Electronic Journal of Differential Equations, Vol. 2005(2005), No. 08, pp. 1-10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# STRONG RESONANCE PROBLEMS FOR THE ONE-DIMENSIONAL $p$-LAPLACIAN 

JIŘí BOUCHALA


#### Abstract

We study the existence of the weak solution of the nonlinear boundary-value problem $$
\begin{gathered} -\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda|u|^{p-2} u+g(u)-h(x) \quad \text { in }(0, \pi) \\ u(0)=u(\pi)=0 \end{gathered}
$$ where $p$ and $\lambda$ are real numbers, $p>1, h \in L^{p^{\prime}}(0, \pi)\left(p^{\prime}=\frac{p}{p-1}\right)$ and the nonlinearity $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function of the Landesman-Lazer type. Our sufficiency conditions generalize the results published previously about the solvability of this problem.


## 1. Introduction

We consider the boundary-value problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda|u|^{p-2} u+g(u)-h(x) \quad \text { in }(0, \pi) \\
u(0)=u(\pi)=0 \tag{1.1}
\end{gather*}
$$

where $p>1, g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $h \in L^{p^{\prime}}(0, \pi)\left(p^{\prime}=\frac{p}{p-1}\right), \lambda \in \mathbb{R}$, and $-\Delta_{p}$ is the (one-dimensional) $p$-Laplacian, i.e. $\Delta_{p} u:=\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}$.

Problem (1.1) can be thought of as a perturbation of the homogeneous eigenvalue problem

$$
\begin{gathered}
-\Delta_{p} u=\lambda|u|^{p-2} u \quad \text { in }(0, \pi) \\
u(0)=u(\pi)=0
\end{gathered}
$$

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of $-\Delta_{p}$ if there exists a function $u \in W_{0}^{1, p}(0, \pi)$, $u \not \equiv 0$, such that

$$
\int_{0}^{\pi}\left|u^{\prime}\right|^{p-2} u^{\prime} v^{\prime} \mathrm{d} x=\lambda \int_{0}^{\pi}|u|^{p-2} u v \mathrm{~d} x \quad \forall v \in W_{0}^{1, p}(0, \pi)
$$

[^0]The function $u$ is then called an eigenfunction of $-\Delta_{p}$ corresponding to the eigenvalue $\lambda$ and we write

$$
u \in \operatorname{ker}\left(-\Delta_{p}-\lambda\right) \backslash\{0\}
$$

Consider the functional

$$
I: W_{0}^{1, p}(0, \pi) \backslash\{0\} \rightarrow \mathbb{R} ; \quad I(u):=\frac{\int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x}{\int_{0}^{\pi}|u|^{p} \mathrm{~d} x}
$$

and the manifold

$$
\mathcal{S}:=\left\{u \in W_{0}^{1, p}(0, \pi):\|u\|_{L^{p}(0, \pi)}=1\right\} .
$$

For $k \in \mathbb{N}$ let
$\mathcal{F}_{k}:=\left\{\mathcal{A} \subset \mathcal{S}:\right.$ there exists a continuous odd surjection $\left.h: S^{k} \rightarrow \mathcal{A}\right\}$,
where $S^{k}$ represents the unit sphere in $\mathbb{R}^{k}$. Next define

$$
\begin{equation*}
\lambda_{k}:=\inf _{\mathcal{A} \in \mathcal{F}_{k}} \sup _{u \in \mathcal{A}} I(u) \tag{1.2}
\end{equation*}
$$

It is known that $\lambda_{k}$ is an eigenvalue of $-\Delta_{p}$ (see [3]) and that $\left(\lambda_{k}\right)$ represents complete set of eigenvalues [4] (For any $k \in \mathbb{N}, \lambda_{k}=\left(\frac{k \pi_{p}}{\pi}\right)^{p}$, where $\pi_{p}:=2(p-$ $\left.1)^{\frac{1}{p}} \int_{0}^{1} \frac{\mathrm{~d} s}{\left(1-s^{p}\right)^{\frac{1}{p}}}\right)$. Moreover, for any $k \in \mathbb{N}$ we have $0<\lambda_{k}<\lambda_{k+1}$ and any corresponding eigenfunction has "the strong unique continuation property", i.e.

$$
\begin{gather*}
\forall v \in \operatorname{ker}\left(-\Delta_{p}-\lambda_{k}\right) \backslash\{0\}, \quad\|v\|=1: \\
(\forall \delta>0)(\exists \eta(\delta)>0): \operatorname{meas}\{x \in(0, \pi):|v(x)| \leq \eta(\delta)\}<\delta \tag{1.3}
\end{gather*}
$$

The symbol $\|\cdot\|$ indicates the norm in the Sobolev space $W_{0}^{1, p}(0, \pi)$, i.e.

$$
\|u\|=\left(\int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x\right)^{1 / p}
$$

Our paper is motivated by the results in [2] and [3]. The following theorem generalizes those results for the one-dimensional problem 1.1).

