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PERIODIC TRAJECTORIES FOR EVOLUTION EQUATIONS IN
BANACH SPACES

MIRCEA D. VOISEI

Abstract. The existence of periodic solutions for the evolution equation

y′(t) + Ay(t) 3 F (t, y(t))

is investigated under considerably simple assumptions on A and F . Here X
is a Banach space, the operator A is m-accretive, −A generates a compact

semigroup, and F is a Carathéodory mapping. Two examples concerning

nonlinear parabolic equations are presented.

1. Introduction

Consider the nonlinear evolution equation

y′(t) + Ay(t) 3 F (t, y(t)), 0 ≤ t ≤ T, (1.1)

where (X, ‖ · ‖) is a Banach space, A : D(A) ⊂ X → 2X is m-accretive such that
−A generates a compact semigroup, F : [0, T ] × D(A) → X is a Carathéodory
mapping, i.e., F (·, x) : [0, T ] → X is strongly measurable for every x ∈ D(A) and
F (t, ·) : D(A) → X is continuous for almost every t ∈ [0, T ].

The aim of this note is to investigate the existence of a mild periodic solution
y ∈ C([0, T ];X), y(0) = y(T ) for (1.1) in general Banach spaces. Our main result
is the following.

Theorem 1.1. Assume that A is m-accretive, −A generates a compact semigroup,
F is Carathéodory with ∫ T

0

sup
x∈D(A),‖x‖≤r

‖F (t, x)‖dt < ∞, (1.2)

for every r > 0, and there exist R > 0, b, c ∈ L1(0, T ), c(t) ≥ 0, t ∈ (0, T ), c 6= 0,
such that

[x, y− F (t, x)]+ ≥ c(t)‖x‖+ b(t), t ∈ (0, T ), x ∈ D(A), ‖x‖ ≥ R, y ∈ Ax, (1.3)

where [x, v]+ = lim
h↓0

1
h (‖x + hv‖ − ‖x‖), x, v ∈ X. Then (1.1) admits at least one

mild T -periodic solution.
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This periodic problem has been intensively studied in the literature [1, 2, 4, 5,
6, 7]. The most common argument used is to apply a fixed point theorem for a
suitable Poincaré operator. Generally, Schauder’s fixed point theorem produced
remarkable results for the general Banach space setting (Vrabie [7], Shioji [4]). For
example the main result in Shioji [4] has a statement similar to Theorem 1.1. In
addition X is separable, D(A) is convex, and condition (1.3) is strengthened to
c(t) = c > 0, t ∈ [0, T ]. The earlier result of Vrabie [7] studies (1.1) under the
assumptions that A − aI is m-accretive for some a > 0 and the growth condition
(1.2) is replaced by

lim sup
r→∞

1
r

sup{‖F (t, x)‖ : t ≥ 0, x ∈ D(A), ‖x‖ ≤ r} = m < a.

The limiting case a = 0 is studied in Hilbert spaces by Cascaval & Vrabie [1]
without the growth condition on F but under a supplementary flow-invariant type
condition of the form: there exists r > 0 such that {x ∈ X; ‖x‖ = r} ∩ D(A) is
nonempty and

〈x, y − F (t, x)〉 ≥ 0, for every x ∈ D(A), ‖x‖ = r, y ∈ Ax, 0 ≤ t ≤ T,

where 〈·, ·〉 stands for the inner product of X. Also, in [6] the case m = a ≥ 0 is
studied in general Banach spaces under the condition: there exists r > 0 such that

[x, y − F (t, x)]+ ≥ 0, for 0 ≤ t ≤ T, x ∈ D(A), y ∈ Ax, ‖x‖ ≥ r.

Most of these new assumptions are needed for the invariance of a closed convex ball
in the Schauder fixed point theorem argument.

The method we use here relies on the Leray-Schauder topological degree applied
for the Green operator and it is neither concerned with the initial value problem
for (1.1) nor involves the Poincaré operator. That is why, the convexity of D(A) or
the strong accretivity of A are no longer needed. Condition (1.3) ensures some “a
priori” estimates for the periodic solutions of (1.1) and that the “periodic solution”
operator PA : L1(0, T ;X) → C([0, T ];X), which associates to g ∈ L1(0, T ;X)
all solutions y ∈ PAg of the periodic problem y′(t) + Ay(t) 3 g(t), 0 ≤ t ≤ T ,
y(0) = y(T ), is compact.

