1}<\tilde{\lambda}_{j}$, then $c_{\epsilon, j}^{q}$ is a critical value for the functional J_{ϵ} on the manifold $\Lambda_{q}^{F} \cap S$.

By contradiction we suppose that $c_{\epsilon, j}^{q}$ is a regular value for J_{ϵ} on $\Lambda_{q}^{F} \cap S$. By Proposition 3.10 and Lemmas 6.1 and 6.2 , there exist $\delta>0$ and a deformation $\eta:[0,1] \times \Lambda_{q}^{F} \cap S \rightarrow \Lambda_{q}^{F} \cap S$ such that

$$
\begin{gathered}
\eta(0, u)=u \quad \forall u \in \Lambda_{q}^{F} \cap S \\
\eta(t, u)=u \quad \forall t \in[0,1], \forall u \in J_{\epsilon}^{c_{\epsilon, j}^{q}-2 \delta}, \\
\eta\left(1, J_{\epsilon}^{c_{\epsilon, j}^{q}+\delta}\right) \subset J_{\epsilon}^{c_{\epsilon, j}^{q}-\delta}
\end{gathered}
$$

By (6.8) we can suppose

$$
\begin{equation*}
\sup _{v \in \mathcal{M}_{\epsilon, j-1}^{q}} J_{\epsilon}(v)<c_{\epsilon, j}^{q}-2 \delta . \tag{6.9}
\end{equation*}
$$

Moreover by definition of $c_{\epsilon, j}^{q}$ there exists a transformation $\hat{h} \in \mathcal{H}_{\epsilon, j}^{q}$ such that $\sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(\hat{h}(v))<c_{\epsilon, j}^{q}+\delta$. Now by the properties of the deformation η and by 6.9 we get $\eta(1, \hat{h}().) \in \mathcal{H}_{\epsilon, j}^{q}$ and $\sup _{v \in \mathcal{M}_{\epsilon, j}^{q}} J_{\epsilon}(\eta(1, \hat{h}(v)))<c_{\epsilon, j}^{q}-\delta$ and this is a contradiction.

Remark 6.6. (1) In the assumptions of Theorem 6.5

$$
\min _{u \in \Lambda_{q}^{F} \cap S} J_{\epsilon}(u)=c_{\epsilon, 1}^{q} .
$$

Nevertheless the critical point corresponding to the minimum, found in Theorem 6.3, is not attained in the framework of Theorem 6.5. In fact, to conclude that a value $c_{\epsilon, j}^{q}$ is critical, j must be strictly greater than one.
(2) Provided that we choose suitably ξ_{\star} and ϵ, it is possible to find as many solutions of $\left(P_{\epsilon}\right)$ as we want. In fact, let us suppose that we want $K \in \mathbb{N}$ solutions, then, since $\tilde{\lambda}_{j} \rightarrow \infty$, there exists $k \in \mathbb{N}, k>K$, such that among the first k eigenvalues $\tilde{\lambda}$ there are K "jumps" $\tilde{\lambda}_{j}<\tilde{\lambda}_{j+1}$, so that Theorem 6.5 gives K critical values.
(3) For all $q \in \mathbb{Z} \backslash\{0\}, \epsilon \in(0,1]$ the critical values $c_{\epsilon, j}^{q}$ tend to the eigenvalues $\tilde{\lambda}_{j}$ when ϵ tends to zero.
Acknowledgements. This paper arises from the Ph.D. thesis (see [18]) of the author, who heartily thanks her supervisors V. Benci and A. M. Micheletti.

References

[1] M. Badiale, V. Benci and T. D'Aprile, Existence, multiplicity and concentration of bound states for a quasilinear elliptic field equation, Calculus of Variations and Partial Differential Equations 123 (2001), 223-258.
[2] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Transactions of the American Mathematical Society 2671 (1981), 1-32.
[3] V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Archive for Rational Mechanics and Analysis 1544 (2000), 297-324.
[4] V. Benci and D. Fortunato, Discreteness conditions of the spectrum of Schrödinger operators, Journal of Mathematical Analysis and Applications 643 (1978), 695-700.
[5] V. Benci, D. Fortunato, A. Masiello and L. Pisani, Solitons and the electromagnetic field, Mathematische Zeitschrift 2321 (1999), 73-102.
[6] V. Benci, D. Fortunato and L. Pisani, Soliton-like solution of a Lorentz invariant equation in dimension 3, Reviews in Mathematical Physics 103 (1998), 315-344.
[7] V. Benci, A.M. Micheletti and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, Journal of Differential Equations 1842 (2002), 299-320.
[8] V. Benci, A.M. Micheletti and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation on \mathbb{R}^{n}, Topological Methods in Nonlinear Analysis 172 (2001), 191-211.
[9] F.A. Berezin and M.A. Shubin, The Schrödinger Equation, Kluwer Academic Publishers 1991.
[10] P. Bolle, On the Bolza problem, Journal of Differential Equations 1522 (1999), 274-288.
[11] P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems, Manuscripta Mathematica 1013 (2000), 325-350.
[12] C. Cid and P.L. Felmer, A note on static solutions of a Lorentz invariant equation in dimension 3, Letters in Mathematical Physics 531 (2000), 1-10.
[13] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, Interscience, New York.
[14] C.H. Derrick, Comments on Nonlinear Wave Equations as Model for Elementary Particles, Journal of Mathematical Physics 5 (1964), 1252-1254.
[15] N. Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge University Press 1993.
[16] A. Manes and A.M. Micheletti, Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. U.M.I. (4) 7 (1973), 285-301.
[17] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. 65, American Mathematical Society, Providence 1986.
[18] D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, Ph.D. Thesis, Università di Pisa 2001.

Dipartimento di Matematica Applicata "U. Dini", Università degli studi di Pisa, via Bonanno Pisano 25/B, 56126 Pisa, Italy

E-mail address: visetti@mail.dm.unipi.it

[^0]: 2000 Mathematics Subject Classification. 35Q55, 45C05
 Key words and phrases. Nonlinear Schrödinger equations; nonlinear eigenvalue problems.
 (c) 2005 Texas State University - San Marcos.

 Submitted October 22, 2004. Published January 2, 2005.
 Supported by M.U.R.S.T., project "Metodi variazionali e topologici nello studio di
 fenomeni non lineari".

