Electronic Journal of Differential Equations, Vol. 2005(2005), No. 107, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE RESULT FOR A SEMILINEAR PARAMETRIC PROBLEM WITH GRUSHIN TYPE OPERATOR

NGUYEN MINH CHUONG, TRAN DINH KE

Abstract

Using a varational method, we prove an existence result depending on a parameter, for a semilinear system in potential form with Grushin type operator.

1. Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$, with smooth boundary $\partial \Omega$ and $\{0\} \in \Omega$. We shall be concerned with the existence of solutions of the Dirichlet problem

$$
\begin{gather*}
L_{\alpha, \beta} U=\lambda \nabla F \quad \text { in } \Omega \\
U=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where

$$
\begin{gathered}
U=(u, v), \quad L_{\alpha, \beta}=\left(\begin{array}{cc}
-G_{\alpha} & 0 \\
0 & -G_{\beta}
\end{array}\right), \quad G_{s}=\Delta_{x}+|x|^{2 s} \Delta_{y} \quad \text { for } s \geqslant 0 \\
\Delta_{x}=\sum_{i=1}^{N_{1}} \frac{\partial^{2}}{\partial x_{i}^{2}}, \quad \Delta_{y}=\sum_{j=1}^{N_{2}} \frac{\partial^{2}}{\partial y_{j}^{2}}
\end{gathered}
$$

$F=F(x, y, u, v)$ is potential function, $\nabla F=\left(\frac{\partial F}{\partial u}, \frac{\partial F}{\partial v}\right), \alpha \geqslant 0, \beta \geqslant 0$ and λ is a positive parameter. Denoting $N(s)=N_{1}+(s+1) N_{2}$, we assume that $N_{1}, N_{2} \geqslant 1$ and $N(\alpha), N(\beta)>2$.

For $s \geqslant 0, G_{s}$ is a Grushin type operator 9. Its properties (such as degeneracy, hypoellipticity) were considered in [9, [15]. A semilinear problem with G_{s} in scalar case was studied in [14]. Thuy and Tri [14] pointed out the critical Sobolev exponent and proved the existence theorem for subcritical case. Many authors investigated the existence of solutions for scalar cases or potential system cases with Laplace and p-Laplacian operator (see [2, 3, 4, 5, 7, 8, 10, 13, and references therein). On the other hand, existence result for systems in Hamiltonian form with G_{s} was obtained in [6] and [11]. Our main goal in this paper is using the Moutain Pass scheme and Ekeland's variational principle as in [1, [7] and [13] to find the weak solutions for

[^0]system 1.1 in the suitable Sobolev space when $\lambda \in\left(0, \lambda^{*}\right)$ and observe on the behaviour of that solutions as $\lambda \rightarrow 0$. In particular, we consider the system 1.1) with some classes of homogeneous and nonhomogeneous nonlinearities. To state our main result, we need some definitions and notations.
1.1. Definition 1. By $S_{1}^{p}(\Omega), 1 \leqslant p<+\infty$, we denote the set of all pair $(u, v) \in$ $L^{p}(\Omega) \times L^{p}(\Omega)$ such that $\frac{\partial u}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}},|x|^{\alpha} \frac{\partial u}{\partial y_{j}},|x|^{\beta} \frac{\partial v}{\partial y_{j}} \in L^{p}(\Omega)$ for all $i=1, \ldots, N_{1}$, and $j=1, \ldots, N_{2}$.

For the norm in $S_{1}^{p}(\Omega)$, we take
$\|(u, v)\|_{S_{1}^{p}(\Omega)}=\left[\int_{\Omega}\left(|u|^{p}+\left|\nabla_{x} u\right|^{p}+|x|^{p \alpha}\left|\nabla_{y} u\right|^{p}+|v|^{p}+\left|\nabla_{x} v\right|^{p}+|x|^{p \beta}\left|\nabla_{y} v\right|^{p}\right) d x d y\right]^{1 / p}$
where

$$
\nabla_{x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{N_{1}}}\right), \nabla_{y}=\left(\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{N_{2}}}\right) .
$$

For $p=2$, the inner product in $S_{1}^{2}(\Omega)$ is defined by

$$
\begin{aligned}
& \langle(u, v),(\varphi, \psi)\rangle \\
& =\int_{\Omega}\left(u \varphi+\nabla_{x} u \nabla_{x} \varphi+|x|^{2 \alpha} \nabla_{y} u \nabla_{y} \varphi+v \psi+\nabla_{x} v \nabla_{x} \psi+|x|^{2 \beta} \nabla_{y} v \nabla_{y} \psi\right) d x d y
\end{aligned}
$$

The space $S_{1,0}^{p}(\Omega)$ is defined as closure of $C_{0}^{1}(\Omega) \times C_{0}^{1}(\Omega)$ in space $S_{1}^{p}(\Omega)$. By standard arguments, one can prove that $S_{1}^{p}(\Omega)$ and $S_{1,0}^{p}(\Omega)$ are Banach spaces, $S_{1}^{2}(\Omega)$ and $S_{1,0}^{2}(\Omega)$ are Hilbert spaces.

The following Sobolev embedding inequality was proved in [14.

$$
\begin{equation*}
\left(\int_{\Omega}|u|^{q} d x d y\right)^{1 / q} \leqslant C\left[\int_{\Omega}\left(\left|\nabla_{x} u\right|^{2}+|x|^{2 s}\left|\nabla_{y} u\right|^{2}\right) d x d y\right]^{1 / 2} \tag{1.2}
\end{equation*}
$$

where $q=\frac{2 N(s)}{N(s)-2}-\tau, C>0, s \geqslant 0$ and $N(s)=N_{1}+(s+1) N_{2}$, provided small positive number τ. Furthermore, the number $\frac{N(s)+2}{N(s)-2}$ is critical Sobolev exponent for the embedding in 1.2 .

