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SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS ON
BOUNDED MULTICONNECTED DOMAINS

WENJIE GAO, JUNYU WANG, ZHONGXIN ZHANG

Abstract. A semilinear elliptic boundary-value problem on bounded multi-
connected domains is studied. The authors prove that under suitable condi-
tions, the problem may have no solutions in certain cases and many have one
or two nonnegative solutions in some other cases. The radial solutions were
also studied in annular domains.

1. Introduction

This paper consists of two parts. The first part deals with a semilinear elliptic
boundary-value problem of the form

−∆u = f(u, x) ∈ Ω,

u = 0 on B0 := ∪k−1
j=0Γj ,

u = ρ on B := ∪m
j=kΓj ,

(1.1)

where f(u, x) ∈ C(R+ × Ω; R), R+ := [0,+∞), Ω is a bounded multiconnected
domain in Rn, n ≥ 2, Γ0 is its outer boundary, ∪m

j=1Γj its inner boundary, Γ0,
Γ1, . . . ,Γm are all sufficiently smooth closed surfaces so that the Green’s function
G(x, y), for −∆ with zero Dirichlet boundary conditions is existent (See, e.g., [2,
p.112]), k ∈ {1, 2, . . . ,m}, and the constant ρ ≥ 0 is given. Some particular cases
of Problem (1.1) were considered by Bandle and Peletier [3], by Lee and Lin [5] and
by Hai [4], in which f ∈ (R+; R+) and Ω is a domain with a “hole”.

The second part is devoted to the semilinear elliptic boundary-value problem,
namely,

−∆u = f(u, |x|) 0 < α < |x| < β < +∞,

u = 0 on |x| = α, u = ρ on |x| = β
(1.2)

where f ∈ C(R+ × J ; R+), J = [α, β], |x| =
√

x2
1 + · · ·+ x2

n. Problem (1.2) was
studied by Lee and Lin [5] and by Hai [4] in the case f ∈ C(R+; R+).

We study Problems (1.1) and (1.2) motivated by the following results recently
established by Hai [4].
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Theorem 1.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with a hole and f in
C(R+; R+) satisfy

lim
u→0+

f(u)
u

= 0 and lim
u→+∞

f(u)
u

= +∞.

Then there exists a positive number ρ∗ such that Problem (1.1) has a positive solu-
tion for ρ ∈ (0, ρ∗) and no solution for ρ > ρ∗.

Theorem 1.2. Let f ∈ C(R+; R+) be convex and satisfy

lim inf
u→0+

∫ u

0
f(s)ds

u2
= 0 and lim

u→+∞

f(u)
u

= +∞.

Then there exists a positive number ρ∗ such that Problem (1.2) has at least two
positive radial solutions for ρ ∈ (0, ρ∗), at least one for ρ = ρ∗ and none for any
ρ > ρ∗.

The above results extend and complement the corresponding results in [3, 5].
As in [4], our purpose is to extend, improve and complement the corresponding

results in [3, 4, 5]. In the first part, we will prove three theorems. The second
theorem extends and complements Theorem 1.1, in which the function f is allowed
to contain variable x and is not necessarily nonnegative, also, f(u, x) is not neces-
sarily superlinear at u = 0 and at u = +∞. In the second part, we obtain a similar
result as Theorem 1.2 where the function f may depends on the variable |x| and
the convexity constrain to f is removed, also f is not required to be superlinear at
u = 0 and u = +∞.

2. Results in multiconnected domains

For the first part, we make the following assumptions:
(A1) f ∈ C(R+ × Ω; R).
(A2) M := sup{λ1u− f(u, x) : u ∈ R+, x ∈ Ω} < +∞.

Here and throughout this section, λ1 denotes the first eigenvalue of the problem

−∆φ = λφ in Ω
φ = 0 on ∂Ω = B0 ∪B.

(2.1)

The positive eigenfunction corresponding to λ1 is denoted by φ1(x) with ‖φ1‖ = 1,
where ‖ · ‖ stands for the supremum norm.

(A3)

lim sup
u→0+

max{|f(u, x)| : x ∈ Ω}
u

<
1
‖g‖

,

where

g(x) :=
∫

Ω

G(x, y) dy, x ∈ Ω. (2.2)

(A4) f(0, x) ≥ 0 for all x ∈ Ω and

lim sup
u→+∞

max{|f(u, x)| : x ∈ Ω}
u

<
1
‖g‖

.