Theorem 1.1. Let us define

$$
F(x):= \begin{cases}\frac{p}{x} \int_{0}^{x} g(s) d s-g(x), & x \neq 0  \tag{1.4}\\ (p-1) g(0), & x=0\end{cases}
$$

and set

$$
\begin{array}{ll}
\overline{F(-\infty)}=\limsup _{x \rightarrow-\infty} F(x), & \underline{F(+\infty)}=\liminf _{x \rightarrow+\infty} F(x), \\
\overline{F(+\infty)}=\limsup _{x \rightarrow+\infty} F(x), & \underline{F(-\infty)}=\liminf _{x \rightarrow-\infty} F(x) .
\end{array}
$$

We suppose

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} \frac{g(x)}{|x|^{p-1}}=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{gather*}
\forall v \in \operatorname{ker}\left(-\Delta_{p}-\lambda\right) \backslash\{0\}: \\
(p-1) \int_{0}^{\pi} h(x) v(x) d x<\underline{F(+\infty)} \int_{0}^{\pi} v^{+}(x) d x+\overline{F(-\infty)} \int_{0}^{\pi} v^{-}(x) d x \tag{1.6}
\end{gather*}
$$

or

$$
\begin{gather*}
\forall v \in \operatorname{ker}\left(-\Delta_{p}-\lambda\right) \backslash\{0\}: \\
(p-1) \int_{0}^{\pi} h(x) v(x) d x>\overline{F(+\infty)} \int_{0}^{\pi} v^{+}(x) d x+\underline{F(-\infty)} \int_{0}^{\pi} v^{-}(x) d x \tag{1.7}
\end{gather*}
$$

where

$$
v^{+}:=\max \{0, v\}, \quad v^{-}:=\min \{0, v\}
$$

Then there exists at least one weak solution of the boundary-value problem (1.1); i.e. there exists $u \in W_{0}^{1, p}(0, \pi)$ such that for all $v \in W_{0}^{1, p}(0, \pi)$,

$$
\int_{0}^{\pi}\left|u^{\prime}\right|^{p-2} u^{\prime} v^{\prime} d x=\lambda \int_{0}^{\pi}|u|^{p-2} u v d x+\int_{0}^{\pi} g(u) v d x-\int_{0}^{\pi} h v d x
$$

Note that if $\lambda$ is not an eigenvalue of $-\Delta_{p}$ then the conditions 1.6 and 1.7 are vacuously true.

## 2. Preliminaries

Let

$$
\begin{equation*}
J_{\lambda}(u):=\frac{1}{p} \int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x-\frac{\lambda}{p} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x-\int_{0}^{\pi} G(u) \mathrm{d} x+\int_{0}^{\pi} h u \mathrm{~d} x \tag{2.1}
\end{equation*}
$$

where

$$
G(t):=\int_{0}^{t} g(s) \mathrm{d} s
$$

It is well known that $J_{\lambda} \in C^{1}\left(W_{0}^{1, p}(0, \pi), \mathbb{R}\right)$, and that for all $v \in W_{0}^{1, p}(0, \pi)$,

$$
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=\int_{0}^{\pi}\left|u^{\prime}\right|^{p-2} u^{\prime} v^{\prime} \mathrm{d} x-\lambda \int_{0}^{\pi}|u|^{p-2} u v \mathrm{~d} x-\int_{0}^{\pi} g(u) v \mathrm{~d} x+\int_{0}^{\pi} h v \mathrm{~d} x .
$$

It follows that weak solutions of 1.1 correspond to critical points of $J_{\lambda}$.
The next theorem plays a fundamental role in proving that $J_{\lambda}$ has critical points of saddle point type (see [3, 5]).

Lemma 2.1 (Deformation Lemma). Suppose that $J_{\lambda}$ satisfies the Palais-Smale condition, i.e. if $\left(u_{n}\right)$ is a sequence of functions in $W_{0}^{1, p}(0, \pi)$ such that $\left(J_{\lambda}\left(u_{n}\right)\right)$ is bounded in $\mathbb{R}$ and $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(W_{0}^{1, p}(0, \pi)\right)^{*}$, then $\left(u_{n}\right)$ has a subsequence that is strongly convergent in $W_{0}^{1, p}(0, \pi)$. Let $c \in \mathbb{R}$ be a regular value of $J_{\lambda}$ and let $\bar{\varepsilon}>0$. Then there exists $\varepsilon \in(0, \bar{\varepsilon})$ and a continuous one-parameter family of homeomorphisms, $\phi: W_{0}^{1, p}(0, \pi) \times\langle 0,1\rangle \rightarrow W_{0}^{1, p}(0, \pi)$, with the properties:
(i) if $t=0$ or $\left|J_{\lambda}(u)-c\right| \geq \bar{\varepsilon}$, then $\phi(u, t)=u$,
(ii) if $J_{\lambda}(u) \leq c+\varepsilon$, then $J_{\lambda}(\phi(u, 1)) \leq c-\varepsilon$.

## 3. Proof of main Theorem

The proof is divided into four lemmas. First we prove that functional $J_{\lambda}$ satisfies the Palais-Smale condition, and in the next steps we prove our theorem separately for situations: $\lambda<\lambda_{1}, \lambda_{k}<\lambda<\lambda_{k+1}$ and $\lambda=\lambda_{k}$.

