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EXISTENCE, UNIQUENESS AND CONSTRUCTIVE RESULTS
FOR DELAY DIFFERENTIAL EQUATIONS

PAUL W. ELOE, YOUSSEF N. RAFFOUL, CHRISTOPHER C. TISDELL

Abstract. Here, we investigate boundary-value problems (BVPs) for systems

of second-order, ordinary, delay-differential equations. We introduce some dif-
ferential inequalities such that all solutions (and their derivatives) to a certain

family of BVPs satisfy some a priori bounds. The results are then applied, in
conjunction with topological arguments, to prove the existence of solutions.

We then apply earlier abstract theory of Petryshyn to formulate some con-

structive results under which solutions to BVPs for systems of second-order,
ordinary, delay-differential equations are A-solvable and may be approximated

via a Galerkin method. Finally, we provide some differential inequalities such

that solutions to our equations are unique.

1. Introduction

This paper considers the so-called system of delay-differential equations

x′′(t) = f(t, x(t), x(h(t)), x′(t)), t ∈ [0, T ], (1.1)

subject to the boundary conditions

x(t) = φ(t), t ∈ [−V, 0], (1.2)

x(T ) = B, (1.3)

where T > 0, f : [0, T ]× R3d → Rd, V ≥ 0, h : [0, T ] → [−V, T ], t− V ≤ h(t) ≤ t,
φ : [−V, 0] → Rd and B ∈ Rd. We call (1.1)–(1.3) a boundary-value problem (BVP)
for delay-differential equations. The given functions f, h and φ are continuous and
we use (1.2) to solve (1.1) forward in time. A solution x = x(t) to (1.1)–(1.3) is a
function x : [−V, T ] → Rd satisfying (1.1) for all t ∈ [0, T ], (1.2) for all t ∈ [−V, 0]
and (1.3) for t = T with

x ∈ S := C
(
[−V, T ]; Rd

)
∩ C2

(
[0, T ]; Rd

)
.

If p is a vector then ‖p‖ denotes the Euclidean norm of p and 〈·, ·〉 denotes the usual
scalar product.

If I is an interval in R, then we define the notation ‖x‖I by

‖x‖I := sup
t∈I

‖x(t)‖.
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Finally, we define the special norm

‖x‖1 := max{‖x‖[−V,T ], ‖x′‖[0,T ]}.
BVPs for delay-differential equations arise, for example, in control theory where

variational problems are complicated by the effect of time delays in signal trans-
mission and the lead to a BVP of the type (1.1)–(1.3) (see [11] and references
therein).

In the literature, existence, uniqueness and numerical results concerning solu-
tions to BVPs for delay-differential equations appear in [6, 12, 2, 3, 11, 10, 1, 7]
and references therein.

The existence results in [6] and [12] use topological transversality involving a
priori bounds on solutions. The a priori bound theory involves a Lyapunov-type
function, maximum principles and Nagumo-type conditions. The existence results
in [2, 11, 3] employ the Schauder-Tychonoff fixed point theorem involving a modifi-
cation method and a priori bounds on solutions. The a priori bound theory involves
upper and lower solutions and Nagumo-type conditions.

The uniqueness results of [3] involve Lipschitz conditions. The numerical results
in [10, 1, 7] employ the finite difference method and the shooting method.

In comparison with the above works, the contribution that this paper makes to
the field of delay-differential equations is two-fold: The methods used herein are
new in the delay-differential equation setting (adapted from [4]); and the results
contained herein are quite general.

For example, concerning the existence of solutions, our methods for a priori
bounds on solutions do not involve maximum principles, rather they rely on new
inequalities in the delay-differential setting of the type

‖f(t, x, xh, p)‖ ≤ 2α[〈x, f(t, x, xh, p〉+ ‖p‖2] + K.

In addition, concerning uniqueness of solutions, our methods employ maximum
principles, rather than Lipschitz conditions.

Furthermore, our new constructive methods involve A-proper mappings and the
Galerkin method applied to delay-differential equations, rather than a finite differ-
ence or shooting method.

