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ASYMPTOTIC STABILITY RESULTS FOR CERTAIN INTEGRAL
EQUATIONS

CEZAR AVRAMESCU, CRISTIAN VLADIMIRESCU

Abstract. This paper shows the existence of asymptotically stable solutions

to an integral equation. This is done by using a fixed point theorem, and

without requiring that the solutions be bounded.

1. Introduction

Banás and Rzepka [3] study a very interesting property for the solutions of some
functional equations. The same property was also studied by Burton and Zhang
in [6], in a more general case. Let F : BC(R+) → BC(R+) be an operator, where
BC(R+) consists of bounded and continuous functions from R+ to Rd, R+ :=
[0,∞), d ≥ 1. Let | · | be a norm in Rd.

The following definition is given in [3, 6], for solutions x ∈ BC(R+) of the
equation

x = Fx. (1.1)

Definition 1.1. A function x is said to be an asymptotically stable solution
of (1.1) if for any ε > 0 there exists T = T (ε) > 0 such that for every t ≥ T and
for every solution y of (1.1), we have

|x(t)− y(t)| ≤ ε. (1.2)

A sufficient condition for the existence of asymptotically stable solutions is given
by the following proposition.

Proposition 1.2. Assume that there exist a constant k ∈ [0, 1) and a continuous
function a : R+ → R+ with limt→∞ a(t) = 0, such that

|(Fx)(t)− (Fy)(t)| ≤ k|x(t)− y(t)|+ a(t), ∀t ∈ R+, ∀x, y ∈ BC(R+). (1.3)

Then every solution of (1.1) is asymptotically stable.

The proof of this proposition is immediate. Let us remark that basically the
property of the asymptotic stability is a property of the fixed points of the operator
F . Actually, in [2, 6], the proof of the existence of an asymptotically stable solution
in done by applying a fixed point theorem, i.e. Schauder’s Theorem. It follows that
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it is sufficient to ask Definition 1.1 to be fulfilled only on the closed, bounded, and
convex set on which Schauder’s Theorem is applied.

Another remark concerning Proposition 1.2 is that if (1.3) is fulfilled then every
solution of (1.1) is asymptotically stable. Moreover, by (1.3) we deduce that the
result of Proposition 1.2 is appropriate for the case when F = A + B, where A
is contraction and limt→∞(Bx)(t) = 0, for every x belonging to the set on which
the fixed point theorem is applied. On the other hand, the set of the fixed points
of F should be “big” enough for Definition 1.1 to be consistent. In this direction,
in the case when Schauder’s fixed point Theorem is used an interesting result has
been obtained by Zamfirescu in [8], stating that if Bρ is the closed ball of radius
ρ > 0 from a Banach space and F : Bρ → Bρ is a compact operator, then for
most functions F , the set of solutions of (1.1) is homeomorphic to the Cantor set
(“most” means “all” except those in a first category set).

Finally, let us remark that in order to fulfil Definition 1.1 it is not necessary that
all the solutions of (1.1) to be bounded on R+. The result obtained by Burton and
Zhang is contained in the following theorem.

Theorem 1.3. Assume that
(i) f : R+ × Rd → Rd is continuous and there exist a continuous function

k : R+ → [0, 1] with 0 ≤ k(t) < 1 for t > 0 and a constant x0 ∈ Rd such
that x0 = f(0, x0) and

lim
t→0+

(1− k(t))−1(f(t, x0)− f(0, x0)) = 0;

(ii) for each t ∈ R+ and x, y ∈ Rd,

|f(t, x)− f(t, y)| ≤ k(t)|x− y|;

(iii) u : R+ × R+ × Rd → Rd is continuous and there are continuous functions
a, b : R+ → R+ such that |u(t, s, x)| ≤ a(t)b(s), for all t, s ∈ R+ (s ≤ t)
and all x ∈ Rd with

lim
t→0+

a(t)
1− k(t)

∫ t

0

b(s)ds = 0

and

lim
t→∞

a(t)
1− k(t)

∫ t

0

b(s)ds = 0.

Then (1.4) below has at least one solution, and every solution of the equation

x(t) = f(t, x(t)) +
∫ t

0

u(t, s, x(s))ds, t ∈ R+ (1.4)

is asymptotically stable and converges to the unique continuous function ψ : R+ →
Rd satisfying

ψ(t) = f(t, ψ(t)), t ≥ 0.