Lemma 3.1. Let us assume (1.5) and (1.6) or 1.7 ). Then the functional $J_{\lambda}$ satisfies the Palais-Smale condition.

Proof. We will start with the proof that any Palais-Smale sequence is bounded in $W_{0}^{1, p}(0, \pi)$. Suppose, by contradiction, that $\left(u_{n}\right)$ is a sequence of functions in $W_{0}^{1, p}(0, \pi)$ such that

$$
\begin{gather*}
\left(J_{\lambda}\left(u_{n}\right)\right) \text { is bounded in } \mathbb{R}  \tag{3.1}\\
J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in }\left(W_{0}^{1, p}(0, \pi)\right)^{*}  \tag{3.2}\\
\left\|u_{n}\right\| \rightarrow+\infty \tag{3.3}
\end{gather*}
$$

Due to the reflexivity of $W_{0}^{1, p}(0, \pi)$ and the compact embeding

$$
W_{0}^{1, p}(0, \pi) \hookrightarrow \hookrightarrow C^{0}(<0, \pi>)
$$

there exists $v \in W_{0}^{1, p}(0, \pi)$ such that (up to subsequences)

$$
\begin{gather*}
v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|} \rightharpoonup v \quad \text { (i.e., weakly) in } W_{0}^{1, p}(0, \pi)  \tag{3.4}\\
v_{n} \rightarrow v \quad\left(\text { i.e., strongly) in } C^{0}(\langle 0, \pi\rangle)\right. \tag{3.5}
\end{gather*}
$$

From (3.2), (3.3) and (3.4), we have

$$
\begin{align*}
& \frac{\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), v_{n}-v\right\rangle}{\left\|u_{n}\right\|^{p-1}} \\
& =\int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime}\left(v_{n}-v\right)^{\prime} \mathrm{d} x-\lambda \int_{0}^{\pi}\left|v_{n}\right|^{p-2} v_{n}\left(v_{n}-v\right) \mathrm{d} x  \tag{3.6}\\
& \quad-\int_{0}^{\pi} \frac{g\left(u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}\left(v_{n}-v\right) \mathrm{d} x+\int_{0}^{\pi} \frac{h}{\left\|u_{n}\right\|^{p-1}}\left(v_{n}-v\right) \mathrm{d} x \rightarrow 0
\end{align*}
$$

and since the last three terms approach 0 (here we need the assumption 1.5 ), we have

$$
\int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime}\left(v_{n}-v\right)^{\prime} \mathrm{d} x \rightarrow 0
$$

It follows from here, (3.4) and from the Hölder inequality that

$$
\begin{align*}
0 & \leftarrow \int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime}\left(v_{n}-v\right)^{\prime} \mathrm{d} x-\int_{0}^{\pi}\left|v^{\prime}\right|^{p-2} v^{\prime}\left(v_{n}-v\right)^{\prime} \mathrm{d} x \\
& =\int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p} \mathrm{~d} x-\int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime} v^{\prime} \mathrm{d} x-\int_{0}^{\pi}\left|v^{\prime}\right|^{p-2} v^{\prime} v_{n}^{\prime} \mathrm{d} x+\int_{0}^{\pi}\left|v^{\prime}\right|^{p} \mathrm{~d} x  \tag{3.7}\\
& \geq\left\|v_{n}\right\|^{p}-\left\|v_{n}\right\|^{p-1}\|v\|-\|v\|^{p-1}\left\|v_{n}\right\|+\|v\|^{p} \\
& =\left(\left\|v_{n}\right\|^{p-1}-\|v\|^{p-1}\right)\left(\left\|v_{n}\right\|-\|v\|\right) \geq 0
\end{align*}
$$

which implies

$$
\begin{equation*}
\left\|v_{n}\right\| \rightarrow\|v\| . \tag{3.8}
\end{equation*}
$$

The uniform convexity of $W_{0}^{1, p}(0, \pi)$ then yields

$$
\begin{equation*}
v_{n} \rightarrow v \text { in } W_{0}^{1, p}(0, \pi), \quad\|v\|=1 \tag{3.9}
\end{equation*}
$$

It follows from (3.2) and (3.3) that, for any $w \in W_{0}^{1, p}(0, \pi)$,

$$
\begin{aligned}
\frac{\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), w\right\rangle}{\left\|u_{n}\right\|^{p-1}}= & \int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime} w^{\prime} \mathrm{d} x-\lambda \int_{0}^{\pi}\left|v_{n}\right|^{p-2} v_{n} w \mathrm{~d} x \\
& -\int_{0}^{\pi} \frac{g\left(u_{n}\right)}{\left\|u_{n}\right\|^{p-1}} w \mathrm{~d} x+\int_{0}^{\pi} \frac{h}{\left\|u_{n}\right\|^{p-1}} w \mathrm{~d} x \rightarrow 0
\end{aligned}
$$

