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POSITIVE SOLUTIONS OF THREE-POINT BOUNDARY-VALUE
PROBLEMS FOR P-LAPLACIAN SINGULAR DIFFERENTIAL

EQUATIONS

GEORGE N. GALANIS, ALEX P. PALAMIDES

Abstract. In this paper we prove the existence of positive solutions for the

three-point singular boundary-value problem

−[φp(u′)]′ = q(t)f(t, u(t)), 0 < t < 1

subject to

u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0

or to
u(0)− αu(η) = 0, u(1) + g(u′(1)) = 0,

where φp is the p-Laplacian operator, 0 < η < 1; 0 < α, β < 1 are fixed

points and g is a monotone continuous function defined on the real line R
with g(0) = 0 and ug(u) ≥ 0. Our approach is a combination of Nonlinear
Alternative of Leray-Schauder with the properties of the associated vector field

at the (u, u′) plane. More precisely, we show that the solutions of the above

boundary-value problem remains away from the origin for the case where the
nonlinearity is sublinear and so we avoid its singularity at u = 0.

1. Introduction

In this note we consider the nonlinear 3-point singular problem

−[φp(u′)]′ = q(t)f(t, u(t)), 0 < t < 1 (1.1)

subject to
u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0 (1.2)

or to
u(0)− αu(η) = 0, u(1) + g(u′(1)) = 0 (1.3)

where φp(s) = |s|p−2s, (p > 1) is the well known p-Laplacian operator, 0 < η < 1;
0 < α, β < 1 are fixed points and g is a monotone continuous function defined on
the real line R with g(0) = 0 and ug(u) ≥ 0. The inhomogeneous term in (1.1) is
allowed to be singular at u = 0 and q(t) may be singular at t = 0 or/and t = 1 and
finally we suppose that q(0) > 0. Further assumptions concerning the nonlinearity
f(t, u) will be clarified later.
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Let B be the Banach space C[0, 1] endowed with the norm ‖x‖ = maxt∈[0,1] |x(t)|.
A solution u(t) of (1.1) subject to (1.2) or (1.3) means that u(t) ∈ C1[0, 1], is
positive on (0, 1), φp(u′(.)) ∈ C(0, 1)∩L1[0, 1] and satisfies the differential equation
as well as the corresponding boundary conditions. It is well known that when p > 1,
φp(s) is strictly increasing on R and so its inverse φ−1

p exists and further φ−1
p = φq,

where 1/p+ 1/q = 1.
In [6], Erbe and Wang by using Green’s functions and Krasnoselskii’s fixed point

theorem in cones proved existence of a positive solution of the boundary-value
problem studied the Sturm-Liouville boundary-value problem

x′′(t) = −f(t, x(t)),

αx(0)− βx′(0) = 0, γx(1) + δx′(1) = 0,

where α, β, γ, δ ≥ 0 and ρ := βγ + αγ + αδ > 0, mainly under the assumptions:

f0 := lim
x→0+

max
0≤t≤1

f(t, x)
x

= 0,

f∞ := lim
x→+∞

min
0≤t≤1

f(t, x)
x

= +∞

i.e., f is supelinear at both ends points x = 0 and x = ∞ or under

f0 := lim
x→0+

min
0≤t≤1

f(t, x)
x

= +∞

f∞ := lim
x→+∞

max
0≤t≤1

f(t, x)
x

= 0,

i.e., f is sublinear at both x = 0 and x = ∞.
The study of multi-point boundary-value problems was initiated by Il’in and Moi-

seev in [11, 12]. Many authors since then considered nonlinear 3-point boundary-
value problems (see e.g., [3, 7, 8, 10, 13, 18, 19, 21, 22] and the references therein). In
particular, Ma in [19] proved the existence of a positive solution to the three-point
nonlinear boundary-value problem

−u′′(t) = q(t)f(u(t)), 0 < t < 1,

u(0) = 0, αu(η) = u(1),

where 0 < α, 0 < η < 1 and αη < 1. The results of Ma were complemented in the
works of Webb [22], Kaufmann [13], Kaufmann and Kosmatov [14], and Kaufmann
and Raffoul [15].

Among the studies on semipositone multi-point boundary-value problems, we
mention the papers by Cao and Ma [5] and Liu [16]. Cao and Ma considered the
boundary-value problem

−u′′(t) = λq(t)a(t)f(u(t), u′(t)), 0 < t < 1,

u(0) = 0,
m−2∑
i=1

αiu(ηi) = u(1) .

They applied the Leray-Schauder fixed point theorem to obtain an interval of eigen-
values for which at least one positive solution exists. Liu applied a fixed point index
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method to obtain such an interval for

−u′′(t) = λq(t)a(t)f(u(t)), 0 < t < 1,

u′(0) = 0, βu(η) = u(1).

In the above papers there are no assumptions for singularity of the nonlilearity
f at the point u = 0. Zhang and Wang [24] and recently Liu [17] obtained some
existence results for a singular nonlinear second order 3-point boundary-value prob-
lem, for the case when only singularity of q(t) at t = 0 or t = 1 is permitted. Also
recently, by using the method of fixed point index, Xu [23] studied the problem

−u′′(t) = f(u(t)), 0 < t < 1, u(0) = 0, αu(η) = u(1),

where f(t, u) is allowed to have singularity at u = 0. Other applications of Kras-
nosel’skĭı’s fixed point theorem to semipositone problems can, for example, be found
in [1]. Further recently interesting results have been proved in [4], [9] or [17].