Note that hypothesis (i) is not necessary; in our note [2] we prove a similar
theorem without using this hypothesis. Let us remark that in (1.4) one has F =
A+B, where A is a contraction in BC(R+) and B is a compact operator which in
the admitted hypotheses fulfills the property

lim
t→∞

(Bx)(t) = 0, (1.5)
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the limit being uniform with respect to x ∈ BC(R+). The second result in our
Note [2] is obtained in the absence of condition (1.5).

In the present paper we prove the existence of the asymptotically stable solutions
to (1.1) when F is a sum of three operators, without requiring the boundedness
of the solutions. The general result that we present needs a more sophisticated
argument than the one used in [2]. To this aim, we consider the set of continuous
functions as the fundamental space

X = Cc = Cc(R+,Rd)

which equipped with the numerable family of seminorms

|x|n := sup
t∈[0,n]

{|x(t)|}, n ≥ 1, (1.6)

becomes a Fréchet space (i.e. a complete linear metrisable space). We will use in
addition another family of seminorms,

‖x‖n := |x|γn
+ |x|hn

, n ≥ 1, (1.7)

where
|x|hn = sup

γn≤t≤n
{e−hn(t−γn)|x(t)|},

γn ∈ (0, n) and hn > 0 are arbitrary numbers.

Remark 1.4. The families (1.6) and (1.7) define the same topology on X, i.e. the
topology of the uniform convergence on compact subsets of R+. Consequently, a
family in X is relatively compact if and only if it is equicontinuous and uniformly
bounded on compact subsets of R+.

Notations and general hypotheses. We consider the nonlinear integral equa-
tion

x(t) = q(t) + f(t, x(t)) +
∫ t

0

V (t, s)x(s)ds+
∫ t

0

G(t, s, x(s))ds, t ∈ R+, (1.8)

where q : R+ → Rd, f : R+ × Rd → Rd, V : ∆ → Md(R), G : ∆ × Rd → Rd are
supposed to be continuous and ∆ = {(t, s) ∈ R+ × R+, s ≤ t}.

In what follows we denote by | · | a vector norm and also a matrix norm, such
that for every vector x ∈ Rd and for every real quadratic d× d matrix Z ∈Md(R),

|Zx| ≤ |Z||x|.

We will use the following general hypotheses:

(H1) There is a constant L ∈ [0, 1) such that

|f(t, x)− f(t, y)| ≤ L|x− y|, ∀x, y ∈ Rd, ∀t ∈ R+;

(H2) There are two continuous functions a, b : R+ → R+, such that

|V (t, s)| ≤ a(t)b(s), ∀(t, s) ∈ ∆;

(H3) There is a continuous function ω : ∆ → R+ such that

|G(t, s, x)| ≤ ω(t, s), ∀(t, s) ∈ ∆, ∀x ∈ Rd.
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2. Preliminary result

In X, we consider the equation

x(t) = q(t) + f(t, x(t)), t ∈ R+. (2.1)

Lemma 2.1. Under assumptions (H1)-(H3), Equation (2.1) admits a unique so-
lution.

Proof. We define the operator Φ : X → X through

(Φx)(t) = q(t) + f(t, x(t)), x ∈ X, t ∈ R+. (2.2)

By hypothesis (H1) and (2.2) it follows that

|Φx− Φy|n ≤ L|x− y|n, n ≥ 1, x, y ∈ X.
Let us define the sequence of iterates

x0 ∈ X,
xm = Φ(xm−1), m ≥ 1.

Straightforward estimates lead us to

|xm+p − xm|n ≤
Lm

1− L
|x1 − x0|, ∀m, p ≥ 1.

Hence we obtain that for all ε > 0 and all n there exists N = N(ε, n) such that

|xm+p − xm|n < ε, ∀p ≥ 1, ∀m ≥ N,

which means that {xm}m≥0 is a Cauchy sequence. Since X is complete, {xm}m≥0

is convergent. Then ξ := limm→∞ xm is a fixed point of Φ. The uniqueness of ξ is
proved by contradiction. �

3. The associated equation

In (1.8), we make the transformation x = y+ξ(t), where ξ is the function defined
by Lemma 2.1. Then (1.8) becomes

y = Ay +By + Cy, (3.1)

where

(Ay)(t) = q(t) + f(t, y(t) + ξ(t))− ξ(t),

(By)(t) =
∫ t

0

V (t, s)[y(s) + ξ(s)]ds,

(Cy)(t) =
∫ t

0

G(t, s, y(s) + ξ(s))ds.