Now the last two terms approach zero. Hence for all $w \in W_{0}^{1, p}(0, \pi)$ :

$$
\begin{equation*}
\int_{0}^{\pi}\left|v_{n}^{\prime}\right|^{p-2} v_{n}^{\prime} w^{\prime} \mathrm{d} x-\lambda \int_{0}^{\pi}\left|v_{n}\right|^{p-2} v_{n} w \mathrm{~d} x \rightarrow 0 \tag{3.10}
\end{equation*}
$$

It is known [3] that the maps $A, B: W_{0}^{1, p}(0, \pi) \rightarrow\left(W_{0}^{1, p}(0, \pi)\right)^{*}$;

$$
\langle A u, w\rangle:=\int_{0}^{\pi}\left|u^{\prime}\right|^{p-2} u^{\prime} w^{\prime} \mathrm{d} x, \quad\langle B u, w\rangle:=\int_{0}^{\pi}|u|^{p-2} u w \mathrm{~d} x
$$

are continuous, and therefore from $\sqrt[3.9]{ }$ and 3.10 we have

$$
\int_{0}^{\pi}\left|v^{\prime}\right|^{p-2} v^{\prime} w^{\prime} \mathrm{d} x=\lambda \int_{0}^{\pi}|v|^{p-2} v w \mathrm{~d} x, \quad \forall w \in W_{0}^{1, p}(0, \pi)
$$

and

$$
v \in \operatorname{ker}\left(-\Delta_{p}-\lambda\right) \backslash\{0\}, \quad\|v\|=1
$$

The boundedness of $\left(J_{\lambda}\left(u_{n}\right)\right), J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, and $\left\|u_{n}\right\| \rightarrow \infty$ imply

$$
\begin{aligned}
\frac{\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle-p J_{\lambda}\left(u_{n}\right)}{\left\|u_{n}\right\|} & =\int_{0}^{\pi} \frac{p G\left(u_{n}\right)-g\left(u_{n}\right) u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x-(p-1) \int_{0}^{\pi} h \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x \\
& =\int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x-(p-1) \int_{0}^{\pi} h \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x \rightarrow 0
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim \int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x=(p-1) \int_{0}^{\pi} h v \mathrm{~d} x \tag{3.11}
\end{equation*}
$$

Now we assume (1.6) (the other case (1.7) is treated similarly). It follows

$$
\underline{F(+\infty)}>-\infty \quad \text { and } \quad \overline{F(-\infty)}<+\infty
$$

For arbitrary $\varepsilon>0$ set

$$
\begin{aligned}
& c_{\varepsilon}:=\left\{\begin{array}{l}
\frac{F(+\infty)}{\frac{1}{\varepsilon} \text { if } \underline{F(+\infty)}}=\underline{+\infty} \text { if } \frac{F(+\infty)}{+\infty},
\end{array}\right. \\
& d_{\varepsilon}:=\left\{\begin{array}{l}
\overline{F(-\infty)}+\varepsilon \text { if } \overline{F(-\infty)} \in \mathbb{R}, \\
-\frac{1}{\varepsilon} \text { if } \overline{F(-\infty)}=-\infty .
\end{array}\right.
\end{aligned}
$$

Then for any $\varepsilon>0$ there exists $K>0$ such that

$$
\begin{equation*}
F(t) \geq c_{\varepsilon} \text { for any } t>K, \quad F(t) \leq d_{\varepsilon} \text { for any } t<-K \tag{3.12}
\end{equation*}
$$

On the other hand, the continuity of $F$ on $\mathbb{R}$ implies that for any $K>0$ there exists $c(K)>0$ such that

$$
\begin{equation*}
|F(t)| \leq c(K) \quad \text { for any } t \in\langle-K, K\rangle \tag{3.13}
\end{equation*}
$$

Let us choose $\varepsilon>0$ and consider the corresponding $K>0$ and $c(K)>0$ given by (3.12) and 3.13), respectively. Set

$$
\begin{equation*}
\int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x=A_{K, n}+B_{K, n}+C_{K, n}+D_{K, n}+E_{K, n} \tag{3.14}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{K, n}=\int_{\substack{\left\{x \in(0, \pi) ; \\
\left\{u_{n}(x) \mid \leq K\right\}\right.}} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x, \quad B_{K, n}=\int_{\substack{\left.\left\{x \in(0, \pi) ; \\
u_{n}(x) \geq K, v(x)>0\right\}\right\}}} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x, \\
C_{K, n}=\int_{\substack{\left\{x \in(0, \pi) ; \\
u_{n}(x) \geq K, v(x) \leq 0\right\}}} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x, \quad D_{K, n}=\int_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x)<-K, v(x)<0\right\}}} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x, \\
E_{K, n}=\int_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x) \leq K, v(x) \geq 0\right\}}} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x .
\end{gathered}
$$

