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A RESONANCE PROBLEM FOR THE P-LAPLACIAN IN RN

GUSTAVO IZQUIERDO BUENROSTRO & GABRIEL LÓPEZ GARZA

Abstract. We show the existence of a weak solution for the problem

−∆pu = λ1h(x)|u|p−2u + a(x)g(u) + f(x), u ∈ D1,p(RN ),

where, 2 < p < N , λ1 is the first eigenvalue of the p-Laplacian on D1,p(RN )

relative to the radially symmetric weight h(x) = h(|x|). In this problem,

g(s) is a bounded function for all s ∈ R, a ∈ L(p∗)′ (RN ) ∩ L∞(RN ) and

f ∈ L(p∗)′ (RN ). To establish an existence result, we employ the Saddle Point
Theorem of Rabinowitz [9] and an improved Poincaré inequality from an article

of Alziary, Fleckinger and Takác̆ [2].

1. Introduction

Resonance problems for divergence operators have been of interest since the
197O’s. For the ordinary Laplacian on bounded domains there are a number of
classical papers and some recent papers explore resonant problems in RN . For the
p-Laplacian, a family of resonant problems in RN has been studied just recently in
[2] among others. In this paper, we study the family of p-Laplacian equations:

−∆pu = λh(x)|u|p−2u + a(x)g(u) + f(x) in D1,p(RN ), (1.1)

where ∆pu = div(|∇u|p−2∇u), 2 < p < N , (N > 3); f ∈ L(p∗)′(RN ), p∗ = Np
N−p

and (p∗)′ denotes the conjugate of p∗; g : R → R is a bounded continuous function
(|g(s)| 6 M) for all s ∈ R; the function h ∈ LN/p(RN ) ∩ L∞(RN ), h > 0 a.e. is
a weight function and a ∈ L(p∗)′(RN ) ∩ L∞(RN ). As usual, the space D1,p(RN ) is
the closure of C∞0 (RN ) with respect to the norm

‖u‖ =
( ∫

|∇u|p
)1/p

.

¿From here and henceforth the integrals and all the spaces are taken over RN unless
otherwise specified.

The term resonance is well known in the literature, and refers to the case in
which λ is an eigenvalue of the problem

−∆pu = λh(x)|u|p−2u,

u ∈ D1,p.
(1.2)
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In [1], Allegreto et al. show that the eigenvalue problem (1.2) possesses a sequence
of eigenvalues 0 < λ1 < λ2 6, . . . and a corresponding sequence of eigenfunctions
{ϕj}, where ϕ1 can be chosen to be positive a.e.. Moreover, we have the Rayleigh
quotient characterization:

λ1 = inf
{∫

|∇u|p : u ∈ D1,p with
∫

h|u|p = 1
}

. (1.3)

We consider the function ϕ1 to be normalized; i.e.,
∫

h|ϕ1|p = 1 and we decompose
any function u ∈ D1,p as a direct sum

u = αϕ1 + w where

α =
∫

h|ϕ1|p−2ϕ1u and
∫

h|ϕ1|p−2ϕ1w = 0.
(1.4)

Hence, we introduce the spaces

V
def= span{ϕ1},

W
def=

{
w ∈ D1,p :

∫
h|ϕ1|p−2ϕ1w = 0

} (1.5)

In order to prove our main result we use some of the results introduced by Alziary,
Fleckinger and Takác̆ in [2] where the cases 1 < p < 2 and 2 < p < N are treated
separately. The case 2 < p < N requires the use of the so called “Improved Poincaré
inequality” ([2, lemma 3.7 p.8]):∫

|∇u|p − λ1

∫
h|u|p > c

(
|α|p−2

∫
|∇ϕ1|p−2|∇w|2 +

∫
|∇w|p

)
,

c > 0, 2 < p < N
(1.6)

where h satisfies the hypothesis:
(H) The function h is radially symmetric, h(x) = h(|x|). There exist constants

δ > 0 and C > 0 such that

0 < h(r) 6
C

(1 + r)p+δ
for almost all 0 6 r < ∞ (r = |x|). (1.7)

Following [2] we define:

Cγ
def=

{
u = αϕ1 + w ∈ D1,p : ‖w‖ 6 γ|α|

}
,

C′γ
def=

{
u ∈ D1,p : ‖w‖ > γ|α|

}
, for 0 < γ < ∞,

C′∞
def=

{
u ∈ D1,p : |α| = 0

}
The next two lemmas are borrowed from [2] (Lemma 6.2 in page 18, and Lemma
6.3 in page 19). They play important roles in the proof of our main result.

