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NONAUTONOMOUS ULTRAPARABOLIC EQUATIONS APPLIED
TO POPULATION DYNAMICS

NOUREDDINE GHOUALI, TARIK MOHAMED TOUAOULA

Abstract. We prove the existence and positivity of solutions to nonautono-
mus ultraparabolic equations using a perturbation method. These equations

come from population dynamics, namely from a fish larvae model.

1. Introduction

In the present work, we investigate a model for the dynamics of the fish larvae
of certain species, namely the equation

∂w

∂t
+ div(V w)− ∂

∂x3

(
h
∂w

∂x3

)
+ µw = 0, (1.1)

where h, V, µ depend on the time and space variables.
The main characteristic of this equation is that it has mixed parabolic-hyperbolic

type, due to the directional separation of the diffusion and convection effects. Such
problem is called also nonautonomous ultraparabolic equation, that is parabolic
in many directions. In a previous work by Ghouali and Touaoula [6], a simplified
version of the model of the larvae had been investigated. It was assumed that the
horizontal current Vi, i = 1, 2 is uniform throughout the water column, i.e. does
not depends of the vertical variable x3. Under this assumption, it was possible to
uncouple the vertical and the horizontal components in the following sense: The
study was restricted to each of the horizontal streamlines. Such restriction to a line
reduces the functions of time horizontal components to functions of time alone so
that the full model reduces on such a line to a diffusion equation in the vertical
variable coupled with a first order growth equation. Our purpose in this work is
to extend this method to the more realistic situation where the horizontal current
depends of all its variables.

The lack of the coercivity of the operator can be handled by using a convenient
perturbation argument. Monotone operator theory [7, p. 316] can be applied which
gives us existence and uniqueness of the solution of the perturbed problem. After
that, we establish the positivity of our solution. Then passing to the limit, in a
suitable way, we obtain the existence of a solution of the main model.

The paper is organized as follows: Section 2 is devoted to recall some important
results. In section 3 we formulate the perturbed problem. In section 4 we prove
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existence, uniqueness and positivity of the solution. Section 5 is devoted to prove
the convergence result and the existence of the exact solution of the model.

2. Notation and preliminary results

We recall here some definitions and results that will be used latter. Let X be a
separable and reflexive Sobolev space with norm ‖ · ‖ and its dual X ′ with norm
‖ · ‖∗. We denote by 〈, 〉 the duality bracket of X ′ × X. For v ∈ L2(0, T ;X), we
define the norm ( ∫ T

0

‖v‖2dt
)1/2

.

We denote by D(0, T ;X) the space of infinitely differentiable functions with com-
pact support in (0, T ) and with values in X. We denote by D′(0, T ;X) the space
of distributions on (0, T ) with values in X. We set also W (0, T ;X,X ′) := {v, v ∈
L2(0, T ;X), ∂v

∂t ∈ L
2(0, T ;X ′)}.

Definition 2.1. We say that an operator A from X to X ′ is monotone, if

〈A(u)−A(v), u− v〉 ≥ 0 ∀u, v ∈ X. (2.1)

The operator A is strictly monotone if we have a strict positivity in (2.1) for all
u, v ∈ X and u 6= v.

Remark 2.2. If A is a linear operator, then the monotonicity is equivalent to

〈Au, u〉 ≥ 0 ∀u ∈ D(A).

Definition 2.3. Let A be a monotone operator from X to X ′. We say that A is a
maximal monotone operator if its graph is a maximal subset of X×X ′ with respect
to set inclusion.

Lemma 2.4 ([7]). Let L be a unbounded linear operator, with a dense domain
D(L) in X taking its values in X ′. Then L is maximal monotone if and only if L
is a closed operator and such that

〈Lv, v〉 ≥ 0 ∀v ∈ D(L),

〈L∗v, v〉 ≥ 0 ∀v ∈ D(L∗).

where L∗ is the adjoint operator of L.

Theorem 2.5 ([7]). Let X be a reflexive Banach space. Let L be a linear operator
of dense domain D(L) ⊂ X and take its values in X ′. Assume that L is maximal
monotone and suppose that A is a monotone, coercive operator from X to X ′, i.e.

〈A(v), v〉
‖v‖

→ ∞ as ‖v‖ → ∞.