Finally, Ma and Ge in [20], proved the existence of a positive solution of the 3-
point singular boundary-value problem (1.1)-(1.2) under the following assumptions:

(H1) q(t) ∈ C(0, 1) ∩ L1[0, 1] with q(t) ≥ 0 and nondecreasing on (0, 1)
(H2) f ∈ C([0, 1]× (0,+∞), (0,+∞))
(H3) 0 ≤ f(t, y) ≤ f1(y) + f2(y) on [0, 1]× (0,+∞) with f1 > 0 continuous non-

increasing on (0,+∞) and
∫ L

0
f1(u)du < +∞ for any fixed L > 0; f2 ≥ 0

and continuous on [0,+∞)
(H4) For any K > 0 there exists ψK(t) : (0, 1) → (0,+∞) such that f(t, y) ≥

ψK(t), t ∈ (0, 1) for any y(t) ∈ C[0, 1] with 0 ≤ y(t) ≤ K

(H5)
∫ η

0
φ−1

p (
∫ η

s
q(r)ψ(r)dr)ds > 0,

∫ 1

η
φ−1

p (
∫ s

η
q(r)ψ(r)dr)ds > 0 and for any

k1 > 0 and k2 > 0,
∫ η

0
f1(k1s)q(s)ds +

∫ 1

η
f1(k2(1 − s))q(s)ds < +∞ and

mainly

sup
c>0

c

φ−1
p (I−1[G0(c)])( p

p−1 )
1
p [ 1

1−β (
∫ η

0
[q(s)]

1
p ds+

∫ 1

η
[q(s)]

1
p ds)]

> 1,

where

I(c) :=
∫ c

0

φ−1
p (z)dz =

p− 1
p

c
p

p−1 and G0(c) =
∫ c

0

[f1(u) + f2(u)]du .

It is not difficult to prove the next useful properties of I(c):

I−1(uv) ≤ I−1(u)I−1(v) for u ≥ 0, v ≥ 0

and whenever c < 0, we have I(−c) = I(c). Indeed, since −c > 0,

I(−c) =
∫ −c

0

φ−1
p (z)dz =

∫ −c

0

φq(z)dz =
∫ −c

0

|z|q−2zdz =
∫ −c

0

zq−1dz =
(−c)q

q

and

I(c) =
∫ c

0

|z|q−2zdz =
∫ c

0

(−z)q−2zdz = −
∫ c

0

(−z)q−1d(−z) =
(−c)q

q
.

In this work, mainly motivated by the above mentioned paper of Ma and Ge [20],
we combine the properties of the vector field at the face (u, u′) plane and sublinearity
of f(t, u) at the origin u = 0 with the alternative continuation principle of Leray-
Shauder, proving the existence of a positive solution for the boundary-value problem
(1.1)-(1.3) and eliminating several of the assumptions (H1)-(H5).
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2. Preliminaries

We now proceed with the auxiliaries. Consider the boundary-value problem

−[φp(u′)]′ = q(t)f(t, u(t)), 0 < t < 1, (2.1)

u(0)− g(u′(0)) = 0, βu(η) = u(1) (2.2)

and give two concept-assumptions as follows:

f0 := lim
u→0

max
0≤t≤1

f(t, u)
u

= +∞ (2.3)

i.e., f is sublinear at the end point 0, and

lim
u→0

g−1(u)
u

= µ ∈ [0,
1
2
). (2.4)

We further consider that :
(A1) q(t) ∈ C(0, 1) ∩ L1[0, 1] with q(t) > 0 and nondecreasing on (0, 1)
(A2) f ∈ C([0, 1]× (0,+∞), (0,+∞))
(A3)

∫ L

0
max0≤t≤1 f(t, u)du < +∞, for any fixed L > 0.

(A4) g ∈ C(R,R), is a nondecreasing function with ug(u) > 0, u 6= 0.

Remar 2.1. Note that the differential equation (2.1) defines a vector field whose
properties will be crucial for our study. More specifically, working at the (u, u′) face
semi-plane (u > 0), the sign condition on f (see assumption (A2)), immediately
gives (since φ′p(u

′) > 0 for all u′ ∈ R) that u′′ < 0. Thus, any trajectory (u(t), u′(t)),
t ≥ 0, emanating from the semi-line

E := {(u, u′) : u− g(u′) = 0, u > 0}

“trends” in a natural way, (when u′(t) > 0) toward the positive u-semi-axis and
then (when u′(t) < 0) turns toward the negative u′-semi-axis. Finally, by setting a
certain growth rate on f (say sublinearity) we can control the vector field, so that
all trajectories with u(0) small enough satisfy the relation

u(1)− βu(η) 6= 0.

So, all solutions of the given boundary-value problem cannot have their initial values
arbitrary small, avoiding in this way the singular point u = 0 of the nonlinearity.

Namely we have the next result.

Lemma 2.2. Let 0 < β < 1. If u ∈ C[0, 1] is a solution of (2.1)-(2.2), then
u = u(t) is concave. Furthermore for every solution with u(0) > 0, it follows that

(i) There exists a t0 ∈ [0, 1) such that u(t0) = max0≤t≤1 ‖u(t)‖ = ‖u‖,
(ii) u(t) > 0, t ∈ [0, 1] and
(iii) inft∈[η,1] u(t) ≥ γu(t0) = γ‖u‖, where γ = min{βη, β(1−η)

1−βη }.

Proof. Let u(t) be a solution to (2.1)-(2.2). Then, since [φp(u′)]′ = −q(t)f(t, u(t)) ≤
0, φp(u′) is non-increasing. Consequently u′(t) is non-increasing which implies the
concavity of u(t).

(i) Since u(0) > 0, by the first condition in (2.2) and the assumption (A4), we
get u′(0) > 0. If u′(t) ≥ 0, t ∈ [0, 1] then u(1) ≥ u(η) > βu(η), a contradiction.
Hence there exists t0 > 0 such that u(t0) = max0≤t≤1 ‖u(t)‖ = ‖u‖.
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(ii) If η ∈ (0, t0), then u(η) > u(0) > 0 and so u(1) = βu(η) > 0. If η ∈ (t0, 1),
then u(η) > u(1) and so

0 = u(1)− βu(η) < u(1)− βu(1)

and hence u(1) > 0. Finally, the concavity of u(t) yields u(t) > 0, t ∈ [0, 1].
(iii) The proof follows the concavity of the solution. Indeed, since u(1) = βu(η) <

u(η), let first consider the case t0 ≤ η < 1. Then,

min
t∈[η,1]

u(t) = u(1).