Before estimating these integrals we claim that for any $K>0$ the following assertions are true:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{meas}\left\{x \in(0, \pi): u_{n}(x)>K \text { and } v(x) \leq 0\right\}=0 \\
& \lim _{n \rightarrow \infty} \operatorname{meas}\left\{x \in(0, \pi): u_{n}(x)<-K \text { and } v(x) \geq 0\right\}=0 \\
& \lim _{n \rightarrow \infty} \operatorname{meas}\left\{x \in(0, \pi): u_{n}(x) \leq K \text { and } v(x)>0\right\}=0 \\
& \lim _{n \rightarrow \infty} \operatorname{meas}\left\{x \in(0, \pi): u_{n}(x) \geq-K \text { and } v(x)<0\right\}=0
\end{aligned}
$$

cf. 1.3) and (3.5). We are now ready to estimate the integrals from (3.14).

$$
\begin{aligned}
&\left|A_{K, n}\right| \leq \frac{c(K) K \pi}{\left\|u_{n}\right\|} \rightarrow 0, \\
& B_{K, n} \geq c_{\varepsilon}\left(\int_{\substack{\{x \in(0, \pi): \\
v(x)>0\}}} v_{n} \mathrm{~d} x-\int_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x) \leq K, v(x)>0\right\}}} v_{n} \mathrm{~d} x\right) \rightarrow c_{\varepsilon} \int_{\substack{\{x \in(0, \pi): \\
v(x)>0\}}} v(x) \mathrm{d} x, \\
& C_{K, n} \geq c_{\varepsilon} \int_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x)>K, v(x) \leq 0\right\}}} v_{n} \mathrm{~d} x \rightarrow 0, \\
& D_{K, n} \geq d_{\varepsilon}\left(\int_{\substack{\{x \in(0, \pi): \\
v(x)<0\}}} v_{n} \mathrm{~d} x-\int_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x) \geq-K, v(x)<0\right\}}} v_{n} \mathrm{~d} x\right) \rightarrow d_{\varepsilon} \int_{\substack{\{x \in(0, \pi): \\
v(x)<0\}}} v(x) \mathrm{d} x, \\
& E_{K, n} \geq d_{\varepsilon} d_{\substack{\left\{x \in(0, \pi): \\
u_{n}(x)<-K, v(x) \geq 0\right\}}} v_{n} \mathrm{~d} x \rightarrow 0 .
\end{aligned}
$$

Hence (see 3.14), for any $\varepsilon>0$,

$$
\begin{aligned}
\liminf \int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x & =\lim \inf \left(A_{K, n}+B_{K, n}+C_{K, n}+D_{K, n}+E_{K, n}\right) \\
& \geq c_{\varepsilon} \int_{\substack{\{x \in(0, \pi): \\
v(x)>0\}}} v(x) \mathrm{d} x+d_{\varepsilon} \int_{\substack{\{x \in(0, \pi): \\
v(x)<0\}}} v(x) \mathrm{d} x
\end{aligned}
$$

which together with 3.11 implies

$$
(p-1) \int_{0}^{\pi} h(x) v(x) \mathrm{d} x \geq \underline{F(+\infty)} \int_{0}^{\pi} v^{+}(x) \mathrm{d} x+\overline{F(-\infty)} \int_{0}^{\pi} v^{-}(x) \mathrm{d} x
$$

contradicting 1.6 . This proves that $\left(u_{n}\right)$ is bounded.
The rest of the proof is very easy. If the sequence $\left(u_{n}\right)$, which is bounded in $W_{0}^{1, p}(0, \pi)$, satisfies conditions (3.1) and 3.2), then there exists $u \in W_{0}^{1, p}(0, \pi)$
such that (passing to subsequences)

$$
u_{n} \rightharpoonup u \text { in } W_{0}^{1, p}(0, \pi), \quad u_{n} \rightarrow u \text { in } C^{0}(\langle 0, \pi\rangle)
$$

It follows from here, $(3.2)$ and $\sqrt{1.5}$ that

$$
\begin{aligned}
\lim \left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle= & \lim \int_{0}^{\pi}\left|u_{n}^{\prime}\right|^{p-2} u_{n}^{\prime}\left(u_{n}-u\right)^{\prime} \mathrm{d} x-\lambda \int_{0}^{\pi}\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right) \mathrm{d} x \\
& -\int_{0}^{\pi} g\left(u_{n}\right)\left(u_{n}-u\right) \mathrm{d} x+\int_{0}^{\pi} h\left(u_{n}-u\right) \mathrm{d} x \\
= & \lim \int_{0}^{\pi}\left|u_{n}^{\prime}\right|^{p-2} u_{n}^{\prime}\left(u_{n}-u\right)^{\prime} \mathrm{d} x=0
\end{aligned}
$$

which implies $\left\|u_{n}\right\| \rightarrow\|u\|$ (cf. 3.7)). The uniform convexity of $W_{0}^{1, p}(0, \pi)$ then yields $u_{n} \rightarrow u$ in $W_{0}^{1, p}(0, \pi)$. The proof is complete.