Additionally, our results apply to systems of equations and therefore are quite
general. In fact, it appears that even in the scalar case the results contained herein
are new (excluding Theorem 2.1).

For more on the theory of delay-differential equations we refer the reader to [4].

2. A General Existence Theorem

This section contains the general existence theorem that we will rely on through-
out the remainder of the paper. The theorem can be found in papers such as [6],
[12].

Consider the family of delay-differential equations

x′′(t) = λf(t, x(t), x(h(t)), x′(t)), t ∈ [0, T ], (2.1)

subject to the family of boundary conditions

x(t) = λφ(t), t ∈ [−V, 0], (2.2)

x(T ) = λB, (2.3)

where λ ∈ [0, 1].
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Theorem 2.1. Let f, h and φ be continuous functions. If all possible solutions x
of (2.1)–(2.3) satisfy ‖x‖1 < R for some positive constant R with R independent
of λ, then for each λ ∈ [0, 1], the BVP (2.1)–(2.3) has a solution x. In particular,
the BVP (1.1)-(1.3) has a solution, for λ = 1.

Proof. We provide a proof for two reasons: First, for the convenience of the reader;
and second, to introduce some concepts that will be used later in the paper. It can
be easily checked that the BVP (2.1)–(2.3) is equivalent to the problem of finding
x ∈ S such that

x(t) =

{∫ T

0

[
−G(t, s)λf(s, x(s), x(h(s)), x′(s))

]
ds + λk(t), t ∈ [0, T ],

λφ(t), t ∈ [−V, 0],

where λ ∈ [0, 1],

G(t, s) :=

{
(T−t)s

T , 0 ≤ s ≤ t ≤ T,
t(T−s)

T , 0 ≤ t ≤ s ≤ T,

and

k(t) :=
Tφ(0) + (B − φ(0))t

T
, t ∈ [0, T ].

Define an operator J : C([−V, T ]; Rd) ∩ C1([0, T ]; Rd) → C
(
[−V, T ]; Rd

)
by

(Jx)(t) :=

{∫ T

0

[
−G(t, s)f(s, x(s), x(h(s)), x′(s))

]
ds + k(t), t ∈ [0, T ],

φ(t), t ∈ [−V, 0],

and define a set

Ω :=
{

x ∈ C([−V, T ]; Rd) ∩ C1([0, T ]; Rd) : ‖x‖1 < R
}

.

Since h, f and φ are continuous, we see that for each λ ∈ [0, 1], J is continuous and
completely continuous (by Arzela-Ascoli Theorem). Thus, J : Ω → C

(
[−V, 0]; Rd)

is a compact map since J is restricted to the closure of a bounded, open set Ω.
Consider the family of problems

(I − λJ)(x) = 0, λ ∈ [0, 1],

which is equivalent to (2.1)–(2.3). Since J is compact and ‖x‖1 < R (so x /∈ ∂Ω)
with R independent of λ, the following Leray-Schauder degrees are defined and a
homotopy principle applies

d(I − λJ),Ω, 0) = d(I − J,Ω, 0)

= d(I,Ω, 0)
= 1 6= 0,

since 0 ∈ Ω. Therefore,

(I − λJ)(x) = 0

has a solution in x ∈ C([−V, T ]; Rd)∩C1([0, T ]; Rd) for each λ ∈ [0, 1]. By elemen-
tary methods the solution is also in C2([0, T ]). This concludes the proof. �
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3. On the equation x′′(t) = f(t, x(t), x(h(t)))

Theorem 2.1 shows that bounds on solutions to families of BVPs for delay-
differential equations play an important role in developing existence results. This
section introduces some new inequalities for delay-differential equations such that
all solutions x to the family of equations

x′′(t) = λf(t, x(t), x(h(t))), t ∈ [0, T ], (3.1)

subject to the family of boundary conditions

x(t) = λφ(t), t ∈ [−V, 0], (3.2)

x(T ) = λB, (3.3)

where λ ∈ [0, 1], satisfy ‖x‖1 < R with R independent of λ. The result is then
applied, in conjunction with Theorem 2.1, to give some existence results for the
system of equations

x′′(t) = f(t, x(t), x(h(t))), t ∈ [0, T ], (3.4)

subject to the boundary conditions

x(t) = φ(t), t ∈ [−V, 0], (3.5)

x(T ) = B. (3.6)

Since (3.1) is independent of x′, once a priori bounds on x are obtained then a priori
bounds on x′ naturally follow, with these bounds also independent of λ. Define

β := max
{
‖φ(0)‖, ‖B‖

}
.