Furthermore, we have

u(t0) ≤ u(1) +
u(η)− u(1)

1− η
= u(1){1−

1− 1
β

1− η
} = u(1)

1− βη

β(1− η)
.

Consequently,

min
t∈[η,1]

u(t) ≥ β(1− η)
1− βη

‖u‖.

Let us now assume that η < t0 < 1. Since u(η) > u(1), we have again

min
t∈[η,1]

u(t) = u(1).

¿From the concavity of u, we know that

u(η)
η

≥ u(t0)
t0

.

Combining the above and the boundary condition u(1) = βu(η), we conclude that

u(η)
βη

≥ u(t0)
t0

≥ u(t0) = ‖u‖,

that is mint∈[η,1] u(t) ≥ βη‖u‖. �

3. Existence for the first boundary-value problem

In this section we consider the boundary-value problem (2.1)-(2.2) and prove the
next result.

Lemma 3.1. Suppose that conditions (2.3)-(2.4) hold. Then, there exists an η0 > 0
such that for any η ≤ η0 any solution of (2.1) with u(0) = η

2 , satisfies the inequality

0 < u(t) ≤ η ≤ η0, t ∈ [0, 1]. (3.1)

Proof. By assumption (2.3) it follows that for any K > 0 there exists η0 such that

min
0≤t≤1

f(t, u) > Ku, 0 < u ≤ η0. (3.2)

Let K > max{2µ2, 2 1+2µ
min{γ,1}}. We examine first the case p > 2. Taking into

account (2.4), we may chose η0 small enough so that

g−1(η0
2 )

η0
2

≤ 2µ and (p− 1)
[g−1(η)]p−2

min0≤t≤1 q(t)
< 1, η ∈ (0, η0] (3.3)

(if limu→0
g−1(u)

u = 0, then we may find µ > 0 so that (3.3) still holds true).
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Assume that the boundary-value problem (2.1)-(2.2) has a solution u(t), t ∈ [0, 1]
with initial value u(0) arbitrary small. Then, we may assume that u(0) = η/2 for
some η ∈ (0, η0] with

min0≤t≤1 q(t)
(p− 1)[g−1(η

2 )]p−2
≥ 1.

We demonstrate first that (3.1) holds true. If not, by Lemma 2.2, there exist
t∗ ∈ (0, 1] such that η

2 ≤ u(t) < η, 0 ≤ t < t∗ and u(t∗) = η. Then by (3.2) it
follows that

[φp(u′)]′ = [φ′p(u
′)]u′′ = −q(t)f(t, u(t)) ≤ −Kq(t)u(t) ≤ −Kq(t)η

2
,

i.e.,

u′′(t) ≤ −Kq(t)η
2

1
[φ′p(u′)]

≤ −Kη0
2

1
[φ′p(u′)]

min
0≤t≤1

q(t)

≤ −Kη

2
min0≤t≤1 q(t)

(p− 1)[g−1(η
2 )]p−2

≤ −Kη

2

Consequently, by (3.3) and the Taylor formula, we get that for some t ∈ [0, t∗],

η = u(t∗) ≤ η

2
+ t∗g−1(

η

2
) +

(t∗)2

2
u′′(t)

≤ η

2
+ t∗g−1(

η

2
)− (t∗)2

2
K
η

2

≤ η

2
+ t∗2µ

η

2
− (t∗)2

2
K
η

2
.

Considering now the map

φ(t∗) := Kt∗2 − 4µt∗ + 2,

the above inequality yields φ(t∗) ≤ 0. This is a contradiction, since the above choice
of K > 2µ2, yields φ(t) > 0 for all t ∈ [0, 1]. As a result, noticing Lemma 2.2, we
obtain 0 < u(t) ≤ η0, t ∈ [0, 1].

If now p ≤ 2, then since limu→0 g
−1(u) = 0, we easily get u′′(t) ≤ 0. As a result,

η
2 < t∗g−1(η

2 ) and thus t∗ > 1
2µ > 1 (in view of (2.4)), a contradiction due to the

initial choice of t∗ ∈ [0, 1]. �

Lemma 3.2. Suppose that conditions (2.3)-(2.4) hold. Then for any η ∈ (0, η0)
(η0 as above) there exists an α0 = α0(η) > 0 such that for any (possible) solution
u = u(t) of (2.1)-(2.2), with u(0) = η

2 , the following inequality holds:

u(t) ≥ α0, t ∈ [0, 1] .

Proof. By the concavity of u(t), it is obvious that

min
t∈[0,1]

u(t) = min{u(0), u(1)}.

However, in view of Lemma 2.2, mint∈[η,1] u(t) ≥ γu(t0) = γ‖u‖ ≥ γu(0) = γ η
2 and

so
u(t) ≥ min

t∈[0,1]
u(t) ≥ η

2
min{1, γ} := α0(η).

�
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Proposition 3.3. Suppose that conditions (2.3)-(2.4) hold. Then, there exists an
η∗0 > 0 such that any solution of (2.1)-(2.2) satisfies the inequality u(0) ≥ η∗0 and
so, by the previous Lemma,

u(t) ≥ α0(η∗0) := α∗0, t ∈ [0, 1],

α∗0 being a positive constant.