Then, for all f ∈ X ′, there exists u ∈ D(L) such that Lu+A(u) = f .

Remark 2.6. If we assume in addition that the operator A is strictly monotone
then there exists a unique solution u ∈ D(L) such that Lu+A(u) = f .

Remark 2.7. One can easily see that in the case of a linear operator A, the
coercivity implies strictly monotonicity.
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Remark 2.8. Let u be a solution to the problem
∂u

∂t
+Au = f,

u(0) = u0,
(2.2)

where A is a linear operator. We set u = vekt, k ∈ R, then v is a solution of the
problem

v′(t) + (A+ kI) v(t) = f1,

v(0) = u0.
(2.3)

Hence, proving existence, uniqueness and positivity of solutions of problem (2.3) is
equivalent to prove the same properties to problem (2.2). Throughout this paper
we will deal with problem (2.3), where k is a real constant that we will choose later.

Remark 2.9. We consider two Hilbert spaces V ,H with V ↪→ H, the continuous
injection ↪→ having dense image in H. Then we can identify H with its dual H ′,
and therefore

V ↪→ H ↪→ V ′.

From Remarks 2.8 and 2.9 we obtain the following Lemma.

Lemma 2.10 ([3]). For u0 ∈ H there exists v in W (0, T ;V, V ′), such that v = u0

in H. Thus w = u− v, solves the problem
∂w

∂t
+ (A+ kI)w = f2,

w(0) = 0,
(2.4)

where u is solution of problem (2.3).

Therefore, we will consider the case where u0 ≡ 0.

3. The model

Our model takes into account both the physical and biological effects. For the
physical part, the model stresses two main factors: 1) Transport entailed by the
currents: The currents are computed using Navier-Stokes equations and are intro-
duced in the equations of the larvae as functions of space and time with sufficient
regularity to allow existence and uniqueness of stream lines. 2) Vertical diffusion
induced by vertical mixing in the upper part of the water column. For the biologi-
cal part the main parameters are a function which gives the instantaneous rate of
progression within the stages from the egg fertilization to the end of the yolk-sac
period.

The model is expressed in a generality which encompasses a large variety of
situations. The motivation for this work is the study of the dynamics on the Bay
of Biscay anchovy; that is, a region of the Atlantic ocean close to the French coast,
bordered eastward by the continental shelf. The Bay of Biscay goes from the
Northern Spanish coast up to about 46◦ in “latitude”. In this region at the end
of May, a thermocline establishes. The top of the thermocline is roughly at the
same distance ztherm from the surface. The thermocline divides the water column
into three regions: The upper part, from the surface to ztherm meters deep, is
the so called mixed layer and its where the larvae grow. Below this there is the
thermocline, a rather thin layer where the temperature loses rapidly a few degrees,
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water surface

ztherm

{
mixed layer,
where larvae grow

thermocline

another mixed layer

Figure 1. Water column divided into three regions

and the vertical mixing coefficient is negligibly small. Below the thermocline is
another well mixed layer where the temperature changes very little with depth. This
region is of no concern to us for this study. We will be confined to the mathematical
issues related to the above model, and we study only the upper layer, the mixed
layer of the water column; see Figure 1.

The domain under consideration is Ω = D × (0, z∗), where D is an open subset
of the surface, that is D is a portion of the plane, and z∗ is the distance from the
surface to a region above the thermocline.

We denote by Q the product space Ω× (0, T ) and Σ := Γ× (0, T ) the boundary
of Q. The state variable for the dynamics of the larvae is the density of larvae.
For the part of the larval cycle which goes from fertilization to the end of stage,
the density w = w(t, s, P ), where s denotes the position within the stages, which
we take specifically of the Bay of Biscay anchovy in [1, 12[ see for example [1] and
P = (x1, x2, x3) represents a generic point in the physical space.