Lemma 1.1. If h satisfies (H), 1 < p < N , and 0 < γ 6 ∞ then

λ1 < Λγ
def
= inf

{∫
|∇u|p∫
h|u|p

: u ∈ C′γ\{0}
}

. (1.8)

For the case in which ‖w‖/|α| is small the following lemma is needed.

Lemma 1.2. If h satisfies (H) and 2 6 p < N , then

λ1 < Λ̃
def
= lim inf

‖φ‖→0, φ∈W

{∫
|∇(ϕ1 + φ)|p∫
h|ϕ1 + φ|p

: u ∈ C′γ\{0}
}

. (1.9)
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The main result of this paper is the following.

Theorem 1.3. Let h satisfy (H), λ = λ1, g ∈ C(R, R) be bounded, G(s) =
∫ s

0
g(t)dt

and a ∈ L(p∗)′(RN ) ∩ L∞(RN ). If

lim
|t|→∞

{∫
a(x)G(tϕ1) + t

∫
f(x)ϕ1

}
= +∞, (1.10)

then, problem (1.1) has a weak solution for 2 < p < N .

Note that condition (1.10) is a Landesman-Lazer type condition (see [6]). Related
problems for the p-Laplacian near Resonance had been studied by To Fu Ma et al.
[8], with a different settings for the function F (x, u) := a(x)g(u). The study for
the case p = 2, without the hypothesis (H), is treated by López and Rumbos in
[7]. The existence of weak solutions for (1.1) is an extension of previous results for
bounded domains and the ordinary Laplacian by Ahmad, Lazer and Paul [3].
Remark: Even though the hypothesis (H) is required for the proof of our main
result, several steps use only that h ∈ LN/p(RN ) ∩ L∞(RN ).

2. Variational Setting

The solutions to (1.1) are the critical points of the functional

Jλ(u) =
1
p

∫
|∇u|p − λ

p

∫
h(x)|u|p −

∫
aG(u)−

∫
fu (2.1)

where G(s) =
∫ s

0
g(t)dt, s ∈ R. It is known (see for instance [5]) that the functional

Jλ belongs to C1(D1,p, RN ) for u ∈ D1,p with Fréchet derivative given by:

〈J ′λ(u), v〉 =
∫
|∇u|p−2∇u · ∇v − λ

∫
h|u|p−2uv −

∫
ag(u)v −

∫
fv (2.2)

for all u, v ∈ D1,p.
To prove theorem 1.3 we use the Minimax Methods introduced by Rabinowitz

[9]. We recall here for the convenience of the reader some previous definitions and
theorems.
Palais-Smale condition. Suppose that E is a real Banach space. A functional
I ∈ C1(E, R) satisfies the Palais-Smale condition at level c ∈ R, denoted (PS)c, if
any sequence (un) ⊂ E for which

(i) I(un) → c as n →∞ and
(ii) I ′(un) → 0 as n →∞,

possesses a convergent subsequence. If I ∈ C1(E, R) satisfies the (PS)c for every
c ∈ R, we say that (un) satisfies the (PS) condition. Any sequence for which (i)
and (ii) hold is called a (PS)c sequence for I.

Now we establish a preliminary result.

Proposition 2.1. Let Jλ : D1,p → R be defined as 2.1 where λ ∈ R. Suppose that g
is a continuous function with |g(s)| 6 M for all s ∈ R, f ∈ L(p∗)′(RN ), 2 < p < N ,
h ∈ LN/p(RN )∩L∞(RN ), h > 0 a.e. and a ∈ L(p∗)′(RN )∩L∞(RN ). Then if every
(PS)c sequence for Jλ is bounded, Jλ satisfies the (PS)c condition.