Proof. Supposing the opposite, we may find a solution u(t) of (2.1)-(2.2), such that
u(0) = η

2 , η being the same as in (3.1), i.e. η is arbitrarily small.
Then, noticing (3.2), as above by Taylor formula we can find a t ∈ [0, 1] such

that

u(1)− βu(η) ≤ η

2
+ g−1(

η

2
) +

1
2
u′′(t)− βu(η)

<
η

2
+ g−1(

η

2
)− 1

2
Ku(t)

≤ η

2
+ g−1(

η

2
)− K

2
min{α0,

η

2
}

≤ η

2
+ g−1(

η

2
)− K

2
η

2
min{1, γ} < 0,

due to the choice K > 2 1+2µ
min{γ,1} . This contradiction completes the proof. �

We give now an existence principle, which is crucial for the proof of our results.

Lemma 3.4. (Nonlinear Alternative of Leray-Shauder Type) [2] Let V be a Banach
space and C ⊂ V a convex set. Assume that U is a relative open subset of C with
u0 ∈ U and T : Ū → C a completely continuous (continuous and compact) map.
Then either

(I) T has a fixed point, or
(II) there exists u ∈ ∂U and λ ∈ (0, 1) with u = λT (u) + (1− λ)u0.

Theorem 3.5. Assume (A1)-(A4) hold and

sup
c>0, 0≤t≤1

cp∫ c

0
f(t, u)du

>
p

p− 1

[ 1
1− β

∫ 1

η

[q(t)]1/pdt+
∫ η

0

[q(t)]1/pdt
]p

. (3.4)

Then the 3-point boundary-value problem (2.1)-(2.2) has at least a positive solution.

Proof. In order to show that (2.1)-(2.2) has a solution, we consider the boundary-
value problem

−[φp(u′)]′ = q(t)F (t, u(t)), 0 < t < 1,

u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0,
(3.5)

where

F (t, u(t)) =

{
f(t, u), u ≥ α∗0
f(t, α∗0), u < α∗0

and α∗0 is given in Proposition 3.3. Then clearly F ∈ C([0, 1] × [0,+∞), [0,+∞)).
Consider further the family of problems

−[φp(u′)]′ = q(t)λF (t, u(t)), 0 < t < 1, 0 < λ < 1

u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0.
(3.6)
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If u = u(t), t ∈ [0, 1] is a solution of (3.6), then again by Proposition 3.3, u(t) ≥ α∗0,
t ∈ [0, 1]. We are going to prove the existence of another constant A∗0 > α∗0 such
that u(0) ≤ A∗0. Indeed, setting (u(0), u′(0)) = (u0, u

′
0) ∈ E and since

u′(t) = φ−1
p [φp(u′0)− λ

∫ t

0

q(s)F (s, u(s))ds],

u(t) = u0 +
∫ t

0

φ−1
p [φp(u′0)− λ

∫ t

0

q(s)F (s, u(s))ds]dt,

the initial values must be chosen so that
Q(u′0) := u(1)− βu(η)

= g(u′0) +
∫ 1

0

φ−1
p [φp(u′0)− λ

∫ t

0

q(s)F (s, u(s))ds]dt

− β[g(u′0) +
∫ η

0

φ−1
p [φp(u′0)− λ

∫ t

0

q(s)F (s, u(s))ds]dt] = 0.

(3.7)

By Proposition 3.3 and its proof, there is an η > 0 such that Q(g−1(η
2 )) < 0, and

moreover by the definition of Q,

Q
{
φ−1

p

(
λ

∫ t

0

q(s)F (s, u(s))ds
)}

> 0.

Hence u′0 is upper bounded and similarly u0 = g(u′0), i.e. (u0, u
′
0) ∈ E0 ⊂ E, E0

being a compact subset of R2.
We consider now the Banach space B = C[0, 1] and for any x ∈ B, let u = u(t)

be a solution of the boundary-value problem

−[φp(u′)]′ = q(t)F (t, x(t)), 0 < t < 1,

u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0.

By the monotonicity of functions g and Q for each solution u(t) of this boundary-
value problem, its initial value (u0, u

′
0) is uniquely determined and furthermore the

map
x→ φp[g−1(u0)]

is continuous (see [20]).
Consider now the operator

Tλx(t) = u0 +
∫ t

0

φ−1
p

[
φp[g−1(u0)

]
− λ

∫ s

0

q(r)F (r, x(r))dr]ds, x ∈ B,

where u0 is the unique constant corresponding to function x(t) and satisfying (3.7).
It is easily verified that u(t) is a solution to (3.6) if and only if u is a fixed point of
T1 in C[0, 1].

(I) We shall prove that T = T1 : B → B is completely continuous. By continuity
of the map x→ φp[g−1(u0)] it is not difficult to be proved that T is continuous. So
we must only prove that T is compact i.e. it maps every bounded subset of B into
a relatively compact set. Consider the closed ball Σ = {x ∈ B : ‖x‖ ≤ R}. Since
α∗0 ≤ u(0) ≤ A∗0,

‖(Tx)(t)‖ ≤ A∗0 + φ−1
p [φp(g−1(A∗0)) + max

x∈Σ,s∈[0,1]
F (s, x)

∫ t

0

q(s)ds]

≤ A∗0 + φ−1
p (M1)
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and

‖(Tx)′(t)‖ = φ−1
p [φp(g−1(A∗0)) +

∫ t

0

q(s)F (s, x(s))ds] ≤ φ−1
p (M1).

Hence the Arzela-Ascoli Theorem guarantees the compactness of T .
(II) We will show that there exists a M > 0 such that ‖u‖ ≤M for any solution

of (3.6). We set

G(c) =
∫ c

0

max
0≤t≤1

f(t, u)ds

Noting (3.4), we may indeed find a M > 0 such that

M( ∫ M

0
sup 0≤t≤1 f(t, u)du

) 1
p

( p
p−1 )

1
p

[
1

1−β

∫ 1

η
[q(t)]1/pdt+

∫ η

0
[q(t)]1/pdt

] > 1.