Theorem 3.1. Let f, h and φ be continuous. Assume there exist scalar constants
α ≥ 0, K ≥ 0, such that

‖f(t, w, y)‖ ≤ 2α〈w, f(t, w, y)〉+ K, for all t ∈ [0, T ], (w, y) ∈ R2d. (3.7)

Then all solutions x of (3.1)–(3.3) satisfy

‖x‖[−V,T ] ≤ max
{
αβ2 + β +

KT 2

8
, ‖φ‖[−V,0]

}
:= M.

Proof. Let 0 ≤ λ ≤ 1. See that if (3.7) holds, then multiplying both sides by λ, we
obtain

‖λf(t, w, y)‖ ≤ 2α〈w, λf(t, w, y)〉+ λK ≤ 2α〈w, λf(t, w, y)〉+ K. (3.8)

Now consider the family of BVPs (3.1)-(3.3) and its equivalent integral representa-
tion

x(t) = λ(Jx)(t) :=

{∫ T

0

[
−G(t, s)λf(s, x(s), x(h(s)))

]
ds + λk(t), t ∈ [0, T ],

λφ(t), t ∈ [−V, 0],
(3.9)

where G and k are given in the proof of Theorem 2.1. Since λ ∈ [0, 1], it is easy to
see that

‖x‖[−V,0] ≤ ‖φ‖[−V,0].



EJDE-2005/121 DELAY DIFFERENTIAL EQUATIONS 5

Now since λ ∈ [0, 1] and G ≥ 0, taking norms in (3.9) and using (3.8) we obtain

‖x(t)‖ ≤
∫ T

0

G(t, s)‖λf(s, x(s), x(h(s)))‖ds + ‖λk(t)‖, t ∈ [0, T ],

≤
∫ T

0

G(t, s)
[
2α〈x(s), λf(s, x(s), x(h(s)))〉+ K

]
ds + β,

≤
∫ T

0

G(t, s)
[
2α〈x(s), λf(s, x(s), x(h(s)))〉+ 2α‖x′(s)‖2 + K

]
ds + β,

=
∫ T

0

(
G(t, s)

[
α[‖x(s)‖2

]′′ + K
)
ds + β,

≤ α

∫ T

0

G(t, s)[‖x(s)‖2]′′ds +
KT 2

8
+ β,

where we have used the identity

[‖x(t)‖2]′′ = 2〈x(t), x′′(t)〉+ 2‖x′(t)‖2, (3.10)

and the inequality ∫ T

0

G(t, s)ds ≤ T 2

8
, t ∈ [0, T ].

The above inequality is readily obtained since the explicit form of G is known.
Continuing to employ the explicit form of G,

‖x(t)‖ ≤ (T − t)α
T

∫ t

0

s[‖x(s)‖2]′′ds,

+
tα

T

∫ T

t

(T − s)[‖x(s)‖2]′′ds +
KT 2

8
+ β,

= I1 + I2 +
KT 2

8
+ β,

where

I1 :=
(T − t)α

T

∫ t

0

s[‖x(s)‖2]′′ds,

I2 :=
tα

T

∫ T

t

(T − s)[‖x(s)‖2]′′ds.

A simple integration by parts on I1 and I2 gives

I1 =
(T − t

T

)
α[t(‖x(t)‖2)′ − ‖x(t)‖2 + ‖x(0)‖2],

I2 =
tα

T
[−(T − t)(‖x(t)‖2)′ + ‖x(T )‖2 − ‖x(t)‖2].