The region of observation is assimilated to the product of the horizontal plane
and a vertical line. The origin is a point of the surface in the sea, the x1 axis is
oriented westward, the x2 axis is oriented northward, and the x3 axis is oriented
downward. Of course t is the chronological time. w is a density with respect to the
stage and the position. The larvae are characterized by their density, that is to say,
at each time t ∈ [0, T ], where T is the maximal time of observation, w(t, s, P ) can
be thought of as the larvae biomass per unit of volume evaluated at the point P ,
at that time. The full model is as follows

∂w

∂t
+
∂(fw)
∂s

+ div (V w)− ∂

∂x3
(h
∂w

∂x3
) + γw = 0,

w = 0, in Σ

w(t, 1, x, y, z) = l0(t, P ).

(3.1)

The significance of the parameters in the model is as follows:
The velocity vector V (t, P ) = (V1(t, P ), V2(t, P ), V3(t, P )) describes the sea cur-
rent which is supposed to be known.
The mixing coefficient h = h(t, P ) gives the diffusion rate, supposed to be essen-
tially vertical.
The growth function is the main biological parameter, f(t, s), which gives the
instantaneous rate of progression within the stages from the egg fertilization to the
end of the yolk-sac period. For the principle of determination see [8, 1].
The mortality of larvae is modelled by the expression γ = γ(t, s, P ).
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The Demographic boundary conditions are given at s = 1, at any time during
the spawning period, the variable s takes its values in the interval [1, 12[, where
s = 1 corresponds to the newly fertilized eggs, and s = 12, to the end of the yolk
sac period.
The boundary condition is zero, we assume that there is no larvae on the bound-
ary.
The Time of observation is restricted to time interval when the larvae remains
in the domain Ω.

4. Existence, uniqueness and positivity of solution of the perturbed
problem

The objective of this section is to study existence, uniqueness and positivity of
solution of the associated perturbed problem (4.3). For this, we start by using the
method of characteristics to reduce the number of variables. We assume that

(H1) f is in C1((0, T )× (1, 12)).
We introduce the flow generated by the size growth, that is

φ := φ(τ, t0, 1),

and for each initial value ζ̃ ≡ (t0, 1), φ(τ, ζ̃) is the solution of the equation( dt
dτ
,
ds

dτ

)
= (1, f(t, s)), (4.1)

that satisfies t(0) = t0, s(0) = 1, since the theory of ordinary differential equations
guarantees that a unique characteristic curve passes through each point ζ̃. Let

t = T (τ, t0), s = S(τ, t0),

be a solution of the characteristic system (4.1) emanating from the point ζ̃. We
assume that

∂S

∂t0
− f 6= 0

at τ = 0. Without loss of generality we can assume that t0 = 0, otherwise we
replace V and h by those restrictions along the characteristic line. So to each ζ̃, we
have associated the following problem, see for instance [6],

∂l

∂t
+ div(V l)− ∂

∂z

(
h
∂l

∂z

)
+ (µ+ k)l = 0,

l = 0, in Σ,

l(0, P ) = l0(P ),

(4.2)

where µ is function of order zero, and k is a real constant that we will chose later.
We will use a perturbation method to get a time dependent parabolic equation
whose resolution will yield to the solution of equation (3.1). Namely we consider
for the perturbed problem

∂l

∂t
+ div(V l)−

3∑
i=1

∂

∂xi

(
aε

i

∂l

∂xi

)
+ (µ+ k)l = 0,

l = 0, in Σ,

l(0, P ) = l0(P ),

(4.3)
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where

aε
i (t, P ) =

{
ε if i = 1, 2
h(t, P ) + ε if i = 3.

Let

Luε =
∂uε

∂t
+ div(V uε) + (k + µ)uε,

with

D(L) = {v ∈ L2(0, T ;W 1,2
0 (Ω));

∂v

∂t
∈ L2(0, T ;W−1,2(Ω)), v(0) = 0},

and

Auε = −
3∑

i=1

∂

∂xi

(
aε

i

∂uε

∂xi

)
,

defined by

〈Auε, v〉 =
3∑

i=1

∫
Q

aε
i

∂uε

∂xi

∂v

∂xi
dP dt,

for each v ∈ L2(0, T ;W 1,2
0 (Ω)). We now state the assumptions of this section.

(H2) h ∈ C1(Q̄)), Vi ∈ C([0, T ]× Ω̄), i = 1, 2, 3 and γ ∈ C([0, T ]× [1, 12]× Ω̄).
(H3) h ≥ c0 > 0 in [0, T ]× Ω̄.