Next section is devoted to preliminaries and main notations. Section 3 con-
tains the proof of our main result. This paper concludes with section 4 where two
examples concerning nonlinear evolution equation of parabolic type are presented.

2. Preliminaries

For notions such as m-accretive operator, mild solution, or compact semigroup
the reader is referred to Vrabie [8] and the references therein. We suggest Lloyd [3]
for the theory and notations of the topological degree.

Let (X, ‖ · ‖) be a real Banach space and A : D(A) ⊂ X → 2X . If A − ωI is
m-accretive for some ω ∈ R then for each (ξ, f) ∈ D(A) × L1(0, T ;X) the initial
value problem

y′(t) + Ay(t) 3 f(t), 0 ≤ t ≤ T, y(0) = ξ, (2.1)

has a unique mild solution denoted by M(ξ, f).
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For yi = M(ξi, fi), where (ξi, fi) ∈ D(A)×L1(0, T ;X), i = 1, 2 we have the mild
solution inequality

eωt‖y1(t)− y2(t)‖ ≤ eωs‖y1(s)− y2(s)‖+
∫ t

s

eωτ‖f1(τ)− f2(τ)‖dτ, (2.2)

for 0 ≤ s ≤ t ≤ T .
The norm of a function f in Lp(0, T ;X), 1 ≤ p < ∞, is denoted by

‖f‖Lp = (
∫ T

0

‖f(t)‖pdt)1/p.

We use the norm ‖y‖∞ = sup
t∈[0,T ]

‖y(t)‖, for y ∈ C([0, T ];X).

A family G ⊂ L1(0, T ;X) is called uniformly integrable if for each ε > 0 there
exists δ(ε) > 0 such that for every measurable set E in [0, T ] whose Lebesgue
measure is less than δ(ε) we have

∫
E
‖f(t)‖dt < ε, uniformly for f ∈ G.

Every bounded subset of Lp(0, T ;X), 1 < p ≤ ∞, is uniformly integrable and
every uniformly integrable subset is bounded in L1(0, T ;X). We recall the following
result from Vrabie [7, Theorem 2]).

Theorem 2.1. If A : D(A) ⊂ X → 2X is an operator with A−ωI m-accretive for
some ω ≥ 0 such that −A generates a compact semigroup, then for each bounded
subset B in D(A) and each uniformly integrable G in L1(0, T ;X), the set M(B×G)
of all mild solution of (2.1) corresponding to (ξ, f) ∈ B×G is relatively compact in
C([d, T ];X) for each d ∈ (0, T ). If, in addition, B is relatively compact in X, then
M(B × G) is relatively compact in C([0,T];X).

Consider the “periodic solution” operator PA : L1(0, T ;X) → 2L1(0,T ;X) defined
by (f, y) ∈ GraphPA if y ∈ C([0, T ];X), y(0) = y(T ), is a mild solution of

y′(t) + Ay(t) 3 f(t), 0 ≤ t ≤ T.

Theorem 2.2. If G is uniformly integrable in L1(0, T ;X), A − ωI is m-accretive
for some ω > 0, and −A generates a compact semigroup then PA(G) is relatively
compact in C([0, T ];X).

Proof. The mild solution inequality and the periodicity offer us the estimate

‖y‖∞ ≤ e2ωT

eωT − 1
‖f‖L1 , for every y ∈ PAf , (2.3)

where, without loss of generality, we assume that 0 ∈ A0. Since G is bounded,
this shows that the set of initial-final data B = {y(0); y ∈ PA(G)} is bounded in
X. According to Theorem 2.1, this implies that B is relatively compact in X and
PA(G) is relatively compact in C([0, T ];X). �

3. Proof of Theorem 1.1

In the sequel we assume that all the assumptions in Theorem 1.1 hold. Without
loss of generality we may assume that, in (1.3), R > ‖b‖L1/‖c‖L1 . Let K > C :=
‖b‖L1 + R + 2 and ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1, ρ(u) = 1 for |u| ≤ K, ρ(u) = 0
for |u| ≥ K + 1.