Concerning problem (1.1), we can establish the following results.
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Theorem 2.1. Let (A1) and (A2) hold. Then problem (1.1) has no solution for

ρ > ρ̃ :=
M

∫
Ω

φ1(x)dx

λ1

∫
Ω

φ1(x)h(x) dx
. (2.3)

Here h(x) is the harmonic function defined on Ω satisfying

h(x) = 0 on B0 and h(x) = 1 on B. (2.3)

Theorem 2.2. Let (A1), (A2) and (A3) hold. Then there exists a positive number
ρ∗ such that problem (1.1) has a nonnegative solution for ρ ∈ [0, ρ∗) and no solution
for ρ > ρ∗.

Theorem 2.3. Let (A1) and (A4) hold. Then problem (1.1) has a nonnegative
solution for all ρ ≥ 0. In addition, assume that f(0, x) ≡ 0 for all x ∈ Ω and
there exists a δ > 0 such that f(u, x) ≥ λ1u for all u ∈ [0, δ] and all x ∈ Ω. Then
Problem (1.1) with ρ = 0 has at least one positive solution.

Theorems 2.1 and 2.3 are new and Theorem 2.2 extends and complements the
corresponding theorems in [3, 4, 5]. Before proving these theorems, we make several
remarks.

Remark 2.4. A function u ∈ C(Ω; R) is a solution to Problem (1.1), if and only
if it is a solution to the integral equation

u(x) =
∫

Ω

G(x, y)f(u(y), y) dy + ρh(x), x ∈ Ω. (2.4)

Clearly, each solution to Problem (1.1) is positive when f ∈ C(R+ × Ω; R+) and
ρ > 0.

Remark 2.5. ¿From the maximum principle, we know that 0 < h(x) < 1 in Ω.

Remark 2.6. According to (2.1) and (2.4), we have

0 < φ1(x) = λ1

∫
Ω

G(x, y)φ1(x)dx ≤ 1 in Ω

and hence λ1 > 1/‖g‖.
Remark 2.7. It is obvious that Theorems 2.1, 2.2 and 2.3 are still valid if the
boundary conditions in (1.1) are replaced by u = ρ on B0, u = 0 on B.

Proof of Theorem 2.1. Suppose to the contrary that Problem (1.1) has a solution,

u(x) =
∫

Ω

G(x, y)f(u(y), y) dy + ρh(x) =: w(x) + ρh(x), x ∈ Ω,

for some ρ > ρ̃. In this case, we have −∆w(x) = f(u(x), x) in Ω. Consequently,

ρλ1

∫
Ω

φ1(x)h(x)dx =
∫

Ω

λ1φ1(x)u(x)dx−
∫

Ω

λ1φ1(x)w(x)dx

=
∫

Ω

λ1φ1(x)u(x)dx +
∫

Ω

φ1(x)∆w(x)dx

=
∫

Ω

φ1(x)(λ1u(x)− f(u(x), x) dx

≤ M

∫
Ω

φ1(x)dx,

i.e., ρ ≤ ρ̃, a contradiction. Theorem 2.1 is thus proved. �
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Proof of Theorem 2.2. To prove Theorem 2.2, we first define a mapping K : E 7→ E
by setting

(Kw)(x) :=
∫

Ω

G(x, y)f∗(w(y), y)dy + ρh(x), ∀w ∈ E, (2.5)

where E := C(Ω; R) and

f∗(u, x) :=

{
f(0, x) if u < 0,

f(u, x) if u ≥ 0.

It is easy to check that K is completely continuous on E. ¿From (A3), we know
that there exists an ε > 0 such that

lim sup
u→0+

max{|f(u, x)| : x ∈ Ω}
u

<
1

‖g‖+ ε
<

1
‖g‖

and hence there exists a σ > 0 such that

|f(u, x)| ≤ u

‖g‖+ ε
for all u ∈ [0, σ] and all x ∈ Ω,

from which it follows that

f(0, x) ≡ 0 for all x ∈ Ω. (2.6)

Clearly, u(x) ≡ 0 is a trivial solution to Problem (1.1) with ρ = 0. Put

Dσ := {w ∈ E : ‖w‖ ≤ σ} and σ∗ := σ
(
1− ‖g‖

‖g‖+ ε

)
.

Then for each fixed w ∈ Dσ and each fixed ρ ∈ [0, σ∗], we have

‖Kw‖ ≤ ‖g‖
‖g‖+ ε

σ + σ∗ = σ

which means that K is a compactly continuous mapping from Dσ into itself. The
Schauder fixed point theorem tells us that K has a fixed point u ∈ Dσ, i.e.,

−∆u = f∗(u(x), x) in Ω,

u = 0 on B0, u = ρon B.