Proof. In the first place we note that if h satisfies (H) then h ∈ LN/p(RN ). In fact,∫
h(x)N/pdx =

∫ ∞

0

h(r)N/prN−1dr 6
∫ ∞

0

( C

(1 + r)p+δ

)N
p rN−1dr < ∞.
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Let (un) be a (PS)c sequence for Jλ. Thus, by assumption (un) is bounded, there-
fore there exists a subsequence, which we also denote by (un) such that un → u
weakly in D1,p as n →∞, in particular we have∫

|∇un|p−2∇un · ∇ϕ →
∫
|∇u|p−2∇u · ∇ϕ, ∀ϕ ∈ D1,p. (2.3)

Passing to a subsequence if necessary, we see that
∫
|∇(un − u)|p → 0 as n → ∞.

Now since (un) satisfies the (PS)c condition, limn→∞〈J ′λ(un), ϕ〉 = 0. That is,∫
|∇un|p−2∇un · ∇ϕ− λ

∫
h|un|p−2unϕ−

∫
ag(un)ϕ−

∫
fϕ = o(1) (2.4)

as n →∞. On the other hand, by weak convergence, we obtain

lim
n→∞

∫
|∇u|p−2∇u · ∇(un − u) = 0.

For p > 2 (see [1] inequality (7) p.237 and subsequent inequalities)∫
|∇un −∇u|p 6 C

{∫
(|∇un|p−2∇un − |∇u|p−2∇u) · ∇(un − u)

}
×

( ∫
|∇un|p +

∫
|∇u|p

)
.

(2.5)

Thus it is sufficient to show that limn→∞
∫
|∇un|p−2∇un · ∇(un − u) = 0. To this

aim, taking ϕ = un − u, in (2.4) we have∫
|∇un|p−2∇un · ∇(un − u)

= λ

∫
h|un|p−2un(un − u) +

∫
ag(un)(un − u) +

∫
f(un − u) + o(1)

(2.6)

as n →∞. For the first integral in the right hand side, using the Hölder’s inequality
we have ∣∣ ∫

h|un|p−2un(un − u)
∣∣ 6

( ∫
h|un|p

)1/p′( ∫
h|un − u|p

)1/p

.

Noting that h ∈ LN/p(RN ) = L(p∗/p)′(RN ), for 1 6 q < p∗ the functional u 7→∫
h|u|q is weakly continuous in D1,p (see [4, Prop. 2.1 p. 826]). Consequently,

lim
n→∞

∫
h|un|p−2un(un − u) = 0. (2.7)

For the integral
∫

ag(un)|un−u| we consider the ball Br(0). Since a, g are bounded
we have ∣∣ ∫

Br(0)

ag(un)(un − u)
∣∣ 6 C

∫
Br(0)

|un − u| → 0 as n →∞,

since un → u strongly in L1(Br(0)) due to the Relich-Kondrachov theorem. Now,
together with the assumption that un and g are bounded, we obtain∣∣ ∫

RN\Br(0)

ag(un)|un − u|
∣∣ 6 C

( ∫
RN\Br(0)

|a|
Np

N−p

)N+p
Np

So, by taking r big enough it follows that

lim sup
n→∞

∣∣ ∫
ag(un)|un − u|

∣∣ 6 Cε
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For arbitrary ε. Finally, since f ∈ L(p∗)′(RN ) we can use similar arguments as
above to show that limn→∞

∫
f(un − u) = 0. �

3. Proof of Theorem 1.3

In this section we consider the problem

−∆pu = λ1h(x)|u|p−2u + a(x)g(u) + f(x)

u ∈ D1,p
(3.1)

where h satisfies (H). To prove the main theorem of this section we require the Sad-
dle Point Theorem of Rabinowitz [9], which we introduce here for the convenience
of the reader.

Theorem 3.1 (Saddle Point Theorem). Let E = V ⊕W , where E is a real Banach
space and V 6= {0} is finite dimensional. Suppose I ∈ C1(E, R) satisfies the (PS)
condition and

(I1) there is a constant α and a bounded neighborhood D of 0 in V such that
I
∣∣
∂D

6 α, and
(I2) there is a constant β > α such that I|W > β.