Lemma 3.1. Let y ∈ C([0, T ];X) be a mild T -periodic solution of

y′(t) + Ay(t) 3 ρ(‖y(t)‖)F (t, y(t)), t ∈ [0, T ]. (3.1)

Then ‖y‖∞ ≤ C or ‖y‖∞ ≥ K.
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Proof. Assume by contradiction that C < ‖y‖∞ < K. Therefore, ρ(‖y(t)‖) = 1,
0 ≤ t ≤ T . The mild solution definition states that for every 0 < c < T and ε > 0
there exist

(i) 0 = t0 < t1 < · · · < c ≤ tn < T , tk − tk−1 ≤ ε for k = 1, . . . , n;
(ii) f1, . . . , fn ∈ X with

∑n
k=1

∫ tk

tk−1
‖ρ(‖y(t)‖)F (t, y(t))− fk‖dt ≤ ε;

(iii) y0, . . . , yn ∈ X satisfying yk−yk−1
tk−tk−1

+ Ayk 3 fk for k = 1, . . . , n,

such that ‖y(t)− yk‖ ≤ ε for t ∈ [tk−1, tk), k = 1, . . . , n.
Suppose that inf

[0,T ]
‖y‖ > R. For ε < min{K − ‖y‖∞, inf

[0,T ]
‖y‖ − R}, we have

R ≤ ‖yk‖ ≤ K, k = 1, . . . , n. From (1.3) and (iii) we find

[yk, fk −
yk − yk−1

tk − tk−1
− F (t, yk)]+ ≥ c(t)‖yk‖+ b(t), a.e. t ∈ [0, T ]. (3.2)

Integrate on [tk−1, tk] and add from k = 1 to n, to obtain

‖yn‖+
n∑

k=1

‖yk‖
∫ tk

tk−1

c(t)dt

≤ ‖y0‖+
n∑

k=1

∫ tk

tk−1

‖fk − F (t, yk)‖+
∫ tn

0

|b(t)|dt

≤ ‖y0‖+ ‖b‖L1 +
n∑

k=1

∫ tk

tk−1

‖ρ(‖y(t)‖)F (t, y(t))− fk‖dt

+
∫ T

0

‖F (t, y(t))− Fε(t)‖dt,

(3.3)

where Fε(t) = F (t, yk) if t ∈ [tk−1, tk), k = 1, . . . , n, Fε(t) = F (t, y(t)), t ∈ [tn, T ].
According to (ii), this yields

‖yn‖+ R

∫ tn

0

c(t)dt ≤ ‖y0‖+ ‖b‖L1 + ε +
∫ T

0

‖F (t, y(t))− Fε(t)‖dt. (3.4)

Since F is Carathéodory, from (1.2) and the Lebesgue dominated convergence the-
orem, we have lim

ε→0

∫ T

0
‖F (t, y(t)) − Fε(t)‖dt = 0. Let ε → 0, c → T in (3.4). We

find R ≤ ‖b‖L1/‖c‖L1 which is a contradiction. Therefore, inf
[0,T ]

‖y‖ ≤ R. Eventu-

ally shifting the time, we may assume without loss of generality, that there exists
t+ ∈ [0, T ], such that ‖y(0)‖ = R+1, ‖y(t+)‖ = ‖y‖∞, and ‖y(t)‖ ≥ R+1, for every
t ∈ [0, t+]. By the same argument used above we obtain ‖y‖∞ ≤ R+1+‖b‖L1 ≤ C
which is a contradiction. The proof is complete. �

For 0 ≤ λ ≤ 1, define the operators Lλ : C([0, T ];X) → C([0, T ];X),

Lλv = PA+ωI(λρ(‖v‖)F (·, v) + λωv), v ∈ C([0, T ];X),

i.e., y = Lλv is the unique T -periodic solution of

y′(t) + Ay(t) + ωy(t) 3 λρ(‖v(t)‖)F (t, v(t)) + λωv(t), 0 ≤ t ≤ T. (3.5)

where ω > 0 is specified below. Note that L0 = 0 and that Lemma 3.1 contains an
“a priori” estimate for the fixed points of L1. Similarly, we provide an “a priori”
estimate for the fixed points of Lλ, 0 < λ < 1.
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Lemma 3.2. For ω > 0 big enough, every T -periodic solution y ∈ C([0, T ];X), of

y′(t) + Ay(t) + ω(1− λ)y(t) 3 λρ(‖y(t)‖)F (t, y(t)), 0 ≤ t ≤ T, 0 < λ < 1, (3.6)

satisfies ‖y‖∞ ≤ C or ‖y‖∞ ≥ K.