Lemma 3.2. Let us assume (1.5) and let $\lambda<\lambda_{1}$. Then there exists at least one weak solution of 1.1 .
Proof. Assumption 1.5 and the variational characterization of $\lambda_{1}$ yield: For all $u \in W_{0}^{1, p}(0, \pi)$ and all $\varepsilon>0$ there exists $c>0$ such that

$$
\begin{aligned}
J_{\lambda}(u)= & \frac{1}{p} \int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x-\frac{\lambda_{1}}{p} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x+\frac{\lambda_{1}-\lambda}{p} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x \\
& -\int_{0}^{\pi} G(u) \mathrm{d} x+\int_{0}^{\pi} h u \mathrm{~d} x \\
\geq & \frac{\lambda_{1}-\lambda}{p} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x-c \int_{0}^{\pi}|u| \mathrm{d} x-\frac{\varepsilon}{p} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x-\int_{0}^{\pi}|h u| \mathrm{d} x \\
\geq & \frac{\lambda_{1}-\lambda-\varepsilon}{p}\|u\|_{L^{p}(0, \pi)}^{p}-c\|u\|_{L^{1}(0, \pi)}-\|h\|_{L^{p^{\prime}(0, \pi)}}\|u\|_{L^{p}(0, \pi)}
\end{aligned}
$$

Hence the functional $J_{\lambda}$ is bounded from bellow on $W_{0}^{1, p}(0, \pi)$. It follows from this and from Lemma 3.1 that $J_{\lambda}$ attains its global minimum on $W_{0}^{1, p}(0, \pi)$ [6, Corollary 2.5].

Lemma 3.3. Let us assume (1.5) and ( $\sqrt{1.6}$ or 1.7 ). Let there exists $k \in \mathbb{N}$ such that $\lambda_{k}<\lambda<\lambda_{k+1}$. Then there exists at least one weak solution of (1.1).

Proof. Let $m \in\left(\lambda_{k}, \lambda\right)$ and let $\mathcal{A} \in \mathcal{F}_{k}$ be such that

$$
\sup _{u \in \mathcal{A}} I(u) \leq m
$$

(see Section 1 for $\mathcal{F}_{k}$ ). Then (we again need (1.5)): For all $u \in \mathcal{A}$, all $t>0$ and all $\varepsilon>0$, there exists $c>0$ such that

$$
\begin{aligned}
J_{\lambda}(t u)= & \frac{1}{p} t^{p}\left(\int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x-\lambda \int_{0}^{\pi}|u|^{p} \mathrm{~d} x\right)-\int_{0}^{\pi} G(t u) \mathrm{d} x+t \int_{0}^{\pi} h u \mathrm{~d} x \\
\leq & \frac{1}{p} t^{p}(m-\lambda)\|u\|_{L^{p}(0, \pi)}^{p}+c t\|u\|_{L^{1}(0, \pi)} \\
& +\frac{\varepsilon}{p} t^{p}\|u\|_{L^{p}(0, \pi)}^{p}+t\|h\|_{L^{p^{\prime}}(0, \pi)}\|u\|_{L^{p}(0, \pi)} \\
= & \frac{1}{p} t^{p}(m-\lambda+\varepsilon)\|u\|_{L^{p}(0, \pi)}^{p}+t\left(c\|u\|_{L^{1}(0, \pi)}+\|h\|_{L^{p^{\prime}}(0, \pi)}\|u\|_{L^{p}(0, \pi)}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} J_{\lambda}(t u)=-\infty \quad \forall u \in \mathcal{A} . \tag{3.15}
\end{equation*}
$$

Now we continue similarly as in [3]. Let

$$
\mathcal{E}_{k+1}:=\left\{u \in W_{0}^{1, p}(0, \pi): \int_{0}^{\pi}\left|u^{\prime}\right|^{p} \mathrm{~d} x \geq \lambda_{k+1} \int_{0}^{\pi}|u|^{p} \mathrm{~d} x\right\},
$$

and notice that for all $u \in \mathcal{E}_{k+1}$, all $\varepsilon>0$ there exists $c>0$ such that

$$
J_{\lambda}(u) \geq \frac{1}{p}\left(\lambda_{k+1}-\lambda-\varepsilon\right)\|u\|_{L^{p}(0, \pi)}^{p}-c\|u\|_{L^{1}(0, \pi)}-\|h\|_{L^{p^{\prime}}(0, \pi)}\|u\|_{L^{p}(0, \pi)} .
$$

Hence

$$
\begin{equation*}
\alpha:=\inf \left\{J_{\lambda}(u): u \in \mathcal{E}_{k+1}\right\} \in \mathbb{R} . \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16) we see that there exists $T>0$ such that

$$
\gamma:=\max \left\{J_{\lambda}(t u): u \in \mathcal{A} \text { and } t \in\langle T,+\infty)\right\}<\alpha .
$$