Then, I possesses a critical value c > β. Moreover c can be characterized as

c = inf
h∈Γ

max
u∈D

I(h(u)),

where Γ = {h ∈ C(D,E) : h = id on ∂D}.

Now, we can show the existence of weak solutions for Jλ1 .

Proof of Theorem 1.3. First, we show that the functional Jλ1 corresponding to
problem (3.1) satisfies the (PS)c condition for any c ∈ R, and thereafter we verify
that Jλ1 satisfies the other hypotheses of the Theorem 3.1.

Let (un) be a (PS)c sequence for the functional Jλ1 . We claim that (un) is
bounded. For each n ∈ N write

un
def= vn + wn = αnϕ1 + wn with αn ∈ R and wn ∈ W.

Since (un) is a (PS)c sequence we have |Jλ1(un)| < c, i.e.∣∣∣1
p

∫
|∇un|p −

λ1

p

∫
h|un|p −

∫
aG(un)−

∫
fun

∣∣∣ 6 C1. (3.2)

By inequality (1.6), we have

c

p

∫
|wn|p 6

∣∣1
p

∫
|∇un|p −

λ1

p

∫
h|un|p

∣∣ (3.3)

with c > 0. By standard calculations (see for instance [7, p.16]), we have∣∣ ∫
a(G(vn + wn)−G(vn))

∣∣ 6 M

∫
a|wm| 6 C2‖wn‖. (3.4)

Consequently, using (3.2), (3.3) and (3.4) we have∣∣ ∫
aG(vn) +

∫
fvn

∣∣ 6 C1 + C2‖wn‖+
c

p
‖wn‖p. (3.5)
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So, given that
∫

aG(vn) +
∫

fvn → ∞ as ‖vn‖ = |αn| → ∞, we have shown that
(vn) is bounded if (wn) is bounded. We show now that (wn) is bounded. In fact,
note that ∫

|∇un|p−2∇un · ∇wn > ‖un‖p −
∫
|∇un|p−2un · ∇vn. (3.6)

On the other hand, since 〈J ′λ1
(un), vn〉

n→ 0, there exists m0 such that if n > m0

then, ∣∣ ∫
|∇un|p−2∇un · ∇wn −

∫
zn · wn

∣∣ 6 C‖wn‖, (3.7)

where zn = λ1h|un|p−2un+ag(un)wn+f . Adding and subtracting λ1

∫
h|un|p−2un ·

vn and
∫

ag(un)vn +
∫

f(x)vn, and substituting (3.6) in (3.7)

‖un‖p − λ1

∫
h|un|p 6 C‖wn‖+ 〈J ′λ1

(un), vm〉+
∫

ag(un)vn +
∫

f(x)vn

6 C‖wn‖+ 〈J ′λ1
(un), vm〉+ C ′|αn|

(3.8)

Again, since J ′λ1
→ 0 as n → ∞, there exist m1 such that if n > m1 then

〈J ′λ1
(un), vm〉 6 C‖vn‖ = C|αn|, taking n > max{m0,m1}

‖un‖p − λ1

∫
h|un|p 6 C‖wn‖+ C ′|αn|. (3.9)

Now fix γ > 0, and suppose that (un) ∈ C′γ for all n. Then we have, |αn| 6
(1/γ)‖wn‖ and

∫
h|un|p 6 (1/Λγ)

∫
|∇un|p. Thus, by Lemma 1.1(

1− λ1

Λγ

)
‖un‖p 6 C‖wn‖ (3.10)

Since the projection u 7→ w is bounded in D1,p we obtain

‖wn‖p 6 Cγ‖wn‖, (3.11)

given that λ1/Λγ < 1 by Lemma 1.1.
Hence by Lemma 1.1, Λγ > λ1; therefore, (wn) is bounded if (un) ∈ C′γ . Now,

set γn = ‖wn‖/|αn| and define

γ
def= lim inf

n
γn.