Proof. Consider aK(t) = sup{‖F (t, x)‖; x ∈ D(A), ‖x‖ ≤ K + 1}, t ∈ [0, T ].
According to (1.2) aK ∈ L1(0, T ) and ρ(‖x‖)‖F (t, x)‖ ≤ aK(t), a.e. t ∈ [0, T ],
x ∈ D(A).

Assume by contradiction that C < ‖y‖∞ < K. Suppose in addition that
inf
[0,T ]

‖y‖ > R. Reasoning as above we find

ω(1− λ)RT + R‖c‖L1 ≤ (1− λ)‖aK‖L1 + ‖b‖L1 , (3.7)

which is absurd if ω > ‖aK‖L1/RT , since R‖c‖L1 > ‖b‖L1 . Therefore, inf
[0,T ]

‖y‖ ≤ R,

and we may assume that there exist 0 ≤ s0 < t0 ≤ T such that ‖y(s0)‖ = R + 1,
‖y(t0)‖ = ‖y‖∞, and ‖y(t)‖ ≥ R + 1, for every t ∈ [s0, t0]. Similarly, we obtain

ω(1−λ)R(t0−s0)+R

∫ t0

s0

c(t)dt+‖y‖∞ ≤ R+1+(1−λ)
∫ t0

s0

aK(t)dt+‖b‖L1 . (3.8)

This leads to ∫ t0

s0

aK(t)dt− ωR(t0 − s0) ≥ C −R− ‖b‖L1 − 1 = 1. (3.9)

Since aK ∈ L1(0, T ) we have lim
|t−s|→0

∫ t

s
aK(t)dt = 0. Relation (3.9) tells us that

t0 − s0 ≥ δ0 > 0, where δ0 depends only on aK . If ω > ‖aK‖L1/Rδ0, then (3.9)
provides us with a contradiction. The proof is complete. �

Lemma 3.3. H(λ) = Lλ, 0 ≤ λ ≤ 1, defines a homotopy of compact transforma-
tions in C([0, T ];X).

Proof. Condition (1.2) ensures the fact that for every 0 ≤ λ ≤ 1, the operator
C([0, T ];X) 3 v 7→ λρ(‖v‖)F (t, v)+λωv transforms bounded subsets of C([0, T ];X)
into locally integrable subsets of L1(0, T ;X). According to Theorem 2.2, this im-
plies that Lλ : C([0, T ];X) → C([0, T ];X) is compact, for every 0 ≤ λ ≤ 1. For
0 ≤ λ, µ ≤ 1 and v ∈ C([0, T ];X), we have, from the mild solution inequality
combined with the periodicity, that

‖H(λ)v −H(µ)v‖∞ ≤ |λ− µ|e2ωT /(eωT − 1)‖aK‖L1 (3.10)

which shows that H is a homotopy, thereby completing the proof. �

Proof of Theorem 1.1. Pick r0 ∈ (C,K) and let B = {v ∈ C([0, T ];X); ‖v‖∞ <
r0}, S = {v ∈ C([0, T ];X); ‖v‖∞ = r0}. Since C < r0 < K we know from Lemma
3.2 that 0 /∈ (I − Lλ)(S), 0 ≤ λ ≤ 1. The invariance of the degree with respect to
H gives

deg(I − L1, B, 0) = deg(I − L0, B, 0) = deg(I,B, 0) = 1 6= 0, (3.11)

i.e., L1 has at least one fixed point in B. Since r0 < K, this fixed point of L1 is a
T -periodic solution of (1.1). �
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4. Examples

Let Ω be a bounded domain in Rn, n ≥ 2, with smooth boundary ∂Ω. First, we
study the periodic problem for the nonlinear diffusion equation

∂y

∂t
−∆ρ(y) = f(t, x, y(t, x)) a.e. (t, x) ∈ R+ × Ω,

y = 0 a.e. (t, x) ∈ R+ × ∂Ω,

y(t, x) = y(t + T, x) for every t ≥ 0, and a.e. x ∈ Ω.