Also by Proposition 3.3, any solution of the boundary-value problem (3.6) is convex
and there exists a point t0 ∈ (0, 1) such that

u′(t) ≥ 0, t ∈ [0, t0), u′(t0) = 0 and u′(t) ≤ 0, t ∈ (t0, 1].

Working in the interval [t0, t] ⊂ [t0, 1], we have

0 ≤ −(φp(u′))′ = λq(t)F (t, u) ≤ q(t) max
0≤t≤1

f(t, u).

Multiplying by −u′ > 0, we get

(φp(u′))′φ−1
p (φp(u′)) ≤ q(t) max

0≤t≤1
f(t, u), t ∈ [t0, 1]

and then integrating on [t0, t], we obtain∫ φp(u′(t))

0

φ−1
p (u′(t))u′(t)dt ≤ q(t)

∫ u(t0)

u(t)

max
0≤t≤1

f(t, u)du

≤ q(t)
∫ u(t0)

0

max
0≤t≤1

f(t, u)du = q(t)G(u(t0)),

hence
I(−φp(u′(t))) = I(φp(u′(t))) ≤ q(t)G(u(t0))

and so
0 ≤ −u′(t) ≤ φ−1

p {[I−1(q(t))]I−1(G(u(t0)))}, t ∈ [t0, t]. (3.8)

If η ∈ (t0, 1], an integration over [η, 1] yields

u(η)− u(1) ≤ φ−1
p {I−1[(G(u(t0)))]}

∫ 1

η

φ−1
p {I−1((q(t))}.

If η ∈ (0, t0], we integrate over [t0, 1] to obtain

u(t0)− u(1) ≤ φ−1
p {I−1(G(u(t0)))}

∫ 1

t0

φ−1
p [I−1(q(t))]dt

≤ φ−1
p {I−1(G(u(t0)))}

∫ 1

η

φ−1
p [I−1(q(t))]dt.

Then clearly it follows that

u(η)− u(1) ≤ u(t0)− u(1) ≤ φ−1
p {I−1(G(u(t0)))}

∫ 1

η

φ−1
p [I−1(q(t))]dt.
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Moreover, since u(1) = βu(η), we get

u(1) ≤ β

1− β
φ−1

p {I−1(G(u(t0)))}
∫ 1

η

φ−1
p [I−1(q(t))]dt

and so a new integration from t0 to 1 of (3.8) yields

u(t0) = u(1) + φ−1
p {I−1(G(u(t0)))}

∫ 1

t0

φ−1
p [I−1(q(t))]dt

≤ u(1) + φ−1
p {I−1(G(u(t0)))}

∫ 1

0

φ−1
p [I−1(q(t))]dt

≤ φ−1
p {I−1(G(u(t0)))}[

β

1− β

∫ 1

η

φ−1
p [I−1(q(t))]dt+

∫ 1

0

φ−1
p [I−1(q(t))]dt]

≤ φ−1
p {I−1(G(u(t0)))}

[ 1
1− β

∫ 1

η

φ−1
p [I−1(q(t))

]
dt+

∫ η

0

φ−1
p [I−1(q(t))]dt]

= φ−1
p {I−1(G(u(t0)))}(

p

p− 1
)

1
p
[ 1
1− β

∫ 1

η

q
1
p (t)dt+

∫ η

0

q
1
p (t)dt

]
.

Consequently
u(t0)

φ−1
p {I−1(G(u(t0)))}( p

p−1 )
1
p
[

1
1−β

∫ 1

η
q

1
p (t)dt+

∫ η

0
q

1
p (t)dt

] < 1

which by the assumption (3.4) implies that u(t0) < M . Finally in view of Lemma
3.4, we may set

C := {u ∈ B = C[0, 1] : ‖u‖ ≤M} and U := {u ∈ C : ‖u‖ < M}.
Then, the second part of the nonlinear Alternative of Leray-Shauder Type is ruled
out and so we conclude that there exists a fixed point of the operator

Tx(t) = T1x(t) = u0 +
∫ t

0

φ−1
p

[
φp[g−1(u0)]−

∫ s

0

q(r)F (r, x(r))dr
]
ds.

This of course yields a solution u = u(t) of (3.5) and noting Proposition 3.3 and the
definition of the modification F, u(t) is actually a solution of our original boundary-
value problem (2.1)-(2.2). �

4. Existence for the second boundary-value problem

In the following we will study the boundary-value problem (1.1)-(1.3). For this
purpose, we give the next result concerning the boundary-value problem

−[φp(y′(s))]′ = q(s)f(s, y(s)), 0 < t < 1, (4.1)

y(0)− g(y′(0)) = 0, y(1)− αy(1− η) = 0 . (4.2)

Theorem 4.1. Assume that (A1), (A3) and (A4) hold. Instead of (A2) we assume
(A2∗) f ∈ C([0, 1]× (−∞, 0), (−∞, 0)).

Also assume that

sup
c<0, 0≤t≤1

(−c)p∫ 0

c
f(t, u)du

>
p

p− 1

[ 1
1− α

∫ 1

1−η

[q(t)]1/pdt+
∫ 1−η

0

[q(t)]1/pdt
]p

. (4.3)

Then, the 3-point boundary-value problem (4.1)-(4.2) has at least one negative so-
lution.
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To prove the above Theorem, we give some lemmas symmetrical to the previous
case, with similar proofs which are partly omitted.

Note that the differential equation (4.1) defines also a vector field. So if we focus
on the (y, y′) face semi-plane (y < 0), then by (4.3), we see that y′′ > 0. Thus, any
trajectory (y(t), y′(t)), t ≥ 0, emanating from the semi-line

E∗ := {(y, y′) : y − g(y′) = 0, y < 0}

“trends” in a natural way, (when y′(t) < 0) toward the negative y-semi-axis and
then (when y′(t) > 0) trends toward the positive y′-semi-axis. As a result, we may
control the vector field, so that y(1) + αy(η) = 0.