We have two cases: (i) γ ∈ (0,∞] and (ii) γ = 0. By the above argument, if
γ ∈ (0,∞] then (wn) is bounded and the proof is concluded. If γ = 0, take ε > 0
arbitrarily small, such that ‖wn‖ 6 ε|αn|. Using inequality (3.9), Lemma 1.2 with
φ = φn

def= (‖wn‖/|αn|) · wn/‖wn‖, and the fact that the projection u 7→ α is
bounded in D1,p we obtain

|un|p
(
1− λ1

Λ̃

)
6 Cε|αn|+ C ′‖vn‖,

|αn|p 6 cγ |αn|.

Therefore, |αn| is bounded, and since ‖wn‖ 6 ε|αn| we have that (un) is bounded
as wanted.

To verify the geometric hypotheses of the Saddle Point Theorem we note that
since λ1 is isolated (see [1]) we have

λ2
def= inf

{
‖w‖p : w ∈ W,

∫
h|w|p = 1

}
, (3.12)
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which satisfies λ1 < λ2. As a consequence of (3.12) we have∫
|∇w|p > λ2

∫
h|w|p, ∀w ∈ W. (3.13)

Now, if w ∈ W , ∫
|∇w|p − λ1

∫
h|w|p >

(
1− λ1

λ2

)
. (3.14)

Moreover, since |g(s)| 6 M for all s ∈ R, we have that for all w ∈ D1,p,∣∣ ∫
aG(w)

∣∣ 6 M

∫
|a||w| 6 C‖w‖.

Therefore, Jλ1 is bounded from below on W ; i.e. (I2) in Theorem 3.1 holds.
Finally, if v ∈ V we have

Jλ1(v) = −
∫

aG(v)−
∫

fv.

Since
∫

aG(v) +
∫

fv → ∞ as ‖v‖ → ∞ by (1.10) and, therefore, (I1) in the
Saddle Point Theorem also holds. Hence, Jλ1 has a critical point and the proof is
concluded. �

Remark. Suppose lims→∞ g(s) = g∞ and lims→−∞ g(s) = g−∞ exist. Then, if
g∞ > 0 and g−∞ < 0, G(s) =

∫ s

0
g(t)dt → ∞ as |s| → ∞. Consequently, by L’

Hôspital’s rule, the Lebesgue dominated convergence theorem and the fact that
ϕ1 > 0 a.e. in RN we have that

lim
|t|→∞

1
t

∫
a(x)G(tϕ1) = lim

|t|→∞

∫
ag(tϕ1)ϕ1 =

{
g∞

∫
aϕ1 as t →∞,

g−∞
∫

aϕ1 as t → −∞.

Thus, the condition (1.10) in the resonance Theorem 1.3 holds if

g∞

∫
aϕ1 +

∫
fϕ1 > 0 and g−∞

∫
aϕ1 +

∫
fϕ1 < 0,

or
g−∞

∫
aϕ1 < −

∫
fϕ1 < g∞

∫
aϕ1. (3.15)

This is the original Landesman-Lazer condition in [6] for the case of resonance
around the first eigenvalue.

It can be shown that if

g−∞ < g(s) < g+∞ for all s ∈ R,

then (3.15) is necessary and sufficient for the solvability of (3.1). If g−∞ = g+∞,
then the Landesman-Lazer condition (3.15) cannot hold, and if g−∞ and g+∞ are
both zero, then condition (1.10) might not hold in general.
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[7] López Garza G. and Rumbos A. J.; Resonance and Strong Resonance for Semilinear Elliptic
Equations in RN , Electronic Journal of Differential Equations Vol. 2003 (2003), No. 124, pp.

1-22.
[8] Ma T. F. and Pelicer M. L.; Perturbation Near Resonance for the p-Laplacian in RN ,

Abstract and Applied Analysis 7:6 (2002), pp. 323-334.

[9] Rabinowitz P.H.; Minimax Methods in Critical Point Theory with Applications to Partial
Differential Equations. Conference Board of the Mathematical Sciences Regional Conference

Series in Mathematics, Number 65 AMS.

Gustavo Izquierdo Buenrostro

Dept. Mat. Universidad Autónoma Metropolitana, México
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