The rest of the proof can be copied from [3]. If we define

$$
\begin{aligned}
& T \mathcal{A}:=\left\{t u \in W_{0}^{1, p}(0, \pi): u \in \mathcal{A} \text { and } t \in\langle T,+\infty)\right\}, \\
\Gamma:= & \left\{h \in C^{0}\left(B_{k}, W_{0}^{1, p}(0, \pi)\right):\left.h\right|_{S^{k}} \text { is an odd map into } T \mathcal{A}\right\},
\end{aligned}
$$

where

$$
B_{k}:=\left\{x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{R}^{k}:\|x\|_{\mathbb{R}^{k}}=\sqrt{x_{1}^{2}+\cdots+x_{k}^{2}} \leq 1\right\}
$$

then we can prove that $\Gamma$ is nonempty and if $h \in \Gamma$ then $h\left(B_{k}\right) \cap \mathcal{E}_{k+1} \neq \emptyset$.
Moreover, from Deformation Lemma then follows that

$$
c:=\inf _{h \in \Gamma} \sup _{x \in B_{k}} J_{\lambda}(h(x))
$$

is a critical value of $J_{\lambda}$. Indeed, assume by contradiction, that $c$ is a regular value of $J_{\lambda}$. It is clear that $c \geq \alpha$. Now we consider arbitrary $\bar{\varepsilon}>0$ such that $\bar{\varepsilon}<c-\gamma$ and we apply Deformation Lemma. We get a deformation $\phi$ and a corresponding $\varepsilon>0$. By definition of $c$ there is an $h \in \Gamma$ such that

$$
\sup _{x \in B_{k}} J_{\lambda}(h(x))<c+\varepsilon .
$$

Now when

$$
\tilde{h}(x):=\phi(h(x), 1),
$$

we obtain

$$
\tilde{h} \in \Gamma, \forall x \in B_{k}: J_{\lambda}(\tilde{h}(x))=J_{\lambda}(\phi(h(x), 1)) \leq c-\varepsilon,
$$

it is a contradiction to the definition of $c$.
Lemma 3.4. Let us assume (1.5) and (1.6) or 1.7). Let there exists $k \in \mathbb{N}$ such that $\lambda=\lambda_{k}$. Then there exists at least one weak solution of (1.1).

Proof. At first we assume (1.6). Let $\left(\mu_{n}\right)$ be a sequence in $\left(\lambda_{k}, \lambda_{k+1}\right)$ such that $\mu_{n} \searrow \lambda_{k}$. Now thanks to Lemma 3.3, we have: For all $n \in \mathbb{N}$ there exists $c_{n} \in \mathbb{R}$ and $u_{n} \in W_{0}^{1, p}(0, \pi)$ such that

$$
J_{\mu_{n}}^{\prime}\left(u_{n}\right)=0 \text { and } J_{\mu_{n}}\left(u_{n}\right)=c_{n} \geq \alpha_{n}:=\inf \left\{J_{\mu_{n}}(u): u \in \mathcal{E}_{k+1}\right\} .
$$

It follows from (1.5) and from the monotonousness of $\left(\mu_{n}\right)$ that for all $n \in \mathbb{N}$, all $u \in \mathcal{E}_{k+1}$ and all $\varepsilon>0$, there exists $c>0$ such that

$$
\begin{aligned}
& J_{\mu_{n}}(u) \\
& \geq \frac{1}{p}\left(\lambda_{k+1}-\mu_{n}\right)\|u\|_{L^{p}(0, \pi)}^{p}-c\|u\|_{L^{1}(0, \pi)}-\frac{\varepsilon}{p}\|u\|_{L^{p}(0, \pi)}^{p}-\|h\|_{L^{p^{\prime}}(0, \pi)}\|u\|_{L^{p}(0, \pi)} \\
& \geq \frac{1}{p}\left(\lambda_{k+1}-\mu_{1}-\varepsilon\right)\|u\|_{L^{p}(0, \pi)}^{p}-c\|u\|_{L^{1}(0, \pi)}-\|h\|_{L^{p^{\prime}}(0, \pi)}\|u\|_{L^{p}(0, \pi)},
\end{aligned}
$$

and so the sequence $\left(c_{n}\right)$ is bounded below.
Now we prove that the corresponding sequence of critical points, $\left(u_{n}\right)$, is bounded. Suppose, by contradiction, that $\left\|u_{n}\right\| \rightarrow+\infty$. Then we can assume that there exists

$$
\begin{equation*}
v \in \operatorname{ker}\left(-\Delta_{p}-\lambda_{k}\right) \backslash\{0\} \tag{3.17}
\end{equation*}
$$

such that (up to subsequences)

$$
\begin{equation*}
\frac{u_{n}}{\left\|u_{n}\right\|} \rightarrow v \quad \text { in } W_{0}^{1, p}(0, \pi) \tag{3.18}
\end{equation*}
$$

Because $\left(c_{n}\right)$ is bounded from below, it follows from (1.6, 3.17) and (3.18) that

$$
\begin{aligned}
0 & \leq \liminf \frac{p c_{n}}{\left\|u_{n}\right\|} \\
& \leq \lim \sup \frac{p c_{n}}{\left\|u_{n}\right\|} \\
& =\lim \sup \frac{p J_{\mu_{n}}\left(u_{n}\right)-\left\langle J_{\mu_{n}}^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|} \\
& =\lim \sup \left(-\frac{p \int_{0}^{\pi} G\left(u_{n}\right) \mathrm{d} x-\int_{0}^{\pi} g\left(u_{n}\right) u_{n} \mathrm{~d} x}{\left\|u_{n}\right\|}+(p-1) \int_{0}^{\pi} h \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x\right) \\
& =-\liminf \left(\frac{p \int_{0}^{\pi} G\left(u_{n}\right) \mathrm{d} x-\int_{0}^{\pi} g\left(u_{n}\right) u_{n} \mathrm{~d} x}{\left\|u_{n}\right\|}\right)+(p-1) \int_{0}^{\pi} h v \mathrm{~d} x \\
& =-\liminf \left(\int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x\right)+(p-1) \int_{0}^{\pi} h v \mathrm{~d} x<0 .
\end{aligned}
$$