(4.1)

Theorem 4.1. If ρ ∈ C(R) ∩ C1(R \ {0}), ρ(0) = 0, and there exist c > 0,
p > (n−2)/2 such that ρ′(r) ≥ c|r|p−1 for every r 6= 0, and f : R×Ω×R → R, f =
f(t, x, u) is T -periodic in t, f(t, x, ·) is continuous for almost every (t, x) ∈ R× Ω,
f(·, ·, u) is measurable for every u ∈ R, and there exist M > 0, a, c ∈ L1(0, T ),
c(t) ≥ 0, t ∈ (0, T ), c 6= 0, b, d ∈ L1((0, T )× Ω) such that

|f(t, x, u)| ≤ a(t)|u|+ b(t, x), (t, x, u) ∈ [0, T ]× Ω× R, (4.2)

and
f(t, x, u)u ≤ 0, |f(t, x, u)| ≥ c(t)|u|+ d(t, x),

(t, x) ∈ [0, T ]× Ω, |u| ≥ M.
(4.3)

Then (4.1) has at least one T -periodic solution.

Remark 4.2. For the problem above, Shioji [5] considers (4.2) and the condition

lim sup
|u|→∞

ess sup
(t,x)∈R×Ω

f(t, x, u)
u

< 0,

which is equivalent to there exist δ,M > 0, f(t, x, u)/u ≤ −δ for (t, x, u) ∈ R×Ω×R
with |u| ≥ M . This clearly has the form of (4.3) with c(t) = δ, t ∈ [0, T ], d = 0.

Proof of Theorem 4.1. The operator A : D(A) = {u ∈ L1(Ω); ρ(u) ∈ W 1,1
0 (Ω),

∆ρ(u) ∈ L1(Ω)} ⊂ L1(Ω) → L1(Ω) given by Au := −∆ρ(u), u ∈ D(A), is m-
accretive in X = L1(Ω), D(A) = L1(Ω), and it generates a compact semigroup
(Vrabie [8]). Define F : R × L1(Ω) → L1(Ω) by F (t, u)(x) := f(t, x, u(x)), t ∈ R,
u ∈ L1(Ω). ¿From (4.2) F is well defined, Carathéodory, and satisfies (1.2).

Since A0 = 0, for every u ∈ D(A) we have

[u, ∆ρ(u)− F (t, u)]+ ≥ [u, ∆ρ(u)]+ − [u, F (t, u)]+ ≥ −[u, F (t, u)]+. (4.4)

Denote by {u < 0} = {x ∈ Ω; u(x) < 0}, {u = 0} = {x ∈ Ω; u(x) = 0},
{u > 0} = {x ∈ Ω; u(x) > 0}, and |Ω| the measure of Ω. ¿From (4.2) and (4.3),
for every u ∈ L1(Ω) we obtain

[u, F (t, u)]+

=
∫
{u>0}

f(t, x, u(x))dx−
∫
{u<0}

f(t, x, u(x))dx +
∫
{u=0}

f(t, x, 0)dx

≤ 2Ma(t) + 3
∫

Ω

b(t, x)dx +
∫
{u>M}

f(t, x, u(x))dx−
∫
{u<−M}

f(t, x, u(x))dx

≤ −c(t)‖u‖L1 + Mc(t)|Ω|+ 2Ma(t) + 3
∫

Ω

b(t, x)dx +
∫

Ω

|d(t, x)|dx.

(4.5)
Relations (4.3) and (4.4) combined prove that (1.3) is fulfilled with R = 0. Accord-
ing to Theorem 1.1, (4.1) has at least one T -periodic solution. �
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Next, we consider the periodic problem for the nonlinear heat equation

∂y

∂t
−∆p(y) = f(t, x, y(t, x)) a.e. (t, x) ∈ R+ × Ω,

y = 0 a.e. (t, x) ∈ R+ × ∂Ω,

y(t, x) = y(t + T, x) for every t ≥ 0, and a.e. x ∈ Ω,

(4.6)

where Ω is a bounded domain of Rn, with smooth boundary ∂Ω, p ≥ 2, and

∆py =
n∑

i=1

∂

∂xi
(| ∂y

∂xi
|p−2 ∂y

∂xi
),

is the pseudo-Laplace operator.