Lemma 4.2. Let 0 < α < 1. If y ∈ C[0, 1] is a solution of the boundary-value
problem (4.1)-(4.2), then y is convex. Furthermore for every solution with y(0) < 0,
it follows that

(i) y(t) < 0, t ∈ [0, 1]
(ii) There exists a t0 ∈ [0, 1) such that

sup
t∈[η,1]

y(t) ≤ δy(t0) = −δ‖y‖,

where δ = min{α(1− η), α(1−η)
1−α(1−η)}

(iii) There exists a t0 ∈ [0, 1) such that y(t0) = −max0≤t≤1 y(t) = −‖y‖

Proof. Let y(t) be a solution of (4.1)-(4.2). Then since,

[φp(y′)]′ = −q(t)f(t, y(t)) ≥ 0,

[φp(y′)] is nondecreasing and so is y′(t), a fact that implies the convexity of y(t).
(i) Since y(0) < 0, by the first condition in (4.2) we get y′(0) < 0. If y′(t) ≤ 0,

t ∈ [0, 1], then y(1) ≤ y(η) < αy(η), a contradiction. Hence, there exists a t0 > 0
such that y(t0) = min0≤t≤1 y(t) = −‖y‖.

(ii) If 1 − η ∈ (0, t0), then y(1 − η) < y(0) < 0 and so y(1) = αy(1 − η) < 0. If
1− η ∈ (t0, 1) then y(1− η) < y(1) and so

0 = y(1)− αy(1− η) > y(1)− αy(1).

Hence, y(1) < 0. Finally, the convexity of y(t) yields y(t) < 0, t ∈ [0, 1].
(iii) The proof follows by the convexity of the solution and since it is analogous

to the given one at Lemma 2.2, we omit it. �

Lemma 4.3. Suppose that conditions (2.3) and (2.4) hold. Then, there exists an
η0 < 0 such that for any η ∈ (η0, 0), any solution of (4.1) with y(0) = η/2, satisfies
the inequality

η0 ≤ η ≤ y(t) < 0, t ∈ [0, 1].

Furthermore, there exists an α0 = α0(η) < 0 such that any (possible) solution
y = y(t) of (4.1)-(4.2) with y(0) = η

2 , satisfies the inequality

y(t) ≤ α0(η), t ∈ [0, 1]. (4.4)

Proof. By the sublinearity of the function f(t, y) at the point y = 0, for every
K > max{2µ2, 2 1+2µ

min{δ,1}} there exists an η0 < 0 such that

max
0≤t≤1

f(t, y) < Ky, η0 ≤ y < 0. (4.5)
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Consider a solution y = y(t) of (4.1) with y(0) = η
2 , where η ∈ (η0, 0) is chosen

small enough so that
min0≤t≤1 q(t)
(p− 1)ηp−2

> 1.

We shall prove first that η ≤ y(t) < 0, t ∈ [0, 1]. If not, by Lemma 4.2, there exists
a t∗ ∈ (0, 1] such that η ≤ y(t) < η

2 , 0 ≤ t < t∗ and y(t∗) = η. Then, by (4.5)
follows that

[φp(y′)]′ = [φ′p(y
′)]y′′ = −q(t)f(t, y) ≥ −Kq(t)y(t) ≥ −Kq(t)η

2
,

i.e.

y′′(t) ≥ −Kq(t)η
2

1
[φ′p(y′)]

≥ −Kη

2
1

[φ′p(y′)]
max
0≤t≤1

q(t)

≥ −Kη

2
max0≤t≤1 q(t)

M3
≥ −Kη

2
> 0,

where, noticing the monotonicity of φ′p(s) = (p−1)(−s)p−2 > 0, s < 0 and of y′(t),
0 ≤ t < 1,

M3 = max
{
φ′p(y

′) =

{
φ′p(g

−1[η/2]), if p > 2
φ′p(g

−1[η]), if p ∈ (1, 2)

}
> 0

Consequently, by (3.3) and Taylor’s formula we conclude that for some t ∈ [0, t∗],

η = y(t∗) =
η

2
+ t∗g−1(

η

2
) +

(t∗)2

2
y′′(t)

≥ η

2
+ t∗g−1(

η

2
)− (t∗)2

2
K
η

2

≥ η

2
+ t∗2µ

η

2
− (t∗)2

2
K
η

2
.

Considering now the map

φ(t∗) := Kt∗2 + 4µt∗ + 2,

the above inequality yields φ(t∗) ≤ 0, given that η < 0. This is a contradiction,
since the above choice of K > 2µ2, yields φ(t) > 0 for all t ∈ [0, 1]. Consequently,
noticing Lemma 4.2, we obtain η ≤ y(t) < 0, t ∈ [0, 1].

We proceed now with the proof of inequality (4.4). By the convexity of y(t), it
is obvious that

max
t∈[0,1]

y(t) = max{y(0), y(1)}.

However, in view of the same Lemma 4.2,

sup
t∈[η,1]

y(t) ≤ δy(t0) = −δ‖y‖ ≤ δy(0) = δ
η

2

and so
y(t) ≤ sup

t∈[η,1]

y(t) ≤ η

2
min{1, δ} := α0(η) < 0.

�
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Proposition 4.4. Suppose that conditions (2.3) and (2.4) hold. Then there exists
an η∗0 < 0 such that any solution of (4.1)-(4.2) satisfies the inequality y(0) ≤ η∗0
and furthermore,

y(t) ≤ α0(η∗0) := α∗0, t ∈ [0, 1],

α∗0 being a negative constant.