Denoting by

$$
L^{p, q}(\Omega)=\left\{(u, v): u \in L^{p}(\Omega), v \in L^{q}(\Omega)\right\}
$$

and endowing this space with the norm

$$
\|(u, v)\|_{L^{p, q}(\Omega)}=\left[\int_{\Omega}|u|^{p} d x d y\right]^{1 / p}+\left[\int_{\Omega}|v|^{q} d x d y\right]^{1 / q}
$$

we have the conclusion in view of 1.2 that $S_{1,0}^{2}(\Omega) \subset L^{\frac{2 N(\alpha)}{N(\alpha)-2}-\tau_{1}, \frac{2 N(\beta)}{N(\beta)-2}-\tau_{2}}(\Omega)$ and this embedding is a compact mapping for all small positive numbers τ_{1} and τ_{2} (see [14]).
1.2. Definition 2. A pair $(u, v) \in S_{1,0}^{2}(\Omega)$ is called a weak solution of system (1.1) if

$$
\begin{align*}
& \int_{\Omega}\left(\nabla_{x} u \nabla_{x} \varphi+|x|^{2 \alpha} \nabla_{y} u \nabla_{y} \varphi\right) d x d y=\lambda \int_{\Omega} \frac{\partial F}{\partial u} \varphi d x d y \tag{1.3}\\
& \int_{\Omega}\left(\nabla_{x} v \nabla_{x} \psi+|x|^{2 \beta} \nabla_{y} v \nabla_{y} \psi\right) d x d y=\lambda \int_{\Omega} \frac{\partial F}{\partial v} \psi d x d y
\end{align*}
$$

for every $\varphi, \psi \in C_{0}^{\infty}(\Omega)$.

Since the system $\sqrt{1.1}$ is in the gradient form, we intend to get its solutions as the critical points of the functional

$$
\begin{align*}
I_{\lambda}(u, v)= & \frac{1}{2} \int_{\Omega}\left(\left|\nabla_{x} u\right|^{2}+|x|^{2 \alpha}\left|\nabla_{y} u\right|^{2}+\left|\nabla_{x} v\right|^{2}+|x|^{2 \beta}\left|\nabla_{y} v\right|^{2}\right) d x d y \\
& -\lambda \int_{\Omega} F(x, y, u, v) d x d y \tag{1.4}
\end{align*}
$$

defined on reflexive Banach space $S_{1,0}^{2}(\Omega)$ with Fréchet derivative given by

$$
\begin{align*}
\left\langle I_{\lambda}^{\prime}(u, v),(\varphi, \psi)\right\rangle= & \int_{\Omega}\left(\nabla_{x} u \nabla_{x} \varphi+|x|^{2 \alpha} \nabla_{y} u \nabla_{y} \varphi+\nabla_{x} v \nabla_{x} \psi+|x|^{2 \beta} \nabla_{y} v \nabla_{y} \psi\right) d x d y \\
& -\lambda \int_{\Omega}\left(\frac{\partial F}{\partial u} \varphi+\frac{\partial F}{\partial v} \psi\right) d x d y \tag{1.5}
\end{align*}
$$

Let $f=\frac{\partial F}{\partial u}$ and $g=\frac{\partial F}{\partial v}$ be two Carathéodory functions satisfying the following conditions:
(H1) There exist positive constants C_{i}, for $i=1, \ldots, 6$ such that

$$
\begin{array}{r}
|f(x, y, s, t)| \leqslant C_{1}+C_{2}|s|^{r_{1}}+C_{3}|t|^{r_{2}}, \\
|g(x, y, s, t)| \leqslant C_{4}+C_{5}|s|^{r_{3}}+C_{6}|t|^{r_{4}} \tag{1.6}
\end{array}
$$

for a.e. $(x, y) \in \Omega$ and for all $s, t \in \mathbb{R}$, where

$$
\begin{equation*}
0<r_{1}, r_{2}<\frac{N(\alpha)+2}{N(\alpha)-2} ; \quad 0<r_{3}, r_{4}<\frac{N(\beta)+2}{N(\beta)-2} . \tag{1.7}
\end{equation*}
$$

(H2) $F(x, y, 0,0)=0$ and there are two positive constants $\mu>2$ and $M>0$ such that

$$
\begin{equation*}
0<\mu F(x, y, u, v) \leqslant u f(x, y, u, v)+v g(x, y, u, v) \tag{1.8}
\end{equation*}
$$

for a.e. $(x, y) \in \Omega$ and for all $u, v \in \mathbb{R}$ satisfying $|u|,|v| \geqslant M>0$.
(H3) For a.e. $(x, y) \in \Omega$,

$$
\begin{equation*}
\lim _{|u|+|v| \rightarrow \infty} \frac{F(x, y, u, v)}{|u|^{2}+|v|^{2}}=+\infty \tag{1.9}
\end{equation*}
$$

The inequalities in (1.6) and 1.7 express the subcritical character of the system (1.1) and guarantee the well-definiteness of the functional I_{λ}. It's now to state our main result.

Theorem 1.1. Under hypotheses (H1), (H2) and (H3), there exists a positive constant λ^{*} such that for any $\lambda \in\left(0, \lambda^{*}\right)$, the functional I_{λ} has a nontrivial critical point $\left(u_{\lambda}, v_{\lambda}\right)$ satisfying $\left\|\left(u_{\lambda}, v_{\lambda}\right)\right\|_{S_{1,0}^{2}(\Omega)} \rightarrow+\infty$ as $\lambda \rightarrow 0$.

Our work is organized as follows. In section 2, we prove some lemmas to establish the analysis framework for the proof of the main theorem in section 3. We shall make a note that, the operator $L_{\alpha, \beta}$ in system 1.1 has some extensions preserved our proofs. In the last section, we are interested in some cases of nonlinearity of the system 1.1.

2. Preliminaries

We first recall standard definitions and notations. Let X be a reflexive Banach space endowed with a norm $\|$.$\| . Let \langle.,$.$\rangle denote the duality pairing between X$ and its dual X^{*}. We denote the weak convergence in X by " \rightharpoonup " and the strong convergence by " \rightarrow ".

Let $I \in C^{1}(X, \mathbb{R})$. We say I satisfies the Palais-Smale condition, denoted by $(P S)$ condition, if every Palais-Smale sequence (a sequence $\left\{x_{n}\right\} \subset X$ such that $\left\{I\left(x_{n}\right)\right\}$ is bounded and $I^{\prime}\left(x_{n}\right) \rightarrow 0$ in dual space $\left.X^{*}\right)$ is relatively compact.