Theorem 4.3. Suppose that f : R × Ω × R → R, f = f(t, x, u) is T -periodic in
t, f(t, x, ·) is continuous for almost every (t, x) ∈ R × Ω, f(·, ·, u) is measurable
for every u ∈ R, and there exist M > 0, a, k ∈ L1(0, T ), a, k ≥ 0, k 6= 0, b, d ∈
L1(0, T ;L2(Ω)) such that

|f(t, x, u)| ≤ a(t)|u|+ b(t, x), (t, x, u) ∈ [0, T ]× Ω× R, (4.7)

and

f(t, x, u)u ≤ [c− k(t)]|u|p + d(t, x)|u|, (t, x) ∈ [0, T ]× Ω, |u| ≥ M, (4.8)

where c > 0 is such that∫
Ω

|∇u(x)|pdx ≥ c

∫
Ω

|u(x)|pdx, u ∈ W 1,p
0 (Ω). (4.9)

Then (4.6) has at least one T -periodic solution.

Remark 4.4. In [7] the existence of periodic solutions for the nonlinear heat equa-
tion governed by the pseudo-Laplace operator is showed under the conditions

|f(t, x, u)| ≤ a|u|+ b, f(t, x, u)u ≤ α|u|p + β, (t, x, u) ∈ R× Ω× R,

where a, b, α, β > 0 and α < c. These conditions are particular cases of (4.7), (4.8)
with a(t) = a, b(t, x) = b, k(t) = c − α, d(t, x) = d > 0, (t, x) ∈ R × Ω, since for
M = β/d and |u| ≥ M , d|u| ≥ β.

Proof of Theorem 4.3. The operator A : D(A) = {u ∈ W 1,2
0 (Ω), ∆pu ∈ L2(Ω)} ⊂

L2(Ω) → L2(Ω) given by Au := −∆pu, u ∈ D(A), is maximal monotone in X =
L2(Ω), and it generates a compact semigroup (Vrabie [8]). Define F : R×L2(Ω) →
L2(Ω) by F (t, u)(x) := f(t, x, u(x)), t ∈ R, u ∈ L2(Ω). ¿From (4.7) F is well
defined, Carathéodory, and satisfies (1.2). For u ∈ D(A), according to (4.7), (4.8),
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we have
‖u‖L2 [u, Au− F (t, u)]+
= 〈u,−∆pu− F (t, u)〉L2

=
∫

Ω

|∇u(x)|pdx−
∫

Ω

f(t, x, u(x))u(x)dx

≥ c

∫
Ω

|u|pdx−
∫
{|u|≥M}

f(t, x, u(x))u(x)dx−
∫
{|u|<M}

f(t, x, u(x))u(x)dx

≥ c

∫
{|u|<M}

|u|pdx + k(t)
∫
{|u|≥M}

|u|pdx− a(t)‖u‖2
L2 − α(t)‖u‖L2

≥ min{c, k(t)}
∫

Ω

|u|pdx− α(t)‖u‖L2 ,

(4.10)
where α(t) = (

∫
Ω
|b(t, x)|2dx)1/2 + (

∫
Ω
|d(t, x)|2dx)1/2 ∈ L1(0, T ). Using the in-

equality ∫
Ω

|u|pdx ≥ ‖u‖L2 |Ω|(2−p)/2, u ∈ Lp(Ω),

one gets that, for any R > 0 and ‖u‖L2 ≥ R,

[u, Au− F (t, u)]+ ≥ c(t)‖u‖L2 − α(t), (4.11)

where c(t) = min{c, k(t)}Rp−2|Ω|(2−p)/2, t ∈ [0, T ]. Clearly, c ≥ 0, c 6= 0 and all the
conditions of Theorem 1.1 are fulfilled. This provides us with a T -periodic solution
of (4.6). �
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