Obviously, if y is a solution of (3.1), then x = y + ξ(t) is a solution of (1.8), and
conversely. The operators A,B,C satisfy the following properties

|(Ay1)(t)− (Ay2)(t)| ≤ L|y1(t)− y2(t)|, A0 = 0, (3.2)

|(By1)(t)− (By2)(t)| ≤ a(t)
∫ t

0

b(s)|y1(s)− y2(s)|ds, (3.3)

|(Cy)(t)| ≤
∫ t

0

ω(t, s)ds. (3.4)

We set D = A+B. Then we can state and prove the following useful lemma.
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Lemma 3.1. The operators C and D satisfy the following properties:
(1) C : X → X is compact operator;
(2) There exists a numerable set {δn}n such that δn ∈ [0, 1), for all n ≥ 1 and

for all x, y ∈ X and for all n ≥ 1,

‖Dx−Dy‖n ≤ δn‖x− y‖n. (3.5)

Proof. (1) First we prove that C : X → X is continuous. Let ym, y ∈ X be such
that ym → y in X, i.e. for all ε > 0 and all n ≥ 1 there exists N = N(ε, n) such
that

|ym − y|n < ε, ∀m ≥ N.

Let n ≥ 1 be fixed; we have

|(Cym)(t)− (Cy)(t)| ≤
∫ t

0

|G(t, s, ym(s) + ξ(s))−G(t, s, y(s) + ξ(s))|ds,

and so, for t ∈ [0, n], we get

|(Cym)(t)− (Cy)(t)| ≤
∫ n

0

|G(t, s, ym(s) + ξ(s))−G(t, s, y(s) + ξ(s))|ds.

But the convergence of {ym}m and the continuity of ξ implies that there is a number
Ln > 0 such that

|ym(t) + ξ(t)| ≤ Ln, |y(t) + ξ(t)| ≤ Ln, ∀t ∈ [0, n], n ≥ 1.

Since the function G is uniformly continuous on the compact set{
(t, s, x) ∈ R+ × R+ × Rd, t, s ∈ [0, n], |x| ≤ Ln

}
,

it follows that

|G(t, s, ym(s) + ξ(s))−G(t, s, y(s) + ξ(s))| ≤ ε

n
, ∀m ≥ N.

Then
|Cym − Cy|n ≤ ε, ∀m ≥ N,

and the continuity of C is proved.
It remains to show that C maps bounded sets into compact sets. Let S ⊂ Cc

be bounded. We have to prove that for each n ≥ 1 the family {Cy
∣∣
[0,n]

: y ∈ S} is
uniformly bounded and equicontinuous.

Recall that S ⊂ Cc is bounded if and only if for all n, there exists pn > 0 such
that for all x ∈ S, |x|n ≤ pn. Let n ≥ 1 be arbitrary but fixed. For t ∈ [0, n], y ∈ S,
we have

|(Cy)(t)| ≤
∫ t

0

|G(t, s, y(s) + ξ(s))|ds ≤
∫ t

0

ω(t, s)ds ≤ nωn,

where
ωn := sup

(t,s)∈∆n

{ω(t, s)},

∆n := {(t, s) ∈ [0, n]× [0, n], s ≤ t}. (3.6)
Hence the family {Cy

∣∣
[0,n]

: y ∈ S} is uniformly bounded.
Let y ∈ S, t ∈ [0, n]; therefore G(t, s, y(s) + ξ(s)) is continuous and so (Cy)(t) is

a continuous function of t. Let ξn := supt∈[0,n]{|ξ(t)|}. Now, G(t, s, x) is uniformly
continuous on

Ωn := {(t, s, x), 0 ≤ s ≤ t ≤ n, |x| ≤ pn + ξn}.
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Hence, for each ε > 0, there is a δ = δ(ε) > 0, such that if (ti, si, xi) ∈ Ωn, i = 1, 2,
then

|(t1, s1, x1)− (t2, s2, x2)| < δ

implies that
|G(t1, s1, x1)−G(t2, s2, x2)| < ε.

For y ∈ S and t1, t2 ∈ [0, n] with |t1 − t2| < δ, since δ can be chosen such that
δ ≤ ε, we have successively

|(Cy)(t1)− (Cy)(t2)| ≤
∫ t1

0

∣∣G(t1, s, y(s) + ξ(s))−G(t2, s, y(s) + ξ(s))
∣∣ds

+
∣∣∣ ∫ t1

t2

G(t2, s, y(s) + ξ(s))ds
∣∣∣

≤ εn+ δMn ≤ ε(n+Mn),

where Mn := sup(t,s,x)∈Ωn
{|G(t, s, x)|}.