Putting

$$
\begin{aligned}
& \Phi(u, v)=\frac{1}{2} \int_{\Omega}\left(\left|\nabla_{x} u\right|^{2}+|x|^{2 \alpha}\left|\nabla_{y} u\right|^{2}+\left|\nabla_{x} v\right|^{2}+|x|^{2 \beta}\left|\nabla_{y} v\right|^{2}\right) d x d y \\
& \Psi(u, v)=\int_{\Omega} F(x, y, u, v) d x d y
\end{aligned}
$$

we can write

$$
\begin{equation*}
I_{\lambda}(u, v)=\Phi(u, v)-\lambda \Psi(u, v) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Suppose f and g are continuous functions satisfying (H2). Then every Palais-Smale sequence of I_{λ} is bounded.

Proof. Let $\left\{\left(u_{n}, v_{n}\right)\right\}$ be a Palais-Smale sequence of I_{λ}, that is,

$$
\begin{equation*}
\Phi\left(u_{n}, v_{n}\right)-\lambda \Psi\left(u_{n}, v_{n}\right) \rightarrow c \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\langle\Phi^{\prime}\left(u_{n}, v_{n}\right),(\xi, \eta)\right\rangle-\lambda\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),(\xi, \eta)\right\rangle\right| \leqslant \epsilon_{n}\|(\xi, \eta)\|_{S_{1,0}^{2}(\Omega)} \tag{2.3}
\end{equation*}
$$

for all $(\xi, \eta) \in S_{1,0}^{2}(\Omega)$, where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. From 2.2 , we have

$$
\begin{equation*}
\mu \Phi\left(u_{n}, v_{n}\right)-\lambda \mu \Psi\left(u_{n}, v_{n}\right) \leqslant \mu c+1 \tag{2.4}
\end{equation*}
$$

Subtracting 2.3), with $(\xi, \eta)=\left(u_{n}, v_{n}\right)$, yields

$$
\begin{align*}
& (\mu-2) \Phi\left(u_{n}, v_{n}\right)-\lambda\left[\mu \Psi\left(u_{n}, v_{n}\right)-\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}, v_{n}\right)\right\rangle\right] \\
& \leqslant \mu c+1+\epsilon_{n}\left\|\left(u_{n}, v_{n}\right)\right\|_{S_{1,0}^{2}(\Omega)} \tag{2.5}
\end{align*}
$$

Assumption (H2) ensures that

$$
\begin{equation*}
\mu \Psi\left(u_{n}, v_{n}\right)-\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}, v_{n}\right)\right\rangle \leqslant 0 \tag{2.6}
\end{equation*}
$$

Therefore, 2.5 implies

$$
\frac{\mu-2}{2}\left\|\left(u_{n}, v_{n}\right)\right\|_{S_{1,0}^{2}(\Omega)}^{2}-\epsilon_{n}\left\|\left(u_{n}, v_{n}\right)\right\|_{S_{1,0}^{2}(\Omega)} \leqslant \mu c+1
$$

Consequently, $\left\{\left(u_{n}, v_{n}\right)\right\}$ is bounded in $S_{1,0}^{2}(\Omega)$.
Lemma 2.2. Let assumption (H1) hold and $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ in $S_{1,0}^{2}(\Omega)$. Then

$$
\lim _{n \rightarrow \infty}\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle=0
$$

Proof. It suffices to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left[f\left(x, y, u_{n}, v_{n}\right)\left(u_{n}-u\right)+g\left(x, y, u_{n}, v_{n}\right)\left(v_{n}-v\right)\right] d x d y=0 \tag{2.7}
\end{equation*}
$$

We first show that there exists constant $M_{1}>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|f\left(x, y, u_{n}, v_{n}\right)\right|^{p} d x d y<M_{1}, \quad \text { for } \quad p=\frac{2 N(\alpha)}{N(\alpha)+2}+\tau \tag{2.8}
\end{equation*}
$$

if τ is positive and sufficiently small. By assumption (H1) and the fact that $p r_{1}, p r_{2} \leqslant \frac{2 N(\alpha)}{N(\alpha)-2}-\delta(\tau)$, we have

$$
\begin{aligned}
\int_{\Omega}\left|f\left(x, y, u_{n}, v_{n}\right)\right|^{p} d x d y & \leqslant \int_{\Omega}\left(C_{1}+C_{2}\left|u_{n}\right|^{p r_{1}}+C_{3}\left|v_{n}\right|^{p r_{2}}\right) d x d y \\
& \leqslant C\left(1+\left\|\left(u_{n}, v_{n}\right)\right\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}-\delta(\tau)}\right)
\end{aligned}
$$

where $C>0, \delta(\tau)$ is positive and $\delta(\tau) \rightarrow 0$ as $\tau \rightarrow 0$. Since $\left\{\left(u_{n}, v_{n}\right)\right\}$ is a bounded sequence, 2.8 follows. Similarly,

$$
\begin{equation*}
\int_{\Omega}\left|g\left(x, y, u_{n}, v_{n}\right)\right|^{q} d x d y<M_{2}, \quad \text { for } q=\frac{2 N(\beta)}{N(\beta)+2}+\tau \tag{2.9}
\end{equation*}
$$

where $M_{2}>0, \tau$ is positive and sufficiently small.
We are now in a position to prove (2.7). Let p^{\prime} be the conjugate exponent of p, using Hölder inequality, we have

$$
\begin{aligned}
& \int_{\Omega}\left[\left|f\left(x, y, u_{n}, v_{n}\right)\left(u_{n}-u\right)\right|+\left|g\left(x, y, u_{n}, v_{n}\right)\left(v_{n}-v\right)\right|\right] d x d y \\
& \leqslant\left(\int_{\Omega}\left|f\left(x, y, u_{n}, v_{n}\right)\right|^{p} d x d y\right)^{1 / p}\left(\int_{\Omega}\left|u_{n}-u\right|^{p^{\prime}} d x d y\right)^{1 / p^{\prime}} \\
& \quad+\left(\int_{\Omega}\left|g\left(x, y, u_{n}, v_{n}\right)\right|^{q} d x d y\right)^{1 / q}\left(\int_{\Omega}\left|u_{n}-u\right|^{q^{\prime}} d x d y\right)^{1 / q^{\prime}} \\
& \leqslant M_{1}^{1 / p}\left\|u_{n}-u\right\|_{L^{p^{\prime}}(\Omega)}+M_{2}^{1 / q}\left\|v_{n}-v\right\|_{L^{q^{\prime}}(\Omega)} \\
& \leqslant M\left\|\left(u_{n}, v_{n}\right)-(u, v)\right\|_{L^{p^{\prime}, q^{\prime}}(\Omega)}
\end{aligned}
$$

where $M>0$ and

$$
p^{\prime}=\frac{2 N(\alpha)+\tau[N(\alpha)+2]}{N(\alpha)-2+\tau[N(\alpha)+2]}=\frac{2 N(\alpha)}{N(\alpha)-2}-\delta_{1}(\tau)
$$