This is a contradiction, therefore $\left(u_{n}\right)$ is bounded. Thus there will be a subsequence of critical points that converges to the desired solution.

Now we assume (1.7). Because for $\lambda=\lambda_{1}$ our assertion was proved in [2], we focus on $k>1$. Let $\left(\mu_{n}\right)$ be a sequence in $\left(\lambda_{k-1}, \lambda_{k}\right)$ such that $\mu_{n} \nearrow \lambda_{k}$. We can find (similarly as in [3]) a sequence $\left(u_{n}\right)$ of critical points associated with the functionals $J_{\mu_{n}}$ such that the sequence $c_{n}:=J_{\mu_{n}}\left(u_{n}\right)$ is decreasing, i.e.

$$
J_{\mu_{n}}^{\prime}\left(u_{n}\right)=0, \quad J_{\mu_{n}}\left(u_{n}\right)=c_{n} \geq c_{n+1} .
$$

Now we are going to prove that $\left(u_{n}\right)$ is bounded. Suppose, by contradiction, $\left\|u_{n}\right\| \rightarrow$ $\infty$. Then there exists $v \in \operatorname{ker}\left(-\Delta_{p}-\lambda_{k}\right) \backslash\{0\}$ such that (up to subsequence)

$$
\begin{aligned}
\frac{u_{n}}{\left\|u_{n}\right\|} & \rightarrow v \text { and } \\
& 0 \geq \limsup \frac{p c_{n}}{\left\|u_{n}\right\|} \geq \operatorname{lim\operatorname {inf}\frac {pc_{n}}{\| u_{n}\| }} \\
& =\liminf \frac{p J_{\mu_{n}}\left(u_{n}\right)-\left\langle J_{\mu_{n}}^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|} \\
& =\liminf \left(-\frac{p \int_{0}^{\pi} G\left(u_{n}\right) \mathrm{d} x-\int_{0}^{\pi} g\left(u_{n}\right) u_{n} \mathrm{~d} x}{\left\|u_{n}\right\|}+(p-1) \int_{0}^{\pi} h \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x\right) \\
& =-\limsup \left(\frac{p \int_{0}^{\pi} G\left(u_{n}\right) \mathrm{d} x-\int_{0}^{\pi} g\left(u_{n}\right) u_{n} \mathrm{~d} x}{\left\|u_{n}\right\|}\right)+(p-1) \int_{0}^{\pi} h v \mathrm{~d} x \\
& =-\limsup \left(\int_{0}^{\pi} F\left(u_{n}\right) \frac{u_{n}}{\left\|u_{n}\right\|} \mathrm{d} x\right)+(p-1) \int_{0}^{\pi} h v \mathrm{~d} x>0,
\end{aligned}
$$

which is a contradiction. Now it is a simple matter to show that, by passing to a subsequence, we obtain a critical point of $J_{\lambda_{k}}$ in the limit.

Acknowledgements. The author is indebted to Professor Pavel Drábek for his valuable comments.

## References

[1] J. Bouchala: Resonance problems for p-Laplacian, Mathematics and Computers in Simulation 61 (2003), 599-604.
[2] J. Bouchala and P. Drábek: Strong resonance for some quasilinear elliptic equations, Journal of Mathematical Analysis and Applications 245 (2000), 7-19.
[3] P. Drábek and S. B. Robinson: Resonance Problems for the p-Laplacian, Journal of Functional Analysis 169 (1999), 189-200.
[4] M. Cuesta: On the Fučik Spectrum of the Laplacian and the p-Laplacian, Proceedings of Seminar in Differential Equations, University of West Bohemia in Pilsen (2000), 67-96.
[5] M. Struwe: Variational methods, A series of modern surveys in mathematics 34, Springer, Berlin (2000).
[6] M. Willem: Minimax theorems, Birkhäuser, Boston (1996).
Jiří Bouchala
Department of Applied Mathematics VŠB-Technical University Ostrava, Czech republic E-mail address: jiri.bouchala@vsb.cz


[^0]:    2000 Mathematics Subject Classification. 34B15, 34L30, 47J30.
    Key words and phrases. p-Laplacian; resonance at the eigenvalues;
    Landesman-Lazer type conditions.
    (C) 2005 Texas State University - San Marcos.

    Submitted June 21, 2004. Published January 5, 2005.
    Research supported by the Grant Agency of Czech Republic, 201/03/0671.
    These results were presented (without proof) on the conference Modelling 2001 (see [1]).