Hence the set {Cy
∣∣
[0,n]

: y ∈ S} is equicontinuous. By Remark 1.4 we deduce
that C is compact operator.
(2) Let n ≥ 1 be arbitrary but fixed. Let t ∈ [0, γn] be arbitrary. Then we have

|(Dx)(t)− (Dy)(t)| ≤ L|x(t)− y(t)|+ a(t)
∫ t

0

b(s)|x(s)− y(s)|ds

≤ (L+ γncn)|x− y|γn
,

where cn := sup(t,s)∈∆n
{a(t)b(s)}, and ∆n is given by (3.6). Therefore,

|Dx−Dy|γn
≤ (L+ γncn)|x− y|γn

. (3.7)

Let t ∈ [γn, n] be arbitrary. Then we have

|(Dx)(t)− (Dy)(t)| ≤ L|x(t)− y(t)|+ a(t)
∫ γn

0

b(s)|x(s)− y(s)|ds

+ a(t)
∫ t

γn

b(s)|x(s)− y(s)|ds.

After easy computations, it follows that

|(Dx)(t)− (Dy)(t)|e−hn(t−γn)

< L|x(t)− y(t)|e−hn(t−γn) + γncn|x− y|γn
+
cn
hn
|x− y|hn

and therefore

|Dx−Dy|hn ≤ (L+
cn
hn

)|x− y|hn + γncn|x− y|γn . (3.8)

By (3.7) and (3.8) we obtain

‖Dx−Dy‖n ≤ (L+ 2γncn)|x− y|γn
+ (L+

cn
hn

)|x− y|hn
. (3.9)

Since L < 1, for γn ∈ (0, 1−L
2cn

) we deduce that L + 2γncn < 1 and for hn > cn

1−L

we deduce that L + cn

hn
< 1. Let δn := max{L + 2γncn, L + cn

hn
}. It follows that

δn ∈ [0, 1) and, since (3.9),

‖Dx−Dy‖n ≤ δn‖x− y‖n, ∀x, y ∈ X.
The proof of Lemma 3.1 is now complete. �
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Remark 3.2. Obviously, each operator D which fulfills (3.5) with δn > 0, ∀n ≥ 1
is continuous on X; if, in addition, δn < 1, ∀n ≥ 1, then I − D is invertible and
(I−D)−1 is continuous (I denotes the identity operator). The proof of this assertion
is immediate and it follows the classical model when X is a Banach space and D is
a contraction.

4. Some remarks on Krasnoselskii’s Theorem

A well known result in nonlinear analysis is Krasnoselskii’s Theorem, which
states as follows.

Theorem 4.1 (Krasnoselskii [7], [9])). Let M be a non-empty bounded closed con-
vex subset of a Banach space U . Suppose that P : M → U is a contraction and
Q : M → U is a compact operator. If H := P + Q has the property H(M) ⊂ M ,
then H admits fixed points in M .

Burton [4] remarks that in practice it is difficult to check condition H(M) ⊂M
and he proposes to replace it by the condition

(x = Px+Qy, y ∈M) =⇒ (x ∈M).

In another paper, [5], Burton and Kirk give another variant of Krasnoselskii’s The-
orem:

Theorem 4.2 (Burton and Kirk, [5]). Let U be a Banach space, P , Q : U → U ,
P a contraction with α < 1 and Q a compact operator. Then either

(a) x = λP (x
λ ) + λQx has a solution for λ = 1 or

(b) the set {x ∈ U : x = λP (x
λ ) + λQx, λ ∈ (0, 1)} is unbounded.

This result has been generalized in [1], obtaining the following proposition.

Proposition 4.3. Let X be a Fréchet space, C,D : X → X two operators. Admit
that:

(a) C is compact operator on X;
(b) D fulfills condition (3.5) for a family of seminorms | · |n, n ≥ 1;
(c) The following set is bounded

{x ∈ X, x = λD(
x

λ
) + λCx, λ ∈ (0, 1)} . (4.1)

Then the operator C +D admits fixed points.

The proof of this proposition is a consequence of Schaefer’s Theorem ([9]).

5. Existence result

One can state and prove now an existence theorem for (3.1) (and so for (1.8)).

Theorem 5.1. If hypotheses (H1)–(H3) are fulfilled, then (3.1) admits solutions.