$\delta_{1}(\tau)>0 \quad$ and $\quad \delta_{1}(\tau) \rightarrow 0 \quad$ as $\quad \tau \rightarrow 0$,

$$
q^{\prime}=\frac{2 N(\beta)+\tau[N(\beta)+2]}{N(\beta)-2+\tau[N(\beta)+2]}=\frac{2 N(\beta)}{N(\beta)-2}-\delta_{2}(\tau)
$$

$\delta_{2}(\tau)>0 \quad$ and $\quad \delta_{2}(\tau) \rightarrow 0 \quad$ as $\tau \rightarrow 0$.
The compactness of the embedding $S_{1,0}^{2}(\Omega) \subset L^{\frac{2 N(\alpha)}{N(\alpha)-2}-\delta_{1}(\tau), \frac{2 N(\beta)}{N(\beta)-2}-\delta_{2}(\tau)}(\Omega)$ implies that there exists a subsequence, denoted also by $\left\{\left(u_{n}, v_{n}\right)\right\}$, such that

$$
\left\|\left(u_{n}, v_{n}\right)-(u, v)\right\|_{L^{p^{\prime}, q^{\prime}}(\Omega)} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

The proof is complete.
Lemma 2.3. If $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ in $S_{1,0}^{2}(\Omega)$ and

$$
\lim _{n \rightarrow \infty}\left\langle\Phi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle=0
$$

then $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ in $S_{1,0}^{2}(\Omega)$.

Proof. Let $\left\{\left(u_{n}, v_{n}\right)\right\}$ converge weakly to (u, v). Denoting

$$
\begin{aligned}
J_{n}= & \int_{\Omega}\left[\nabla_{x} u \nabla_{x}\left(u_{n}-u\right)+|x|^{2 \alpha} \nabla_{y} u \nabla_{y}\left(u_{n}-u\right)\right] d x d y \\
& +\int_{\Omega}\left[\nabla_{x} v \nabla_{x}\left(v_{n}-v\right)+|x|^{2 \beta} \nabla_{y} v \nabla_{y}\left(v_{n}-v\right)\right] d x d y
\end{aligned}
$$

we have $\lim _{n \rightarrow \infty} J_{n}=0$. On the other hand,

$$
\begin{aligned}
& \left\langle\Phi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \\
& =\int_{\Omega}\left[\left|\nabla_{x}\left(u_{n}-u\right)\right|^{2}+|x|^{2 \alpha}\left|\nabla_{y}\left(u_{n}-u\right)\right|^{2}\right] d x d y \\
& \quad+\int_{\Omega}\left[\left|\nabla_{x}\left(v_{n}-v\right)\right|^{2}+|x|^{2 \beta}\left|\nabla_{y}\left(v_{n}-v\right)\right|^{2}\right] d x d y+J_{n} .
\end{aligned}
$$

Hence $\left\|\left(u_{n}-u, v_{n}-v\right)\right\|_{S_{1,0}^{2}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. The conclusion of Lemma 2.3 is proved.

Lemma 2.4. Let assumptions (H1) and (H2) hold. Then I_{λ} satisfies the (PS) condition.

Proof. Suppose that $\left\{\left(u_{n}, v_{n}\right)\right\}$ is a Palais-Smale sequence of I_{λ}. Lemma 2.1 ensures that $\left\{\left(u_{n}, v_{n}\right)\right\}$ is bounded in $S_{1,0}^{2}(\Omega)$. Then, there exists a subsequence, denoted also $\left\{\left(u_{n}, v_{n}\right)\right\}$ converging weakly to (u, v) in $S_{1,0}^{2}(\Omega)$. By the conclusion of Lemma 2.2 .

$$
\lim _{n \rightarrow \infty}\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)=0\right.
$$

and the fact that

$$
\begin{aligned}
& \left\langle I_{\lambda}^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle \\
& =\left\langle\Phi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle-\lambda\left\langle\Psi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle
\end{aligned}
$$

we obtain

$$
\left.\lim _{n \rightarrow \infty} \Phi^{\prime}\left(u_{n}, v_{n}\right),\left(u_{n}-u, v_{n}-v\right)\right\rangle=0
$$

Lemma 2.3 allows us to conclude that $\left\{\left(u_{n}, v_{n}\right)\right\}$ converge strongly to (u, v) in $S_{1,0}^{2}(\Omega)$. Hence, the functional I_{λ} satisfies the (PS) condition.

3. Proof of the Existence Result

Lemma 3.1. Assume that the hypotheses of Theorem 1.1 hold. Then there exist positive numbers η_{λ} and ρ_{λ} such that $\eta_{\lambda} \rightarrow+\infty$ as $\lambda \rightarrow 0$ and,

$$
I_{\lambda}(u, v) \geqslant \eta_{\lambda} \quad \text { for all }(u, v) \in S_{1,0}^{2}(\Omega) \text { satisfying }\|(u, v)\|_{S_{1,0}^{2}(\Omega)} \geqslant \rho_{\lambda}
$$

Moreover, $I_{\lambda}(t u, t v) \rightarrow-\infty$ as $t \rightarrow+\infty$ for some $(u, v) \in S_{1,0}^{2}(\Omega) \backslash\{(0,0)\}$.
Proof. Let

$$
p=\frac{2 N(\alpha)}{N(\alpha)+2}+\tau, \quad q=\frac{2 N(\beta)}{N(\beta)+2}+\tau .
$$