Therefore, adding I1 and I2 and noting some cancellation of terms and the non-
negativity of ‖x(t)‖2 we obtain,

I1 + I2 ≤ α
[(T − t

T

)
‖x(0)‖2 +

t

T
‖x(T )‖2

]
,

≤ α
[(T − t

T

)
β2 +

t

T
β2

]
= αβ2.

Hence

‖x‖[−V,T ] ≤ max
{

αβ2 + β +
KT 2

8
, ‖φ‖[−V,0]

}
= M.
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This concludes the proof. �

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then the BVP (3.1)–(3.3)
has a solution for each λ ∈ [0, 1]. In particular, the BVP (3.4)–(3.6) has a solution.

Proof. From Theorem 3.1 there exists an M ≥ 0 such that ‖x‖[−V,T ] ≤ M with M
independent of λ. The a priori bound on x′ now naturally follows by differentiating
the first line of (3.9) and taking norms. This bound P ≥ 0 on x′ will depend on M
and is independent of λ. Hence there is a constant R > 0 such that

‖x‖1 < max{M,P}+ 1 =: R,

and by Theorem 2.1 the result follows. This concludes the proof. �

The proof of the next result is immediate from Theorem 3.2 and will be needed
to develop constructive theory in Section 5.

Corollary 3.3. Consider the BVP (3.1)–(3.3) with φ(0) = 0 = B. If the conditions
of Theorem 3.2 hold then the BVP (3.1)–(3.3) has a solution x, for each λ ∈ [0, 1]
and the bound on x is given by

‖x‖[−V,T ] ≤ max
{KT 2

8
, ‖φ‖[−V,0]

}
.

Corollary 3.4. Let h, f and φ be continuous, scalar-valued (d = 1) functions.
Assume there exist constants α ≥ 0,K ≥ 0 such that

|f(t, w, y)| ≤ 2αwf(t, w, y) + K, for all t ∈ [0, T ], (w, y) ∈ R2. (3.11)

Then the BVP (3.1)–(3.3) has a solution x for each λ ∈ [0, 1]. In particular, (3.4)–
(3.6) has a solution.

The result in the above corollary is a special case of Theorem 3.2.
We now present some examples to illustrate the theory of this section.

Example 3.5. Consider the scalar BVP

x′′(t) = t[x(t)]3 exp{−[x(h(t))]2}, t ∈ [0, T ],

x(t) = 1, t ∈ [−V, 0], x(T ) = 0.

See that |w|3 ≤ w4 + 1 for all w, so multiplying both sides of this inequality by
t exp{−[y]2} we obtain for α = 1/2 and K = T ,

|f(t, w, y)| ≤ t exp{−[y]2}(w4 + 1)

= wf(t, w, y) + t exp{−[y]2}
≤ wf(t, w, y) + T.

Hence (3.11) will hold for the choices α = 1/2 and K = T . Therefore, by Corollary
3.4, the BVP will have a solution.

Example 3.6. Consider the BVP

x′′(t) = t2 cos(x(t)) exp{−x(h(t))}, t ∈ [0, 1],

x(t) = φ(t), t ∈ [−2, 0], x(1) = 0.

See that for α = 0 and K = 1,

|f(t, w, y)| = |t2 cos(w) exp{−[y]2}|,≤ 1 = 2αwf(t, w, y) + K.

Hence (3.11) will hold for the choices α = 0 and K = 1. Therefore, by Corollary
3.4, the BVP will have a solution.
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Note that in both examples, h continuous and t−T ≤ h(t) ≤ t is sufficient. Also
note that (3.7) is useful in the case that f is a polynomial in w and bounded in y.

4. On the equation x′′(t) = f(t, x(t), x(h(t)), x′(t))

In this section we consider the class of BVPs for delay-differential equations
(1.1)–(1.3) and its corresponding family of problems (2.1)–(2.3). Since f depends
on x′ the a priori bounds on x of Section 3 may not directly imply bounds on x′.
Therefore we need to impose additional assumptions to obtain these bounds on x′.