Proof. We will use Proposition 4.3. Taking into account Lemma 3.1, it will be
sufficient to show that the set (4.1) is bounded. We recall a general result stating
that if a set is bounded with respect to a family of seminorms, then it will be
bounded with respect to every other equivalent family of seminorms. So, let y ∈ X,
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y = λD( y
λ ) + λCy, λ ∈ (0, 1). Then, since λ < 1, from (3.2) and hypotheses (H2)

and (H3), we deduce successively

|y(t)| =
∣∣∣λA(

y

λ
)(t) +

∫ t

0

V (t, s)y(s)ds

+ λ

∫ t

0

V (t, s)ξ(s)ds+ λ

∫ t

0

G(t, s, y(s) + ξ(s))ds
∣∣∣

≤ L|y(t)|+ a(t)
∫ t

0

b(s)|y(s)|ds+ a(t)
∫ t

0

b(s)|ξ(s)|ds+
∫ t

0

ω(t, s)ds

and so

|y(t)| ≤ a(t)
1− L

∫ t

0

b(s)|y(s)|ds+
a(t)

1− L

∫ t

0

b(s)|ξ(s)|ds+
1

1− L

∫ t

0

ω(t, s)ds. (5.1)

Let us denote

c(t) :=
a(t)

1− L

∫ t

0

b(s)|ξ(s)|ds+
1

1− L

∫ t

0

ω(t, s)ds. (5.2)

Then (5.1) becomes

|y(t)| ≤ a(t)
1− L

∫ t

0

b(s)|y(s)|ds+ c(t). (5.3)

We set

w(t) =
∫ t

0

b(s)|y(s)|ds

and, since (5.3), we obtain

w(0) = 0, w′(t) = b(t)|y(t)| ≤ a(t)b(t)
1− L

w(t) + b(t)c(t). (5.4)

By (5.4), classical estimates lead us to conclude

|y(t)| ≤ a(t)
1− L

e
1

1−L

R t
0 a(s)b(s)ds ·

∫ t

0

e−
1

1−L

R s
0 a(u)b(u)dub(s)c(s)ds+ c(t)

=: h(t), ∀t ∈ R+.

(5.5)

Since h is a continuous function, by (5.5) it follows that

|y|n ≤ sup
t∈[0,n]

{h(t)},

which allows us to conclude that the set (4.1) is bounded and so the proof of
Theorem 5.1 is complete. �

6. Main result

Theorem 6.1. Assume hypotheses (H1)–(H3). If

lim
t→∞

h(t) = 0 (6.1)

then every solution x(t) to (1.8) is asymptotically stable and

lim
t→∞

|x(t)− ξ(t)| = 0.
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Proof. Let x1, x2 be two solutions to (1.8). Then yi = xi + ξ, i ∈ 1, 2 are solutions
to (3.1). Similar estimates as in the proof of the boundedness of the set (4.1) in
Theorem 5.1, allow us to conclude that

|yi(t)| ≤ h(t), ∀t ∈ R+, ∀i ∈ 1, 2.

Then, from (5.5), for every t ∈ R+ we have

|x1(t)− x2(t)| = |y1(t)− y2(t)| ≤ 2h(t).

Finally, by (6.1), the conclusion follows. �

Next, we present an example when condition (6.1) holds.

Remark 6.2. Let the following assumptions be fulfilled:
(1) limt→∞ a(t) = 0;
(2)

∫∞
0
b(t)dt <∞;

(3)
∫∞
0
a(t)b(t)dt <∞;

(4)
∫ t

0
b(s)|ξ(s)|ds <∞;

(5) limt→∞
∫ t

0
ω(t, s)ds = 0.

Then (6.1) holds. Indeed, since (2)–(5) and

exp
(
− 1

1− L

∫ t

0

a(u)b(u)du
)
b(t)c(t)

≤ a(t)b(t)
1− L

∫ t

0

b(s)|ξ(s)|ds+
b(t)

1− L

∫ t

0

ω(t, s)ds, ∀t ∈ R+,

it follows that ∫ ∞

0

exp
(
− 1

1− L

∫ s

0

a(u)b(u)du
)
b(s)c(s)ds <∞. (6.2)

Then, from (1), (3), (4), (5), and (6.2), we deduce that

lim
t→∞

h(t) = 0.

Remark 6.3. Unlike [3], under assumptions (1)–(5), the mapping ξ is not neces-
sarily bounded (see also Remark 4 in [6]).

Remark 6.4. If the mapping a is decreasing, then hypothesis (3) follows from
hypothesis (2).
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