¿From (2.6) and the maximum principle, we know that u(x) ≥ 0 on Ω, which shows
that the fixed point u(x) ∈ Dσ is also a nonnegative solution to Problem (1.1) with
ρ ∈ [0, σ∗].

Let
ρ∗ = sup{ρ ≥ 0 : Problem (1.1) has a nonnegative solution}.

¿From the previous results, ρ∗ ∈ [σ∗, ρ̃]. We are now going to prove that Problem
(1.1) has a nonnegative solution for all ρ ∈ [0, ρ∗).

For each given ρ ∈ [0, ρ∗), from the definition of ρ∗, we can choose a ρ̄ ∈ (ρ, ρ∗)
such that Problem (1.1)ρ̄ has a nonnegative solution ū(x). Let ξ(x) ≡ 0 and
η(x) = ū(x). Then

−∆ξ(x) ≡ 0 ≡ f(ξ(x), x) ∈ Ω,

ξ(x) = 0 on B0, ξ(x) = 0 ≤ ρ on B,
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and

−∆η(x) ≡ f(η(x), x) in Ω,

η(x) = 0 on B0, η(x) = ρ̄ > ρ on B.

i.e., ξ(x) is a lower solution to Problem (1.1) and η(x) is an upper solution. Em-
ploying the method of upper and lower solutions, we can find a solution u(x) to
Problem (1.1) with

0 ≡ ξ(x) ≤ u(x) ≤ η(x) = ū(x) onΩ.

The proof of Theorem 2.2 is complete. �

Proof of Theorem 2.3. From (A4), we know that there exists an ε > 0 such that

lim sup
u→+∞

max{|f(u, x)| : x ∈ Ω}
u

≤ 1
‖g‖+ ε

<
1
‖g‖

and hence there exists an N > 0 such that

|f(u, x)| ≤ u

‖g‖+ ε
for all u ≥ N and all x ∈ Ω.

For each given ρ ≥ 0, we put

Dβ := {w ∈ E : ‖w‖ ≤ β} ,

β :=
(
1− ‖g‖

‖g‖+ ε

)−1(
N + ρ + ‖g‖max{|f(u, x)| : x ∈ Ω, 0 ≤ u ≤ N}

)
.

We define a mapping K : E 7→ E by (2.5). For each fixed w ∈ Dβ , we have

‖Kw‖ < ‖g‖
(

max{|f(u, x)| : 0 ≤ u ≤ N, x ∈ Ω}+
β

‖g‖+ ε

)
+ ρ + N = β,

which implies that K is a compactly continuous mapping from Dβ into itself. The
Schauder fixed point theorem tells us that K has a fixed point u ∈ Dβ , i.e.,

−∆u(x) = f∗(u(x), x) in Ω,

u(x) = 0 on B0, u(x) = ρon B.

From the maximum principle and the assumption that f(0, x) ≥ 0 for all x ∈ Ω,
we know that

u(x) ≥ 0 on Ω.

This shows that the fixed point u ∈ Dβ is a nonnegative solution of (1.1).
We now assume that f(0, x) ≡ 0 for all x ∈ Ω and there exists a δ > 0 such that

f(u, x) ≥ λ1u for all u ∈ [0, δ] and all x ∈ Ω.

In this case, u(x) ≡ 0 is a trivial solution to Problem (1.1)0. Then we consider the
modified boundary-value problem

−∆u(x) = f̄(u(x), x) in Ω,

u(x) = 0 on ∂Ω,
(2.7)

where the function

f̄(u, x) :=

{
f(δφ1(x), x) if u < δφ1(x),
f(u, x) if u > δφ1(x)
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satisfies (A1) and (A4) again. From the above discussion, we know that Problem
(2.7) has a solution u ∈ Dβ . The maximum principle tells us that

u(x) ≥ δφ1(x) on Ω.