Using the same arguments in the proof of Lemma 2.2, we obtain

$$
\begin{align*}
& \int_{\Omega}|f(x, y, u, v)|^{p} d x d y \leqslant C_{p}\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}-\gamma_{1}(\tau)}\right), \\
& \int_{\Omega}|g(x, y, u, v)|^{q} d x d y \leqslant C_{q}\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}-\gamma_{2}(\tau)}\right) \tag{3.1}
\end{align*}
$$

where $\gamma_{1}(\tau), \gamma_{2}(\tau)$ are positive and $\gamma_{1}(\tau), \gamma_{2}(\tau) \rightarrow 0$ as $\tau \rightarrow 0$. Now, from the inequalities in 3.1), one can estimate

$$
\begin{aligned}
& \int_{\Omega} F(x, y, u, v) d x d y \\
& \leqslant C \int_{\Omega}[u f(x, y, u, v)+v g(x, y, u, v)] d x d y \\
\leqslant & C\left(\int_{\Omega}|f(x, y, u, v)|^{p} d x d y\right)^{1 / p}\left(\int_{\Omega}|u|^{p^{\prime}} d x d y\right)^{1 / p^{\prime}} \\
& +C\left(\int_{\Omega}|g(x, y, u, v)|^{q} d x d y\right)^{1 / q}\left(\int_{\Omega}|v|^{q^{\prime}} d x d y\right)^{1 / q^{\prime}} \\
\leqslant & C\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}-\gamma_{1}(\tau)}\right)^{1 / p}\|u\|_{L^{p^{\prime}}(\Omega)} \\
& +C\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}-\gamma_{2}(\tau)}\right)^{1 / q}\|v\|_{L^{q^{\prime}}(\Omega)} \\
\leqslant & C\left[\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}-\gamma_{1}(\tau)}\right)^{1 / p}+\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}-\gamma_{2}(\tau)}\right)^{1 / q}\right] \\
& \times\left(\|u\|_{L^{p^{\prime}}(\Omega)}+\|v\|_{L^{q^{\prime}(\Omega)}}\right) . \\
\leqslant & C\left[\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)-2}{N(\alpha)-2}-\gamma_{1}(\tau)}\right)^{1 / p}+\left(1+\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}-\gamma_{2}(\tau)}\right)^{1 / q}\right]\|(u, v)\|_{S_{1,0}^{2}(\Omega)},
\end{aligned}
$$

for some positive constant C. Note that, the Young inequality gives

$$
A^{\frac{1}{p}} \leqslant \frac{1}{q}+\frac{1}{p} A, B^{\frac{1}{q}} \leqslant \frac{1}{p}+\frac{1}{q} B \text { for } A, B>0 .
$$

From these facts, we have

$$
\int_{\Omega} F(x, y, u, v) d x d y \leqslant C_{1}^{*}+C_{2}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}+1-\gamma_{1}(\tau)}+C_{3}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}+1-\gamma_{2}(\tau)}
$$

for some $C_{1}^{*}, C_{2}^{*}, C_{3}^{*}>0$. Using the last inequality and taking 2.1 into account, we get

$$
\begin{align*}
I_{\lambda}(u, v) \geqslant & \frac{1}{2}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{2} \\
& -\lambda\left[C_{1}^{*}+C_{2}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}+1-\gamma_{1}(\tau)}+C_{3}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}+1-\gamma_{2}(\tau)}\right] \tag{3.2}
\end{align*}
$$

Choosing $(u, v) \in S_{1,0}^{2}(\Omega)$ such that $\|(u, v)\|_{S_{1,0}^{2}(\Omega)}=\lambda^{-s}$, with s satisfying

$$
0<s<s^{*}=\min \left(\frac{N(\alpha)-2}{N(\alpha)+2}, \frac{N(\beta)-2}{N(\beta)+2}\right)
$$

we have

$$
I_{\lambda}(u, v) \geqslant \lambda^{-2 s}\left[\frac{1}{2}-C_{2}^{*} \lambda^{1-s \frac{N(\alpha)+2}{N(\alpha)-2}}-C_{3}^{*} \lambda^{1-s \frac{N(\beta)+2}{N(\beta)-2}}\right]-\lambda C_{1}^{*}
$$

Taking $\rho_{\lambda}=\lambda^{-s}, \eta_{\lambda}=\frac{1}{2} \lambda^{-2 s}$, we conclude that $I_{\lambda}(u, v) \geqslant \eta_{\lambda}$ if λ is sufficiently small and $\|(u, v)\|_{S_{1,0}^{2}(\Omega)} \geqslant \rho_{\lambda}$.

Our task is now to show that $I_{\lambda}(t u, t v) \rightarrow-\infty$ as $t \rightarrow+\infty$, for some $(u, v) \in$ $S_{1,0}^{2}(\Omega) \backslash\{(0,0)\}$. It follows from (H3) that, given $M>0$, there exists $K(M)>0$ such that

$$
F(x, y, s, t) \geqslant M\left(s^{2}+t^{2}\right), \quad \text { for all } s, t \in \mathbb{R} \text { satisfying }|s|+|t| \geqslant K(M)
$$

Let $(u, v) \in S_{1,0}^{2}(\Omega)$ with $\|(u, v)\|_{S_{1,0}^{2}(\Omega)}=1$ and $\int_{\Omega}\left(u^{2}+v^{2}\right) d x d y=a$. Then

$$
I_{\lambda}(t u, t v)=\frac{1}{2} t^{2}-\lambda \int_{\Omega} F(x, y, t u, t v) d x d y
$$

and

$$
\begin{equation*}
\int_{\Omega} F(x, y, t u, t v) d x d y \geqslant M t^{2} \int_{\Omega \cap\left\{(x, y) \in \Omega:|u|+|v| \geqslant \frac{K(M)}{t}\right\}}\left(u^{2}+v^{2}\right) d x d y-b \tag{3.3}
\end{equation*}
$$

where b is a constant depending on a.
For t sufficient large,

$$
\int_{\Omega \cap\left\{(x, y) \in \Omega:|u|+|v| \geqslant \frac{K(M)}{t}\right\}}\left(u^{2}+v^{2}\right) d x d y \geqslant \frac{1}{2} a .
$$

From this and (3.3), we arrive at the conclusion

$$
I_{\lambda}(t u, t v) \leqslant \frac{1}{2} t^{2}-\frac{1}{2} a \lambda M t^{2}+b
$$

for t sufficient large. Choosing $M=\frac{2}{a \lambda}$ leads to

$$
I_{\lambda}(t u, t v) \leqslant b-\frac{1}{2} t^{2}, \text { for } t \text { sufficient large. }
$$

Hence, $I_{\lambda}(t u, t v) \rightarrow-\infty$ as $t \rightarrow+\infty$.
Proof of Theorem 1.1. By Lemma 2.4 and Lemma 3.1, we may apply the Mountain Pass Theorem [12]. It follows that there exists $\lambda^{*}>0$ such that for all $\lambda \in\left(0, \lambda^{*}\right)$, the functional I_{λ} has a critical point $\left(u_{\lambda}, v_{\lambda}\right)$ satisfying $I_{\lambda}\left(u_{\lambda}, v_{\lambda}\right)>\eta_{\lambda}>0$ and $\left\|\left(u_{\lambda}, v_{\lambda}\right)\right\|_{S_{1,0}^{2}(\Omega)} \geqslant \rho_{\lambda}=\lambda^{-s} \rightarrow+\infty$ as $\lambda \rightarrow 0$.