Proof. Supposing the opposite, we may find a solution y(t) of the boundary-value
problem (4.1)-(4.2), such that y(0) = η

2 , with η ∈ (η0, 0), η0 being the same as in
the previous Lemma. Then, noticing (4.5), we may find a t ∈ [0, 1] such that

y(1)− αy(1− η) ≥ η

2
+ g−1(

η

2
) +

1
2
y′′(t)− αy(1− η)

>
η

2
+ g−1(

η

2
)− 1

2
Ky(t)

≥ η

2
+ g−1(

η

2
)− K

2
min{α0(η),

η

2
}

≥ η

2
+ g−1(

η

2
)− K

2
η

2
min{1, δ} > 0,

due to the choiceK > 2 1+2µ
min{δ,1} and since y(1−η) < 0. This contradiction completes

the proof. �

Proof of Theorem. 4.1. To show that (4.1)-(4.2) has a solution, we consider the
problem

−[φp(y′)]′ = q(t)F (t, y(t)), 0 < t < 1,

y(0)− g(y′(0)) = 0, y(1)− αy(1− η) = 0,
(4.6)

where

F (t, y(t)) =

{
f(t, y), if y ≤ α∗0
f(t, f(t, α∗0)), if y > α∗0.

Then, clearly F ∈ C([0, 1]×(−∞, 0], (−∞, 0)). Consider now the family of problems

−[φp(y′)]′ = q(t)λF (t, y(t)), 0 < t < 1, 0 < λ < 1

y(0)− g(y′(0)) = 0, y(1)− αy(1− η) = 0.
(4.7)

Let y = y(t), t ∈ [0, 1], be a solution of (4.7). By Proposition 4.4, there is a (fixed)
α∗0 < 0 such that y(t) ≤ α∗0, t ∈ [0, 1]. We are going to prove the existence of
another constant A∗0 < α∗0 such that y(0) ≥ A∗0. This is the case since, setting
(y(0), y′(0)) = (y0, y′0) ∈ E∗ we obtain

y′(t) = φ−1
p

[
φp(y′0)− λ

∫ t

0

q(s)F (s, y(s))ds
]
,

y(t) = y0 +
∫ t

0

φ−1
p

[
φp(y′0)− λ

∫ t

0

q(s)F (s, y(s))ds
]
dt.

(4.8)

The initial values must be chosen so that

Q∗(y′0) := y(1)− αy(1− η) = g(y′0) +
∫ 1

0

φ−1
p

[
φp(y′0)− λ

∫ t

0

q(s)F (s, y(s))ds
]
dt

− α
[
g(y′0) +

∫ 1−η

0

φ−1
p

[
φp(y′0)− λ

∫ t

0

q(s)F (s, y(s))ds
]
dt

]
= 0.
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By Proposition 4.4 and its proof, there exists an η ∈ (η0, 0) such that Q∗(g−1(η
2 )) >

0 and moreover by the definition of Q∗ and the fact that g(y′0) < 0,

Q∗
{
φ−1

p

(
λ

∫ t

0

q(s)F (s, y(s))ds
)}

< 0.

Hence y′0 is lower bounded and similar y0 = g(y′0), i.e. (y0, y′0) ∈ E∗0 with E∗0 a
compact subset of R2. Furthermore, by the monotonicity of the functions g and Q∗,
for each solution y(t) of the boundary-value problem (4.7), its initial value (y0, y′0)
is uniquely determined and continuous.

Consider now the operator

Tλy(t) = y0 +
∫ t

0

φ−1
p

[
φp[g−1(y0)]− λ

∫ s

0

q(r)F (r, y(r))dr
]
ds,

where y0 is the unique constant corresponding to the function y(t) satisfying (4.8).
It is easily verified that y(t) is a solution of (4.6) if and only if y is a fixed point of
T1 in C[0, 1].

(i) We consider the Banach space B = C[0, 1] and we may easily, as above, prove
that T := T1 : B → B is completely continuous.

(ii) We will show that there exists a M > 0 such that ‖y‖ ≤M for any solution
of (4.7). We set

G(c) =
∫ 0

c

min
0≤t≤1

f(t, y)ds > 0, c ≤ 0.

Noting (4.3), we may find a M > 0 such that

−M( ∫ 0

−M
min0≤t≤1 f(t, y)dy

) 1
p ( p

p−1 )
2
p
[

1
1−α

∫ 1

1−η
[q(t)]1/pdt+

∫ 1−η

0
[q(t)]1/pdt

] < −1.

Also by the previous, any solution of (4.7) being convex, satisfies

y(t) ≤ α0(η∗0) := α∗0 < 0, t ∈ [0, 1],

and further there is a t0 ∈ (0, 1) such that

y′(t) ≤ 0, t ∈ [0, t0), y′(t0) = 0 and y′(t) ≥ 0, t ∈ (t0, 1].

Working in the interval [t0, t] ⊂ [t0, 1], we have

−(φp(y′))′ = λq(t)F (t, y) ≥ q(t) min
t∈[0,1]

F (t, y).

Multiplying by −y′ < 0, integrating on [t0, t], and given that q(t) is non-increasing,
we obtain ∫ φp[y′(t)]

0

φ−1
p (z)dz ≤ −q(t)

∫ y(t)

y(t0)

min
0≤t≤1

F (t, y)dy

≤ −q(t)
∫ 0

y(t0)

min
0≤t≤1

F (t, y)dy

= −q(t)G(y(t0)) < 0.

Hence,
I(φ−1

p (y′(t))) ≤ −q(t)G(y(t0)) ≤ q(t)G(y(t0))
and so

0 ≤ y′(t) ≤ φ−1
p {I−1(q(t))I−1[G(y(t0))]}, t ∈ [t0, t]. (4.9)
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If 1− η ∈ (t0, 1], an integration over [1− η, 1] yields

y(1)− y(1− η) ≤ φ−1
p [I−1(G(y(t0)))]

∫ 1

1−η

φ−1
p [I−1(q(t))]dt.