The main result of this section is the following theorem that gives conditions under
which problem (4.3) has a unique positive solution.

Theorem 4.1. Assume (H2)–(H3) hold. Let l0 ∈ L2(Ω), be such that l0 ≥ 0. Then
problem (4.3) has a unique non negative solution uε ∈ D(L).

Proof. The main idea is to use Theorem 2.5. In the first step we will see that L is a
closed operator with a dense domain; indeed, let un in D(L) be such that un → u

in L2(0, T ;W 1,2
0 (Ω)) and Lun → y in L2(0, T ;W−1,2(Ω)), hence

un → u in D′(0, T ;W−1,2(Ω))

and
Lun → y in D′(0, T ;W−1,2(Ω)).

It follows that
Lun → Lu in D′(0, T ;W−1,2(Ω)).

Therefore, y = Lu and u ∈ D(L). Hence L is a closed operator. It is not difficult to
see that D(0, T ;W 1,2

0 (Ω)) is included in D(L), then we deduce that D(L) is dense
in L2(0, T ;W 1,2

0 (Ω)). Concerning the monotonicity of L, we have for u ∈ D(L),

〈Lu, u〉

=
∫ T

0

〈∂u
∂t
, u〉dt+

∫
Q

(div(V u)u+ (k + µ)u2) dP dt,

=
1
2

∫ T

0

d

dt
‖u(t)‖2

∗dt+
∫

Σ

(V, η)u2dσ −
∫

Q

(V,∇u)u dP dt+
∫

Q

(k + µ)u2 dP dt,

=
1
2
‖u(T )‖2

∗ −
1
2

∫
Q

(V,∇u2) dP dt+
∫

Q

(k + µ)u2 dP dt,
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with η is exterior normal, and (, ) is the scalar product. Hence by integration by
parts we obtain that

〈Lu, u〉 =
1
2
‖u(T )‖2

∗ +
∫

Q

(k +
1
2

div(V ) + µ)u2 dP dt,

choosing k large so that

k +
1
2

div(V ) + µ ≥ 0,

it follows that L is monotone for all u ∈ D(L). In addition for u ∈ D(L),

〈Lu, v〉 =
∫ T

0

〈∂u
∂t
, v〉dt+

∫
Q

(div(V u)v + (k + µ)uv) dP dt,

=
∫ T

0

〈u,−∂v
∂t
〉dt+ 〈u(T ), v(T )〉+

∫
Q

(−(V,∇v) + (k + µ)v)u dP dt,

thus, the associated adjoint operator is

L∗v = −∂v
∂t

− (V,∇v) + (k + µ)v,

with

D(L∗) = {v ∈ L2(0, T ;W 1,2
0 (Ω));

∂v

∂t
∈ L2(0, T ;W−1,2(Ω)), v(T ) = 0}.

The proof of monotonicity of L∗ is similar to the one of L. Then L is a max-
imal monotone operator. It remain to see that A is coercive, indeed for u ∈
L2(0, T ;W 1,2

0 (Ω)) and applying the hypothesis on h, it holds

〈Au, u〉 =
3∑

i=1

∫
Q

aε
i |
∂u

∂xi
|2 dP dt ≥Mε‖u‖2

L2(0,T ;W 1,2
0 (Ω))

.

According to Theorem 2.5 and Remark 2.6, we get the existence of a unique solution
uε ∈ D(L) of the perturbed problem (4.3). Hence for all v ∈ L2(0, T ;W 1,2

0 (Ω)), we
have∫ T

0

〈∂uε

∂t
, v〉dt+

∫
Q

(div(V uε) + (µ+ k)uε)v dP dt+
3∑

i=1

∫
Q

aε
i

∂uε

∂xi

∂v

∂xi
dP dt = 0.