Remark. (1) The operator G_{s} can be extended to the more complicated form

$$
\Delta_{x}+|x|^{2 s_{1}} \Delta_{y}+|x|^{2 s_{2}} \Delta_{z}
$$

in the domain $\Omega \subset \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \times \mathbb{R}^{N_{3}}$. Following [14], the critical exponent for this case is

$$
\frac{N_{1}+\left(s_{1}+1\right) N_{2}+\left(s_{2}+1\right) N_{3}+2}{N_{1}+\left(s_{1}+1\right) N_{2}+\left(s_{2}+1\right) N_{3}-2} .
$$

Generally, G_{s} has the form

$$
\Delta_{\omega_{0}}+\sum_{i=1}^{m}\left|\omega_{0}\right|^{2 s_{i}} \Delta_{\omega_{i}}
$$

in the domain $\Omega=\left\{\left(\omega_{0}, \omega_{1}, \ldots, \omega_{m}\right)\right\} \subset \prod_{i=0}^{m} \mathbb{R}^{N_{i}}$. The associated critical exponent is given by

$$
\frac{N_{0}+\sum_{i=1}^{m}\left(s_{i}+1\right) N_{i}+2}{N_{0}+\sum_{i=1}^{m}\left(s_{i}+1\right) N_{i}-2} .
$$

Putting $\omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{m}\right)$, we can preserve the hypotheses (H1)-(H3) and proceed with the functional

$$
\begin{aligned}
I_{\lambda}(u, v)= & \frac{1}{2} \int_{\Omega}\left(\left|\nabla_{\omega_{0}} u\right|^{2}+\sum_{i=1}^{m}\left|\omega_{0}\right|^{2 s_{i}}\left|\nabla_{\omega_{i}} u\right|^{2}\right) d \omega \\
& +\frac{1}{2} \int_{\Omega}\left(\left|\nabla_{\omega_{0}} v\right|^{2}+\sum_{i=1}^{m}\left|\omega_{0}\right|^{2 s_{i}}\left|\nabla_{\omega_{i}} v\right|^{2}\right) d \omega-\lambda \int_{\Omega} F(\omega, u, v) d \omega
\end{aligned}
$$

(2) Using the same argument used above, we can deal with the system of m unknowns

$$
\begin{aligned}
L U & =\lambda \nabla F \quad \text { in } \Omega \\
U & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

with $U=\left(u_{1}, u_{2}, \ldots, u_{m}\right) F=F\left(x, y, u_{1}, u_{2}, \ldots, u_{m}\right)$ and

$$
L=\left(\begin{array}{cccc}
G_{s_{1}} & 0 & \ldots & 0 \\
0 & G_{s_{2}} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & G_{s_{m}}
\end{array}\right)
$$

For this system, hypotheses (H1), (H2) and (H3) are replaced by
(H1') All components of ∇F are Caratheodory functions satisfying

$$
\begin{gathered}
\left|\frac{\partial F}{\partial u_{i}}(x, y, U)\right| \leqslant C_{i 0}+\sum_{j=1}^{m} C_{i j}\left|u_{i}\right|^{r_{i j}} \\
0 \leqslant r_{i j}<\frac{N\left(s_{i}\right)+2}{N\left(s_{i}\right)-2}, \quad i=1 . . n, j=1 . . m
\end{gathered}
$$

for a.e, $(x, y) \in \Omega$ and for all $U \in \mathbb{R}^{n}$.
(H2') For a.e. $(x, y) \in \Omega$ and for all $U \in \mathbb{R}^{n}$ satisfying $|U| \geqslant M, F(x, y, 0)=0$ and $0<\mu F \leqslant \nabla F . U$, where μ, M are real numbers, $\mu>2$ and $M>0$.
(H3') $F(x, y, U)$ is superlinear, i.e. $\lim _{|U| \rightarrow \infty} \frac{F(x, y, U)}{|U|^{2}}=+\infty$. The associated functional is represented by

$$
I_{\lambda}(U)=\frac{1}{2} \int_{\Omega}\left[\sum_{i=1}^{m}\left(\left|\nabla_{x} u_{i}\right|^{2}+|x|^{2 s_{i}}\left|\nabla_{y} u_{i}\right|^{2}\right)\right] d x d y-\lambda \int_{\Omega} F(x, y, U) d x d y
$$

4. Some Special Cases of Nonlinearity

Homogeneous cases. Let $q \in \mathbb{R}, q>1$. The potential function $F(x, y, u, v)$ is called q-homogeneous in (u, v) if $F(x, y, t u, t v)=t^{q} F(x, y, u, v)$ for a.e. $(x, y) \in \Omega$, for all $t>0$ and $(u, v) \in \mathbb{R}^{2}$.