This shows that the solution u(x) is also a positive solution to Problem (1.1) with
ρ = 0. Theorem 2.3 is thus proved. �

3. Results in annular domains

In this section, we restrict our attention to the multiplicity of radial solutions to
(1.2). When we seek for a radial solution to (1.2), the problem can be rewritten as

−(k(t)u′(t))′ = k(t)f(u(t), t), α < t < β,

u(α) = 0, u(β) = ρ,
(3.1)

where k(t) = tn−1, n ≥ 2. Concerning Problem (3.1), we make the following
hypotheses:

(H1) f ∈ C(R+ × J ; R+), J := [α, β].
(H2)

lim sup
u→0

max{f(u, t) : t ∈ J}
u

<
1
‖g‖

, (3.2)

where

g(t) =
∫ β

α

G(t, s)ds, t ∈ J ;

G(t, s) =

{
k(s)
P (β) (P (β)− P (t))P (s), α ≤ s ≤ t ≤ β,
k(s)
P (β) (P (β)− P (t))P (t), α ≤ t ≤ s ≤ β;

P (t) =
∫ t

α

dr

k(r)
, t ∈ J.

(3.3)

(H3) There exists an interval [a, b] with α < a < b < β, such that

lim inf
u→+∞

min{f(u, t) : a ≤ t ≤ b}
u

>
1
m

,

where

m = δ max{
∫ b

a

G(t, s) ds : a ≤ t ≤ b},

δ = min{q(t) : a ≤ t ≤ b},

q(t) = min
{ P (t)

P (β)
,

P (β)− P (t)
P (β)

}
, t ∈ J .

(3.4)

(H4) f(u, t) is nondecreasing in u ≥ 0 for each fixed t ∈ J .
(H4)* f(u, t) is locally Lipschitz continuous in u ≥ 0 for each fixed t ∈ J .

Theorem 3.1. Let (H1), (H2), (H3) and (H4) (or (H4)*) hold. Then there exists
a positive number ρ∗ such that Problem (1.2) has at least two nonnegative radial
solutions for ρ ∈ [0, ρ∗), at least one for ρ = ρ∗ and none for any ρ > ρ∗.

Remark 3.2. Theorem 3.1 is still valid when the boundary conditions in (3.1) are
replaced by

u(α) = ρ, u(β) = 0.
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Clearly, Theorem 3.1 is an extension and improvement of the results in [4, The-
orem 1.2]. We need the following lemmas.

Lemma 3.3. Let f ∈ C(R+ × J ; R+) and u(t) a nonnegative solution to Problem
(3.1). Then

u(t) ≥ ‖u‖q(t), t ∈ J .

Proof. Note that Problem (3.1) is equivalent to the integral equation

u(t) =
∫ β

α

G(t, s)f(u(s), s) ds + ρh(t), t ∈ J, (3.5)

where
h(t) := P (t)/P (β), t ∈ J. (3.6)

Let ‖u‖ = u(t0). Then t0 ∈ (α, β]. If t0 = β, then ‖u‖ = ρ and hence u(t) =
ρh(t) ≥ ‖u‖q(t), t ∈ J . If t0 ∈ (α, β), then

u(t) =
∫ β

α

G(t, s)
G(t0, s)

G(t0, s)f(u(s), s) ds + ρh(t0)
h(t)
h(t0)

≥ q(t)
∫ β

α

G(t0, s)f(u(s), s) ds + ρh(t0)q(t)

= q(t)‖u‖ for all t ∈ J.

Here we have used the fact that
G(t, s)
G(t0, s)

≥ q(t) for all t, s in (α, β),

the proof of which can be found in [1]. �

Lemma 3.4. Let (H1) and (H3) hold. Then there exists a positive number M such
that all solutions u(t) to (3.1) satisfy ‖u‖ < M .

Proof. By Lemma 3.3, we know that if u(t) is a nonnegative solution to Problem
(3.1), then

u(t) ≥ δ‖u‖ for all t ∈ [a, b],
where the constant δ is defined by (3.4). From (H3), we know that there exists an
ε > 0 such that

lim inf
u→+∞

min{f(u, t); t ∈ [a, b]}
u

>
1

m− ε
>

1
m

,

and hence there exists an M > 0 such that

f(u, t) ≥ u

m− ε
for all u ≥ δM and all t ∈ [a, b]. (3.7)

We now claim that ‖u‖ < M for all nonnegative solution u(t) to (3.1), where
the constant M satisfies (3.7). If the claim is false, then Problem (3.1) has a
nonnegative solution u(t) with ‖u‖ ≥ M . In this case, we have

u(t) ≥
∫ b

a

G(t, s)f(u(s), s) ds ≥ δ‖u‖
m− ε

∫ b

a

G(t, s) ds

for all t ∈ [a, b]; i.e.,
‖u‖ ≥ m

m− ε
‖u‖.