(4.4)
We prove now the positivity of the solution. We set u = u+ − u−, where u+ and
u− are respectively the positive and negative part of u. Using u−ε as a test function
in (4.4) and integrating on (0, t), we get

−
∫ t

0

〈∂u
−
ε

∂t
, u−ε 〉dt−

∫ t

0

∫
Ω

(div(V u−ε ) + (µ+ k)u−ε )u−ε dP dt

−
3∑

i=1

∫ t

0

∫
Ω

aε
i |
∂u−ε
∂xi

|2 dP dt = 0,

integrating by parts two times, we obtain

−1
2
‖u−ε (t)‖2

∗ =
∫ t

0

∫
Ω

(
1
2

div(V ) + µ+ k)(u−ε )2 dP dt+
3∑

i=1

∫ t

0

∫
Ω

aε
i |
∂u−ε
∂xi

|2 dP dt;

hence, − 1
2‖u

−
ε (t)‖2

∗ ≥ 0. Then u−ε (t) = 0 for all t ∈ (0, T ). The proof is complete.
�
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5. The exact solution

In this section we show that the perturbed solution defined in (4.4) tends to the
desired solution of problem (4.2) in L2(Q) as ε tends to 0. Our main result is the
following Theorem.

Theorem 5.1. Let l0 ∈ L2(Ω) and consider uε the solution to problem (4.3), then
uε converges weakly to u in L2(Q) where u is a distributional solution of the problem
(4.2). In addition we have ∂u

∂x3
∈ L2(Q) and u satisfies

−
∫

Ω

∫ T

0

u
∂φ

∂t
dxdt+

∫
Q

(−(V,∇φ) + (µ+ k)φ)u dP dt+
∫

Q

h
∂u

∂x3

∂φ

∂x3
dP dt

=
∫

Ω

l0(P )φ(0, P )dP,

(5.1)
for all φ ∈ K where

K ≡ {φ ∈ L2(0, T ;W 1,2
0 (Ω)) :

∂φ

∂t
∈ L2(0, T ;W−1,2(Ω))∩L2(Q), φ(T ) = 0}. (5.2)

Proof. By taking uε as a test function in (4.4), we obtain∫ T

0

〈∂uε

∂t
, uε〉dt+

∫
Q

(div(V uε) + (µ+ k)uε)uε dP dt+
3∑

i=1

∫
Q

aε
i |
∂uε

∂xi
|2 dP dt = 0,

(5.3)
integrating by parts and using the definition of uε, we deduce

1
2
‖uε(T )‖2

∗ +
∫

Q

(k +
1
2

div(V ) + µ)u2
ε dP dt+

3∑
i=1

∫
Q

aε
i

∣∣∂uε

∂xi

∣∣2 dP dt =
1
2
‖l0‖2

∗.

Since div(V ) and µ are bounded functions we conclude that ‖uε‖2
L2(Q) ≤ C and

then there exists a subsequence called also uε such that uε ⇀ u weakly in L2(Q).
Notice that, in the same way, we obtain that

3∑
i=1

∫
Q

aε
i |
∂uε

∂xi
|2 dP dt ≤ C1.

By letting ε→ 0, we obtain

lim sup
ε→0

∫
Q

h|∂uε

∂x3
|2 dP dt ≤ C1. (5.4)

We claim that u is a solution of (4.2) in the sense of distribution. To proof the
claim we consider φ ∈ C∞0 (Ω × (0, T )), then using φ as a test function in (4.3) we
obtain

−
∫

Ω

∫ T

0

uεφt dP dt+
∫

Q

(−(V,∇φ) + (µ+ k)φ)uε dP dt

+
3∑

i=1

∫
Q

uε
∂

∂xi

(
aε

i

∂φ

∂xi

)
dP dt

=
∫

Ω

l0(P )φ(0, P )dP.
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Since ∇h ∈ (L2(Q))3 and uε ⇀ u weakly in L2(Q), passing to the limit in the
above equality we obtain

−
∫

Ω

∫ T

0

uφt dP dt+
∫

Q

(−(V,∇φ) + (µ+ k)φ)u dP dt+
∫

Q

u
∂

∂x3

(
h
∂φ

∂x3

)
dP dt

=
∫

Ω

l0(P )φ(0, P )dP.

Hence u is a distributional solution to problem (4.2) and the claim follows.
To get more regularity on u we set

Ψε(t, x3) =
∫

D

huε dx dy,

where uε is the solution of (4.3). Using the hypothesis on h and V and by the
classical result on the theory of regularity we obtain that uε ∈ C1([0, T ]× Ω̄). Thus

∂Ψε

∂x3
=

∫
D

(h
∂uε

∂x3
+ uε

∂h

∂x3
) dx dy,

by integrating over (0, T )× (0, z∗) we get∫ T

0

∫ z∗

0

|∂Ψε

∂x3
|2dx3dt ≤

∫
Q

h2|∂uε

∂x3
|2 dP dt+ C

∫
Q

|uε|2 dP dt ≤ C2.