Assume that $F(x, y, u, v) \geqslant 0$ and F is q-homogeneous in (u, v). Furthermore, for fixed $(x, y) \in \Omega, F(x, y, .,.) \in C^{1}\left(\mathbb{R}^{2}\right)$ and for fixed $(u, v) \in \mathbb{R}^{2}, F(., ., u, v) \in$ $L^{\infty}(\Omega)$. Then the following properties of $F(x, y, u, v)$ are verified:
(1) For a.e. $(x, y) \in \Omega$ and for all $(u, v) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
m\left(|u|^{q}+|v|^{q}\right) \leqslant F(x, y, u, v) \leqslant M\left(|u|^{q}+|v|^{q}\right) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{align*}
M & =\underset{(x, y) \in \Omega}{\operatorname{esssup}} \max _{(u, v) \in \mathbb{R}^{2}}\left\{F(x, y, u, v):|u|^{q}+|v|^{q}=1\right\} \tag{4.2}\\
m & =\underset{(x, y) \in \Omega}{\operatorname{essinf}} \min _{(u, v) \in \mathbb{R}^{2}}\left\{F(x, y, u, v):|u|^{q}+|v|^{q}=1\right\} \tag{4.3}
\end{align*}
$$

(2) For all $(u, v) \in \mathbb{R}^{2}$ and a.e. $(x, y) \in \Omega$,

$$
\begin{equation*}
u \frac{\partial F(x, y, u, v)}{\partial u}+v \frac{\partial F(x, y, u, v)}{\partial v}=q F(x, y, u, v) \tag{4.4}
\end{equation*}
$$

(3)

$$
\begin{equation*}
\nabla F \text { is }(q-1) \text { - homogeneous in }(u, v) \text {. } \tag{4.5}
\end{equation*}
$$

It is easy to see that, for $q>2$, the condition (H2) is followed from 4.4, the q homogeneity of F implies the condition (H3). Moreover, we deduce from properties (4.5) and 4.1 that

$$
\begin{aligned}
& \left|\frac{\partial F(x, y, u, v)}{\partial u}\right| \leqslant M_{1}\left(|u|^{q-1}+|v|^{q-1}\right) \\
& \left|\frac{\partial F(x, y, u, v)}{\partial v}\right| \leqslant M_{2}\left(|u|^{q-1}+|v|^{q-1}\right)
\end{aligned}
$$

where M_{1}, M_{2} are positive constants. Then, the condition

$$
\begin{equation*}
2<q<\min \left\{\frac{2 N(\alpha)}{N(\alpha)-2}, \frac{2 N(\beta)}{N(\beta)-2}\right\} \tag{4.6}
\end{equation*}
$$

ensures the validity of (H1).
We now show some examples of $F(x, y, u, v)$, which by their homogeneity, one can obtain the solutions of problem 1.1).
Example 1. Let $F(x, y, u, v)=a(x, y)|u|^{k}|v|^{\ell}$ where

$$
2<k+\ell<q^{*}=\min \left\{\frac{2 N(\alpha)}{N(\alpha)-2}, \frac{2 N(\beta)}{N(\beta)-2}\right\}
$$

$a(x, y) \in L_{+}^{\infty}(\Omega)$ denoted the set of all nontrivial nonnegative functions in $L^{\infty}(\Omega)$. Obviously, this class of potential functions satisfies all our conditions and yields the existence result.

More generally, we can apply the polynomial function given by

$$
\begin{equation*}
F(x, y, u, v)=\sum_{i} a_{i}(x, y)|u|^{k_{i}}|v|^{\ell_{i}} \tag{4.7}
\end{equation*}
$$

to nonlinearity of problem 1.1), where $i \in \Theta(\# \Theta<\infty), k_{i}, \ell_{i}$ are nonnegative numbers satisfying $2<k_{i}+\ell_{i}=q<q^{*}$ and $a_{i}(x, y) \in L_{+}^{\infty}(\Omega)$.
Example 2. Let us denote

$$
P_{q}(x, y, u, v)=\sum_{i} a_{i}(x, y)|u|^{k_{i}}|v|^{\ell_{i}}, \quad 2<k_{i}+\ell_{i}=q, a_{i} \in L_{+}^{\infty}(\Omega)
$$

Our potential function F may be the following functions and some possible combinations of them:

$$
F(x, y, u, v)=\sqrt[r]{P_{r q}(x, y, u, v)}, \quad F(x, y, u, v)=\frac{P_{q+r}(x, y, u, v)}{P_{r}(x, y, u, v)}
$$

where r is a positive real number.
Nonhomogeneous cases. In this part, we assume that the nonlinearity in 1.1) has the form

$$
\begin{equation*}
F(x, y, u, v)=G(x, y, u, v)+H(x, y, u, v) \tag{4.8}
\end{equation*}
$$

where G and H are nontrivial nonnegative functions such that: $G(x, y, u, v)$ is p homogeneous with $1<p \leqslant 2, H(x, y, u, v)$ is q-homogeneous with $2<q<q^{*}\left(q^{*}\right.$ is denoted in example 1). It's not difficult to check that $F(x, y, u, v)$ satisfies the hypotheses (H1)-(H3), so by Theorem 1.1 one can obtain the solution ($u_{1, \lambda}, v_{1, \lambda}$) of system (1.1) with behaviour that $\left\|\left(u_{1, \lambda}, v_{1, \lambda}\right)\right\|_{S_{1,0}^{2}(\Omega)} \rightarrow+\infty$ as $\lambda \rightarrow 0$. Now suppose $1<p<2$, we will use the Ekeland's variational principle to get another nontrivial solution named $\left(u_{2, \lambda}, v_{2, \lambda}\right)$ such that $\left\|\left(u_{2, \lambda}, v_{2, \lambda}\right)\right\|_{S_{1,0}^{2}(\Omega)} \rightarrow 0$ as $\lambda \rightarrow 0$.

Firstly, following the arguments in the proof of Lemma 3.1, we have the inequality

$$
\begin{align*}
I_{\lambda}(u, v) \geqslant & \frac{1}{2}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{2} \\
& -\lambda\left[C_{1}^{*}+C_{2}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\alpha)}{N(\alpha)-2}+1-\gamma_{1}(\tau)}+C_{3}^{*}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}^{\frac{2 N(\beta)}{N(\beta)-2}+1-\gamma_{2}(\tau)}\right] . \tag{4.9}
\end{align*}
$$