Theorem 4.1. Let h, f and φ be continuous. Assume there exist constants α ≥
0,K ≥ 0 such that

‖f(t, w, y, z)‖ ≤ 2α
[
〈w, f(t, w, y, z)〉+ ‖z‖2

]
+ K, (4.1)

for all t ∈ [0, T ], (w, y, z) ∈ R3d. Then all solutions x of (2.1)–(2.3) satisfy
‖x‖[−V,T ] ≤ M where M is independent of λ ∈ [0, 1] and is defined in the proof
of Theorem 3.1.

The proof of the above theorem is almost identical to that of Theorem 3.1 and
so is omitted.

Theorem 4.2. Let the conditions of Theorem 4.1 hold. If, in addition, 2αM < 1
then, for all solutions x of (2.1)–(2.3),

‖x′‖[0,T ] ≤
M [2αM + KT 2/8]

T (1− 2αM)/2
:= N,

with N independent of λ ∈ [0, 1].

Proof. Let x be a solution of (2.1)–(2.3). For t ∈ [0, T
2 ] apply Taylor’s formula to

obtain

x(t +
T

2
)− x(t)− T

2
x′(t) =

∫ t+ T
2

t

(t +
T

2
− s)x′′(s)ds.

Thus,

−T

2
x′(t) = x(t)− x(t +

T

2
) +

∫ t+ T
2

t

(t +
T

2
− s)λf(s, x(s), x(h(s)), x′(s))ds.

Now taking norms and using: λ ∈ [0, 1], ‖x‖[0,T ] ≤ M, t + T
2 − s ≥ 0, (3.10) and

(4.1) we obtain

T

2
‖x′(t)‖ ≤ 2M +

∫ t+ T
2

t

(t +
T

2
− s){α[‖x(s)‖2]′′ + K}ds, t ∈ [0,

T

2
]

= 2M + α

∫ t+ T
2

t

(t +
T

2
− s)[‖x(s)‖2]′′ds + K

∫ t+ T
2

t

(t +
T

2
− s)ds.

Using Taylor’s formula once more for [‖x(s)‖2]′′ we obtain

T

2
‖x′(t)‖ ≤ 2M + α

[
‖x(t +

T

2
)‖2 − ‖x(t)‖2 − T

2
[‖x(t)‖2]′

]
+

KT 2

8
, t ∈ [0,

T

2
],

≤ 2M + α
[
M2 − T 〈x(t), x′(t)〉

]
+

KT 2

8

≤ 2M + α
[
M2 + MT‖x′(t)‖

]
+

KT 2

8
.
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So rearranging we have

‖x′‖[0, T
2 ] ≤

M(2 + αM) + KT 2/8
T (1− 2αM)/2

:= N,

with N independent of λ ∈ [0, 1]. For t ∈ [T
2 , T ] we use the Taylor formula

x(t)− x(t− T

2
)− T

2
x′(t) = −

∫ t

t−T
2

(t− T

2
− s)x′′(s)ds.

By arguing in a similar fashion to the case t ∈ [0, T
2 ] we obtain ‖x′‖[ T

2 , T ] ≤ N with
N defined above and independent of λ ∈ [0, 1]. This concludes the proof. �

Theorem 4.3. Let the conditions of Theorem 4.1 hold. If 2αM < 1 (with M and
α defined in Theorem 3.1) then (2.1)–(2.3) has a solution x for all λ ∈ [0, 1]. In
particular, (1.1)–(1.3) has a solution.

Proof. The conditions of Theorem 4.1 guarantee the existence of constants M , N
such that

‖x‖1 < max{M,N, ‖φ‖[−V,0]}+ 1 := R.

with R independent of λ ∈ [0, 1]. Now applying Theorem 2.1 the result follows and
this concludes the proof. �

The proof of the next result is immediate from Theorem 4.2.

Corollary 4.4. Consider the BVP (2.1)–(2.3) with φ(0) = 0 = B. If the conditions
of Theorem 3.2 hold then the BVP (3.1)-(3.3) has a solution for each λ ∈ [0, 1] and
the bound on x is given by

‖x‖[−V,T ] ≤ max
{KT 2

8
, ‖φ‖[−V,0]

}
.