Since Ψε is bounded in L2((0, T )× (0, z∗)), which can be proved easily, we conclude
that Ψε is bounded in L2(0, T ;W 1,2

0 (0, z∗)), hence up to a subsequence, called also
Ψε, we obtain that Ψε converges weakly in L2(0, T ;W 1,2

0 (0, z∗)) to Ψ where

Ψ =
∫

D

hu dx dy.

Note that the last identification follows by the fact that uε ⇀ u in weak topology
of L2(Q) and by the uniqueness of the weak limit.

We claim that ∂u
∂x3

∈ L2(Q). To show this claim we prove that ∂u
∂x3

∈ (L2(Q))′ ≡
L2(Q). Note that ∂u

∂x3
is well defined as a distribution. Let φ ∈ C∞0 (Q), then we

have ∫
Q

∂u

∂x3
φdP dt = −

∫
Q

∂φ

∂x3
u dP dt

= − lim
ε→0

∫
Q

∂φ

∂x3
uε dP dt

= lim
ε→0

∫
Q

∂uε

∂x3
φdP dt

≤ lim
ε→0

( ∫
Q

|∂uε

∂x3
|2 dP dt

)1/2( ∫
Q

|φ|2 dP dt
)1/2

.

Then we conclude that

|
∫

Q

∂u

∂x3
φdP dt| ≤ C

( ∫
Q

|φ|2 dP dt
)1/2

for all φ ∈ C∞0 (Q). Hence by density we conclude that ∂u
∂x3

∈ (L2(Q))′ ≡ L2(Q)
and then the claim follows.



10 N. GHOUALI, T. M. TOUAOULA EJDE-2005/??

Therefore we conclude that∫
Q

h
∂uε

∂x3

∂v

∂x3
dP dt→

∫
Q

h
∂u

∂x3

∂v

∂x3
dP dt,

for all v ∈ L2(0, T ;W 1,2
0 (0, z∗)). Let φ ∈ C∞0 (Q), using a density result, see for

example [9], [2], we get that {η(t, x1, x2) × ψ(t, x3)} is a total family in C∞0 (Q).
Then by the above computation we obtain that∫

Q

hη
∂uε

∂x3

∂ψ

∂x3
dP dt→

∫
Q

hη
∂u

∂x3

∂φ

∂x3
dP dt.

Hence by the density result obtained in [9] and in [2] we get the same conclusion
for all φ ∈ C∞0 (Q); hence∫

Q

h
∂uε

∂x3

∂φ

∂x3
dP dt→

∫
Q

h
∂u

∂x3

∂φ

∂x3
dP dt.

Since φ ∈ C∞0 (Q) is dense in L2(0, T ;W 1,2
0 (D × (0, z∗))) and by the fact that

∂u
∂x3

∈ L2(Q) we get that (5.1) holds for all φ ∈ L2(0, T ;W 1,2
0 (D × (0, z∗))). By

letting ε tend to 0 in (4.4), we obtain∫
Q

u
∂φ

∂t
dxdt+

∫
Q

(−(V,∇φ) + (µ+ k)φ)u dP dt+
∫

Q

h
∂u

∂x3

∂φ

∂x3
dP dt

=
∫

Ω

l0(P )φ(0, P )dP,

for all φ ∈ K, where K is defined in (5.2). The proof is complete. �

Now, we give a remark on the uniqueness of solution. In [4], the authors consider
the Cauchy problem

ut −∆xu = ∂y(f(u)), (x, y) ∈ RN , t > 0 . (5.5)

Using the vanishing viscosity argument and the notion of Entropy solution, they
obtain existence and uniqueness of solution to problem (5.5). The argument used
depends on the presence of the linear operator ∆x and the estimate obtained in [5].

The extension of the above uniqueness result to a non-autonomous problem
seems to be a more difficult technical problem and it will be treated in forthcoming
work.
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