Choosing $(u, v) \in S_{1,0}^{2}(\Omega)$ such that $\|(u, v)\|_{S_{1,0}^{2}(\Omega)}=\lambda^{r / 2}, 0<r<1$, we deduce

$$
\begin{equation*}
I_{\lambda}(u, v) \geqslant \frac{1}{2} \lambda^{r}>0 \tag{4.10}
\end{equation*}
$$

for λ sufficiently small. On the other hand, under the assumptions on G and H, the following inequalities hold for all $(u, v) \in \mathbb{R}^{2},(x, y) \in \Omega$:

$$
\begin{align*}
& m_{G}\left(|u|^{p}+|v|^{p}\right) \leqslant G(x, y, u, v) \leqslant M_{G}\left(|u|^{p}+|v|^{p}\right) \\
& m_{H}\left(|u|^{q}+|v|^{q}\right) \leqslant H(x, y, u, v) \leqslant M_{H}\left(|u|^{q}+|v|^{q}\right), \tag{4.11}
\end{align*}
$$

where M_{G}, M_{H}, m_{G} and m_{H} are defined in 4.2 and 4.3. This fact allows us to estimate

$$
\begin{aligned}
& I_{\lambda}(t u, t v) \\
& \leqslant \frac{1}{2} t^{2}\|(u, v)\|_{S_{1,0}^{2}(\Omega)}-t^{p} m_{G} \int_{\Omega}\left(|u|^{p}+|v|^{p}\right) d x d y-t^{q} m_{H} \int_{\Omega}\left(|u|^{q}+|v|^{q}\right) d x d y
\end{aligned}
$$

for all $t>0$. Taking $(u, v) \in S_{1,0}^{2}(\Omega),\|(u, v)\|_{S_{1,0}^{2}(\Omega)}=1$ we have

$$
I_{\lambda}(t u, t v) \leqslant C_{1} t^{2}-C_{2} t^{p}-C_{3} t^{q},
$$

where C_{1}, C_{2} and C_{3} are positive constants. Since $1<p<2$, we can state that

$$
\begin{equation*}
I_{\lambda}(t u, t v)<0, \tag{4.12}
\end{equation*}
$$

for small positive t.
We now consider the functional I_{λ} in the ball $B\left(0, \lambda^{r}\right) \subset S_{1,0}^{2}(\Omega)$. Using Ekeland's variational principle and arguments similar to those used in [1] we have

$$
I_{0}=\inf _{\bar{B}\left(0, \lambda^{r}\right)} I_{\lambda}(u, v)<0
$$

and there exists a (PS) sequence $\left\{\left(u_{n}, v_{n}\right)\right\}$ of I_{λ} in $B\left(0, \lambda^{r}\right)$. Since I_{λ} satisfies (PS) condition, one can conclude that $\left\{\left(u_{n}, v_{n}\right)\right\}$ converges to a critical point named $\left(u_{2, \lambda}, v_{2, \lambda}\right) \in B\left(0, \lambda^{r}\right)$ up to a subsequence.

Acknowledgement. The authors would like to express their gratitude to the anonymous referee for his/her helpful suggestions and comments.

References

[1] C. O. Alves; Multiple positive solutions for equations involving critical Sobolev exponent in \mathbb{R}^{N}, Electronic Journal of Differential Equations, vol.1997, No.13, 1-10
[2] A. AMBROSETTI, J. GARCIA AZORERO \& I. PERAL, Existence and multiplicity results for some nonlinear elliptic equations: a survey, Rendiconti di Matematica, Serie VII, Volume 20, Roma (2000), 167-198
[3] Gianni Arioli \& Filippo Gazzola; Quasilinear elliptic equations at critical growth, Nonlinear Differential Equations and Applications, Vol 5 (1998), 83-97
[4] H. Brezis \& L. Nirenberg; Positive Solutions of Non-linear Elliptic Equations Involving Critical Sobolev Exponents, Comm. Pure Appl. Math. Vol. 36 (1983), 437-477
[5] Alberto Ferrero \& Filippo Gazzola; Existence of Solutions for Singular Critical Growth Semilinear Elliptic Equations, Journal of Differential Equations, Vol. 177 (2001), 494-522
[6] N. M. Chuong \& T. D. Ke; Existence of solutions for a nonlinear degenerate elliptic system, Electronic Journal of Differential Equations, vol.2004, No.93, 1-15
[7] A. Djellit \& S. Tas; Existence of solutions for a class of elliptic systems in \mathbb{R}^{N}, involving the p-Laplacian, Electronic Journal of Differential Equations, vol. 2003 (2003), No. 56, 1-8
[8] Filippo Gazzola; Critical growth quasilinear elliptic problems with shifting subcritical pertubation, Differential and Integral Equations, Vol. 14 (2001), 513-528
[9] V. V. Grushin; On a class of Elliptic Pseudo Differential Operators Degenerate on a Submanifold, Math. USSR Sbornik, Vol. 13 (1971), 155-183
[10] M. Garcia-H., R. Manasevich, E. Mitidieri \& C. Yarur; Existence and Nonexistence of Positive Singular Solutions for a Class of Semilinear Elliptic Systems, Arch. Rational Mech. Anal., Vol. 140 (1997), 253-284
[11] T. D. Ke, Existence of non-negative solutions for a semilinear degenerate elliptic system, Proceedings of the international conference on Abstract and Applied Analysis (Hanoi Aug. 2002), World Scientific, July 2004.
[12] A. Ambrosetti \& P. Rabinowitz, Dual Variational Methods in Critical Point Theory and Applications, Journal of Functional Analysis, Vol. 14 (1973), 349-381
[13] N. M. Stavrakakis \& N. B. Zographopoulos; Existence results for quasilinear elliptic systems in \mathbb{R}^{n}, Electronic Journal of Differential Equations, Vol. 1999 (1999), No. 3, 1-15
[14] N. T. C. Thuy \& N. M. Tri; Some Existence and Nonexistence Results for Boundary Value Problems (BVP) for Semilinear Elliptic Degenerate Operators, Russian Journal of Mathematical Physics, Vol. 9 (2002), No. 3, 366-371
[15] N. M. Tri; On Grushin's Equation, Matemachicheskie Zametki, Vol. 63 (1988), 95-105
Nguyen Minh Chuong
Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang
Quoc Viet, 10307 Hanoi, Vietnam
E-mail address: nmchuong@math.ac.vn
Tran Dinh Ke
Department of Mathematics, Hanoi University of Education, Hanoi, Vietnam
E-mail address: ketd@hn.vnn.vn

[^0]: 2000 Mathematics Subject Classification. 34B27, 35J60, 35B05.
 Key words and phrases. Semilinear parametric problem; Grushin type operator; potential function, (sub)critical exponent.
 (C) 2005 Texas State University - San Marcos.

 Submitted October 10, 2004. Published October 7, 2005.
 Supported by the National Fundamental Research Program, Vietnam Academy
 of Science and Technology.