Corollary 4.5. Let h, f and φ be continuous, scalar-valued (d=1) functions such
that

|f(t, w, y, z)| ≤ 2α
[
wf(t, w, y, z) + |z|2

]
+ K, for all t ∈ [0, T ], (w, y, z) ∈ R3,

and for some constants α ≥ 0,K ≥ 0. Then the scalar BVP (2.1)–(2.3) has a
solution x for each λ ∈ [0, 1]. In particular, (1.1)–(1.3) has a solution.

The above corollary is a special case of Theorem 4.3.

5. Some Constructive Results

In this section we develop some constructive results for the BVP (1.1)–(1.3). The
ideas rely on the a priori bounds on solutions of previous sections and an abstract
result due to Petryshyn [9]. To apply these results, we consider homogeneous
boundary conditions φ(0) = 0, B = 0.

We introduce the following notation so we can readily apply Petryshyn’s abstract
result. Let X and Y denote real Banach spaces. let L : D(L) ⊂ X → Y denote a
Fredholm map of index 0; in particular, L is linear. Let Null(L) denote be the null
space of L and let Rank(L) denote the rank of L. Let P : D(P ) ⊂ X → Y denote
a nonlinear map.

Let {Xn} ⊂ X, {Yn} ⊂ Y , be sequences of finite-dimensional spaces and for
each n ∈ Z+ let Qn : Y → Yn denote a linear projection. Define the scheme
Γ = {Xn, Yn, Qn} as admissible for maps X → Y provided:



EJDE-2005/121 DELAY DIFFERENTIAL EQUATIONS 9

dim Xn = dim Yn, for each n, and
dist(x,Xn) := inf{‖x− v‖X : v ∈ Xn} → 0 as n →∞, for each x ∈ Xn.

For given maps L and P , the equation

Lx = Px, x ∈ D(L) ∩D(P ),

is said to be strongly (feebly) A-solvable with respect to Γ if there exists an
N0 ∈ Z+ such that the finite dimensional equation

QnLx = QnPx, x ∈ (D(L) ∩D(P )) ∩Xn,

has a solution x ∈ D(L) ∩ D(P )) ∩ Xn for each n ≥ N0 such that xn → x ∈ X,
(xnj

→ x ∈ X) and Lx = Px.
If the equation Lx = Px is strongly A-solvable then we follow the lead of

Petryshyn and say that the Galerkin method applies.
The mapping L − P : D(L) ∩ D(P ) ⊂ X → Y is said to be A-proper with

respect to Γ if

QnL−QnP : (D(L) ∩D(P )) ∩Xn ⊂ Xn → Yn

is continuous for each n ∈ Z+ and if {xnj
: xnj

∈ (D(L) ∩ D(P )) ∩ Xn} is any
bounded sequence in X such that

Qnj
Lxnj

−Qnj
Pxnj

→ 0 inY,

then there is a subsequence {xnk
} of {xnj} and x ∈ D(L) ∩D(P ) such that

xnk
→ x in X and Lx = Px.

Since L is a Fredholm map of index zero, there exists closed subspaces X1 ⊂ X and
Y2 ⊂ Y such that X = Null(L) ⊕ X1 and Y = Y2 ⊕ Ran(L). Let Q be the linear
projection of Y onto Y2 and assume there exists a continuous bilinear form [·, ·] on
Y ×X mapping (y, x) into [y, x] such that

y ∈ Ran(L) iff [y, x] = 0, for all x ∈ Null(L).

We first need the following result of Petryshyn [9, Theorem A], .

Theorem 5.1. Let L be a Fredholm map of index zero. Assume Null(L) = {0}.
Assume there exists a bounded open ball G ⊂ X with 0 ∈ G such that

(a) P (Ḡ) is bounded,
(b) L− λP : G → Y is A-proper w.r.t. Γ for each λ ∈ [0, 1],
(b) Lx 6= λPx for x ∈ ∂G and λ ∈ (0, 1].