If 1− η ∈ (0, t0], we integrate over [t0, 1] to obtain

y(1)− y(t0) ≤ φ−1
p [I−1(G(y(t0)))]

∫ 1

t0

φ−1
p [I−1(q(t))]dt

≤ φ−1
p [I−1(G(y(t0)))]

∫ 1

1−η

φ−1
p [I−1(q(t))]dt.

Since y(t0) ≤ y(1− η), it follows that

y(1)− y(1− η) ≤ y(1)− y(t0) ≤ φ−1
p [I−1(G(y(t0)))]

∫ 1

1−η

φ−1
p [I−1(q(t))]dt.

Moreover, since y(1) = αy(1− η), we get

y(1) ≥ α

α− 1
φ−1

p [I−1(G(y(t0)))]
∫ 1

1−η

φ−1
p [I−1(q(t))]dt,

and so a new integration from t0 to 1 of (4.9) yields

y(t0)

= y(1)− φ−1
p [I−1(G(y(t0)))]

∫ 1

t0

φ−1
p [I−1(q(t))]dt

≥ y(1)− φ−1
p [I−1(G(y(t0)))]

∫ 1

0

φ−1
p [I−1(q(t))]dt

≥ φ−1
p [I−1(G(y(t0)))][

α

α− 1

∫ 1

1−η

φ−1
p [I−1(q(t))]dt−

∫ 1

0

φ−1
p [I−1(q(t))]dt]

= −φ−1
p [I−1(G(y(t0)))][

1
1− α

∫ 1

1−η

φ−1
p [I−1(q(t))]dt+

∫ 1−η

0

φ−1
p [I−1(q(t))]dt]

= −φ−1
p [I−1(G(y(t0)))](

p

p− 1
)

1
p [

1
1− α

∫ 1

1−η

[q(t)]
1
p (t)dt+

∫ 1−η

0

[q(t)]
1
p (t)dt].

Consequently, (recall that y(t0) < 0)

y(t0)

[G(y(t0))]
1
p ( p

p−1 )
1
p [ 1

1−α

∫ 1

1−η
[q(t)]

1
p (t)dt+

∫ 1−η

0
[q(t)]

1
p (t)dt]

> −1,

which in turn, by the assumption (4.3) and the choice of M , implies y(t0) > −M .
Hence we obtain ‖y‖ ≤M .

Finally, in view of Lemma 3.4, we may set

C := {y ∈ B = C[0, 1] : ‖y‖ ≤M} and U := {y ∈ C : ‖y‖ < M} .

Then, the second part of the nonlinear Alternative of Leray-Shauder Type is ruled
out and so we conclude that there exists a fixed point of the operator

Ty(t) = T1y(t) = y0 +
∫ t

0

φ−1
p

[
φp[g−1(y0)]−

∫ s

0

q(r)F (r, y(r))dr
]
ds.
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This of course yields a solution y = y(t) of the boundary-value problem (4.6) and
noting Proposition 3.3 and the definition of the modification F, y(t) is actually a
solution of our boundary-value problem (4.1)-(4.2). �

Consider now the boundary-value problem

−[φp(u′(s))]′ = q∗(s)f∗(s, u (s)), 0 < t < 1, (4.10)

u(0)− αu(η) = 0, u(1)− g(u′(1)) = 0 . (4.11)

Theorem 4.5. Under the assumptions of Theorem 3.5, the boundary-value problem
(4.10)–(4.11) has at least one positive solution.

Proof. We make the transformation u(s) = −y(1 − s), s ∈ (0, 1), where y = y(t)
is a solution of the boundary-value problem (4.1)-(4.2) (it exists by Theorem 4.1).
Then, clearly

u′(s) = y′(1− s), φp(u′(s)) = φp(y′(1− s))
and

−(φp(u′(s)))′ = −(φp(y′(1− s)))′ = q(1− s)f(1− s, y(1− s))

= q(1− s)f(1− s,−u(s)) := −q∗(s)f∗(s, u(s)),

where f∗(s, u(s)) := f(1−s,−u(s)) and q∗(s) := q(1−s), s ∈ (0, 1). Consequently,
the function u = u(t) is a solution of the boundary-value problem

[φp(u′(t))]′ = −q∗(t)f∗(t, u(t)), 0 < t < 1.

Moreover, since y = y(t) satisfies the boundary conditions (4.2), we obtain

u(1) + g(u′(1)) = 0, u(0)− αu(η) = 0,

that is the function u(s) = −y(1 − s), s ∈ (0, 1), is actually the required solution
of (4.1)-(4.2). �

5. An example

Consider the boundary-value problem
′ = − a√

(1− t)
[u−

1
2 + sin2 u−

1
4 ], 0 < t < 1,

u(0) = [u′(0)]1/3, u(1) =
1
2
y(

1
3
),

(5.1)

where φp(s) = |s|p−2s, p = 3 and a > 0 is a constant.
Comparing to Theorem 3.5, we have chosen g(v) = v1/3, q(t) = a/

√
(1− t),

β = 1/2 and η = 1/3. It is trivial to verify that assumptions (A1)-(A4) hold true
for the system (5.1). Furthermore, since

c3∫ c

0
[u−1/2 + sin2 u−1/4]

≥ c3

c+ 2
√
c

and

3
3− 1

[ 1
1− 1/2

∫ 1

1/3

a1/3

(
√

1− t)1/3
dt+

∫ 1/3

0

a1/3

(
√

1− t)1/3
dt

]
=

18
5
a1/3,

it follows that (3.4) is fulfilled for every a > 0. Hence the boundary-value problem
(5.1) admits a positive solution.
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Remar 5.1. The results in [20] can not be applied to (5.1), since the assumption
(H5) is not satisfied. Indeed,∫ 1

η

f1(k2(1− s))q(s)ds =
∫ 1

1/3

2a

k
1/2
2 (1− s)1/2(1− s)1/2

= +∞.
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