This is a contradiction which proves the claim. �
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Proof of Theorem 3.1. We first define a mapping K : E 7→ E by setting

(Kw)(t) =
∫ β

α

G(t, s)f∗(w(s), s) ds + ρh(t),

where E = C(J ; R) and

f∗(u, t) =

{
f(0, t) if u < 0,

f(u, t) if u ≥ 0.

It is easy to check that K is completely continuous on E. ¿From (H2), we know
that there exists an ε > 0 such that

lim sup
u→0+

max{f(u, t) : t ∈ J}
u

<
1

‖g‖+ ε
<

1
‖g‖

and hence there exists a σ > 0 such that

0 ≤ f(u, t) ≤ u

‖g‖+ ε

for all u ∈ [0, σ] and all t ∈ J , which implies that f(0, t) ≡ 0 for all t ∈ J . We now
put

Dσ = {w ∈ E : ‖w‖ ≤ σ} and σ∗ = σ
(
1− ‖g‖

‖g‖+ ε

)
.

Then for each fixed w ∈ Dσ and each fixed ρ ∈ [0, σ∗], we have

‖Kw‖ ≤ ‖g‖
‖g‖+ ε

+ σ∗ = σ,

which implies that K is a completely continuous mapping from Dσ into itself. The
Schauder fixed point theorem tells us that K has a fixed point u ∈ Dσ, i.e.,

−(k(t)u′(t))′ = k(t)f∗(u(t), t), α < t < β,

u(α) = 0, u(β) = ρ.

We now claim that u(t) ≥ 0 for all t ∈ J . If the claim is false, then there exists
an interval [a, b], α ≤ a < b ≤ β, such that

u(t) < 0 in (a, b) and u(a) = u(b) = 0.

Consequently,

−(k(t)u′(t))′ = 0, a < t < b,

u(a) = u(b) = 0.

which implies that u(t) ≡ 0 on [a, b]. This is a contradiction and hence the claim is
true. As a result, the fixed point u ∈ Dσ is a nonnegative solution to (3.1).

We now put

ρ∗ = sup{ρ ≥ 0 : (3.1) has a nonnegative solution}.

Then ρ∗ ∈ [σ∗,M). Here we have used Lemma 3.4.
From the definition of ρ∗, we can choose a sequence {ρj}∞j=1 such that ρj < ρj+1,

ρj → ρ∗ as j 7→ +∞, and Problem (3.1) with ρJ has a nonnegative solution
uj(t) ∈ E. From Lemma 3.4 and the complete continuity of K on E, we know
that {uj(t)}∞j=1 is uniformly bounded and equicontinuous on J . Without loss of
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generality, we may assume that uj(t) → u∗(t) uniformly on J as j → +∞. Note
that

uj(t) =
∫ β

α

G(t, s)f(uj(s), s) ds + ρjh(t), t ∈ J .

Letting j → +∞ in the above yields

u∗(t) =
∫ β

α

G(t, s)f(u∗(s), s) ds + ρ∗h(t), t ∈ J.

This shows that u∗(t) ∈ E is a positive solution to (3.1) with ρ∗.
We are now in position to prove that (3.1) has at least two nonnegative solutions

for all ρ ∈ [0, ρ∗).
For each given ρ ∈ [0, ρ∗), we set ξ(t) ≡ 0 and η(t) = u∗(t). Then ξ(t) is a lower

solution to (3.1) and η(t) an upper solution. Employing the method of upper and
lower solutions, we can find a solution u(t) ∈ E with

0 ≡ ξ(t) ≤ u(t) ≤ η(t) = u∗(t) on J .

We now assume that (H4)* holds. Using the local Lipschitz continuity of f(u, t)
with respect to u ∈ R+ and the strong maximum principle, we deduce that

0 ≤ u(t) < u∗(t) for all t ∈ (α, β]. (3.8)

If (H4) holds, i.e., f(u, t) is nondecreasing in u ∈ R+ for each fixed t ∈ J . Then

u∗(t)− u(t) =
∫ β

α

(
f(u∗(s), s)− f(u(s), s)

)
ds + (ρ∗ − ρ)h(t) > 0

for all t ∈ (α, β]. i.e., (3.8) is also valid.
To obtain the existence of a second nonnegative solution to (3.1) for all ρ ∈ [0, ρ∗),

we define a mapping K̃ : E 7→ E by setting(
K̃w

)
(t) :=

∫ β

α

G(t, s)f̃(w(s), s) ds + ρh(t),

and another mapping K : E × R+ 7→ E by setting

K(w, y)(t) :=
∫ β

α

G(t, s)f∗(w(s), s) ds + yh(t),

where

f∗(w, t) =

{
0 if w < 0,

f(w, t) if w ≥ 0,

and

f̃(w, t) :=

{
f∗(w, t) if w ≤ u∗(t),
f∗(u∗(t), t) if w > u∗(t).