Then L−P is feebly A-solvable with respect to Γ. In particular the BVP (2.1)–(2.3)
has a solution x. If that solution x is unique in G, then L−P is strongly A-solvable
with respect to Γ and the Galerkin method is applicable to the BVP (2.1)–(2.3).

Remark 5.2. Petryshyn’s Theorem A is more general than Theorem 5.1 (see [9,
Remark 1.2,]). We assume Null(L) = {0} both for simplicity of statement and for
the specific application with φ(0) = 0, B = 0.

Theorem 5.3. Let the conditions of Theorem 4.3 hold. Then the BVP (1.1)–(1.3)
(with φ(0) = 0) is feebly A− solvable with respect to Γ. If x is the unique solution
then the BVP (1.1)–(1.3) (with φ(0) = 0) is strongly A − solvable with respect to
Γ. That is, the Galerkin Method is applicable.
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Proof. Let

Lx :=

{
x′′(t), t ∈ [0, T ]
x(t), t ∈ [−V, 0];

Px :=

{
f(t, x(t), x(h(t)), x′(t)), t ∈ [0, T ]
φ(t), t ∈ [−V, 0];

X :=
{

x ∈ C([−V, T ]; Rd) ∩ C1([0, T ]; Rd]) : x(T ) = x(0) = 0, x = φ on [−V, 0]
}

;

Y := C([−V, T ]; Rd).

Set
G = {x ∈ X : ‖x‖1 < max{M,N, ‖φ‖[−V,0]}+ 1},

where M and N are given in the proof of Theorem 4.3.
It is easy to see that P (Ḡ) is bounded. Now L is A-proper with respect to Γ

by [8]. Since P : X → Y is continuous see that N is also completely continuous
because X is compactly embedded into C1([0, T ]; Rd) and therefore P is A-proper
with respect to Γ (see [9]). Hence L − λP : G → Y is A-proper with respect to Γ
for each λ ∈ [0, 1].

Finally, we see that

Lx 6= λPx for all x ∈ ∂Ω and all λ ∈ [0, 1],

since the a priori bound theory of Theorems 4.1 and 4.2 is applicable. Therefore, all
of the conditions of Theorem 5.1 are satisfied and the result follows. This concludes
the proof. �

6. On Uniqueness of Solutions

This brief section provides some results which guarantee the uniqueness of so-
lutions to the BVPs for delay differential equations. Our interest here is twofold.
Firstly, the constructive results of Section 5 rely on uniqueness of solutions. Sec-
ondly, BVPs with deviating arguments can introduce solutions which do not appear
for the “associated” non-deviating BVP (see [3]).

Theorem 6.1. If f satisfies

〈u− v, f(t, u, z, u′)− f(t, v, w, v′)〉 > 0, for all t ∈ [0, T ], (6.1)

and u, z, u′, v, w, v′ ∈ Rd with u 6= v, and 〈u − v, u′ − v′〉 = 0, then (1.1) has, at
most, one solution satisfying (1.2)-(1.3).

Proof. Assume u and v are solutions to the BVP (1.1)–(1.3). Then u − v satisfies
the BVP

u′′(t)− v′′(t) = f(t, u(t), u(h(t)), u′(t))− f(t, v(t), v(h(t)), v′(t)), t ∈ [0, T ],

u(t)− v(t) = 0, t ∈ [−V, 0],

u(T )− v(T ) = 0.

Consider r(t) := ‖u(t)− v(t)‖2, t ∈ [−V, T ]. Now r must have a positive maximum
at some point c ∈ [−V, T ]. From the boundary conditions, c ∈ (0, T ). Therefore,
by a maximum principle we must have

r′(c) = 0, r′′(c) ≤ 0. (6.2)
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So using the product rule on r we have

r′′(c) ≥ 2
〈
u(c)− v(c), f(c, u(c), u(h(c)), u′(c))− f(c, v(c), v(h(c)), v′(c))

〉
> 0,

which contradicts (6.2). Therefore r(t) = ‖u(t)− v(t)‖2 = 0 for all t ∈ [−V, T ], and
solutions of the BVP (1.1)–(1.3) must be unique. �
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