Note that for each fixed w ∈ E, we have

‖K̃w‖ < ‖g‖max{f(u, t) : 0 ≤ u ≤ ‖u∗‖, t ∈ J}+ ρ∗ =: N∗.

Picking t0 ∈ (α, β) such that u∗(t0) > 0, we define

v∗(t) =

{
u∗(t0) if α ≤ t ≤ t0,

u∗(t) if t0 < t ≤ β.
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We now put

A :=
{
w ∈ E : −M −N∗ < w(t) < v∗(t), t ∈ [α, β]

}
,

B := {w ∈ E : ‖w‖ < M + N∗}
where the constant M is determined by Lemma 3.4. Then both A and B are open
subsets of E and u ∈ A ⊂ B.

Clearly, K̃ has fixed points in A. In fact, u ∈ A is a fixed point of K̃. We now
consider whether K̃ has a fixed point in B \A or not. There are two possibilities.
Case (i). K̃ has no fixed point in B \A. In this case, we have

deg(I −K(·, ρ), A, 0) = deg(I − K̃, A, 0) = deg(I − K̃,B, 0),

where I denotes the identity mapping from E into itself. We now claim that
deg(I − K̃,B, 0) = 1. To prove the claim, we consider the homotopic mapping

Ψ(w, τ) := w − τK̃w ∀(w, τ) ∈ E × [0, 1].

For any (w, τ) ∈ ∂B × [0, 1], we have

‖Ψ(w, τ)‖ ≥ ‖w‖ − ‖K̃w‖ > M + N∗ −N∗ = M.

i.e., Ψ(w, τ) 6= 0 for any (w, τ) ∈ ∂B × [0, 1]. Consequently

deg(I − K̃,B, 0) = deg(Ψ(·, 1), B, 0) = deg(Ψ(·, 0), B, 0) = deg(I,B, 0) = 1.

On the other hand, we know that deg(I − K(·, y), B, 0) is constant for all y ≥ 0.
From Lemma 3.4, we know that K(·,M) has no fixed point in E and hence the
constant must be zero. Therefore,

deg(I −K(·, ρ), B, 0) = deg(I −K(·,M), B, 0) = 0.

By the excision property of the Leray-Schauder degree, we obtain

deg(I −K(·, ρ), B \A, 0) = −1

which implies that K(·, ρ) has a fixed point in B\A. The fixed point is a nonnegative
solution to Problem (3.1), of course.
Case (ii). K̃ has a fixed point ū ∈ B \A. By the maximum principle, we know that

0 ≤ ū(t) ≤ u∗(t) on J.

This means that ū(t) is also a second solution to (3.1). Since each nonnegative
solution to (3.1) is also a nonnegative radial solution to (1.2), Theorem 3.1 is thus
proved. �

Finally, we consider the boundary-value problem
−∆u = fj(u), 0 < α < |x| < β,

u = 0 on |x| = α, u = ρ on |x| = β,
(3.9)

where

f1(u) =


ξu, 0 ≤ u ≤ 1; 0 ≤ ξ < 1/‖g‖,
9(u− 1)1/9 + ξ, 1 ≤ u ≤ 2,

η(u− 2) + 9 + ξ, u ≥ 2; η > 1/m

and

f2(u) :=

{
sin2 u, 0 ≤ u ≤ 8π,

η(u− 8π), u ≥ 8π, η > 1/m,

the constant m and the function g(t) are determined by (3.4) and (3.2), respectively.
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Since f1(u) satisfies (H1), (H2), (H3) and (H4), f2(u) satisfies (H1), (H2), (H3)
and (H4)*, according to Theorem 3.1, there exists a positive number ρ∗ such that
Problem (3.9), j = 1, 2, has at least two nonnegative radial solutions for ρ ∈ [0, ρ∗),
at least one for ρ = ρ∗ and none for ρ > ρ∗.

However, Theorem 1.2 cannot be applied in studying (3.9), j = 1, 2.

Acknowledgement. The authors want to thank the referee for pointing out some
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