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METHOD OF STRAIGHT LINES FOR A BINGHAM PROBLEM
AS A MODEL FOR THE FLOW OF WAXY CRUDE OILS

GERMÁN ARIEL TORRES, CRISTINA TURNER

Abstract. In this work, we develop a method of straight lines for solving a
Bingham problem that models the flow of waxy crude oils. The model describes

the flow of mineral oils with a high content of paraffin at temperatures below

the cloud point (i.e. the crystallization temperature of paraffin) and more
specifically below the pour point at which the crystals aggregate themselves

and the oil takes a jell-like structure. From the rheological point of view
such a system can be modelled as a Bingham fluid whose parameters evolve

according to the volume fractions of crystallized paraffin and the aggregation

degree of crystals. We prove that the method is well defined for all times, a
monotone property, qualitative behaviour of the solution, and a convergence

theorem. The results are compared with numerical experiments at the end of

this article.

1. Introduction

As a justification for using this model, we quote statements made by Farina and
Fasano in [9]:

Crude oils in many reservoirs throughout the world contain sig-
nificant quantities of wax which can crystallize during production,
transportation, and storage [24]. This can cause severe difficulties
in pipelining and storage. At sufficiently high temperatures, the
waxy crude oils (i.e., oils which contain a great deal of wax), al-
though chemically very complex, are simple Newtonian fluids. As
the temperature is reduced, the flow properties of these crudes can
radically change from the simple Newtonian flow to a very complex
behavior due to the crystallization of waxes [6]. The waxes basi-
cally consist of n-alkanes, usually ranging from C18H38 to C40H82,
which crystallize (as soon as the equilibrium temperature and pres-
sure is reached), forming an interlocking structure of plate, needle,
or malformed crystals [11]. When the oil is cooled to a temper-
ature lower than the crystallization point (generally called pour
point), the crystals, growing and agglomerating, entrap the oil into
a jell-like structure. Consequently, the flow properties of the oil
become distinctly non-Newtonian. A yield-stress (the minimum
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stress required to start the flow) can be detected. Moreover, the
flow properties are complicated by their critical dependence upon
their mechanical and thermal ‘history’. The viscosity of the waxy
crudes can be greatly reduced by a continued shear. This fact seems
to indicate a kind of thixotropy. The disintegration of large wax
agglomerates appears to be the primary cause of the lower viscosity
[26].

This paper deals with the model proposed by Farina and Fasano in [9]. In that
work they study the low temperature behavior of a waxy crude oil in a laboratory
experimental loop. In the second section we describe the physical model for this
class of fluids, and the study of the related mathematical problem. In the third
section we describe the mathematical problem, while in the fourth we remember
some results present in [10]. In the fifth section a method of straight lines for a
Bingham problem as a model for the flow of a waxy crude oils is developed. We
prove that the method is well defined for all times, a monotone property, qualitative
behaviour of the solution, and asymptotic convergence for large times. In the sixth
section the results are compared with numerical experiments.

2. The physical problem

First, we state the physical assumptions.
(F1) Low, uniform, and constant temperature. A first simplifying assumption is

that the temperature is uniform, constant, and below the so-called “pour
point”, so that the density of the crystallized wax is constant in space and
time. Therefore, the non-Newtonian behaviour of the fluid has to be only
atributed to the aglomeration of wax crystals. If the temperature field is
denoted by T (~x, t), in a domain V in R2:

constant = T (~x, t) ≤ Tpp, ~x ∈ V, t ≥ 0, (2.1)

where Tpp is the “pour point”.
(F2) Incompressible Fluid. A very reasonable assumption, consistent with the

previous one, is to take,

ρ = constant, (2.2)

where ρ is the oil density. If ~v(~x, t) is the velocity field of the fluid, using
(2.2) and the continuity equation, we conclude that ∇ · ~v = 0 in V .

(F3) Laminar Flow. This assumption is justified by the fact that, for low tem-
peratures, the Reynolds number (evaluated for typical pipelines values) is
less than the threshold of turbulent flow.

Now let us pass to define a rheological model which takes into account the exper-
imental data. Waxy crude oils show, at low temperature, the presence of a yield-
stress [7]. According to this experimental evidence, we describe them as Bingham
fluids. Roughly speaking, a Bingham fluid is a non-newtonian fluid which behaves
like a rigid body when the shear stress τ is less than a threshold value τ0, while it be-
haves like a viscous fluid when the stress exceeds τ0, and for which the relationship
between the stress τ and the shear strain γ is linear, that is

τ = τ0 + ηγ (2.3)

where η is the viscosity.
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To consider the evolution of the sheared system exhibiting a kind of “thixotropy”
we introduce a time-dependent parameter α, defined as the ratio between the ag-
gregated solid paraffin mass by volume unit, and the total mass of paraffin present
in the fluid. Therefore, α is a quantity ranging in the interval [0, 1]. We assume
that the yield-stress τ is influenced only by the agglomeration factor, that is

τ0 = τ0(α), (2.4)

with

(Y1) τ0 : [0, 1] → [τm, τM ], where 0 ≤ τm < τM < +∞.
(Y2) τ0 ∈ C1([0, 1]).
(Y3) τ0 is a non-decreasing function.

A natural way of writing down an evolution equation for α accounting both for
the spontaneous aggregation of paraffin crystals and agglomerates fragmentation
(explaining “thixotropy”) is the following

α′(t) = K1(1− α(t))−K2α(t)|W (t)|,
α(0) = α0.

(2.5)

where

W (t) =
1
V

∫
V

W (~x, t)d~x

is the power dissipated in the flow by the viscous force, and K1, K2 are constants
(they can be obtained experimentally).

3. The mathematical problem

In this section we will consider the Bingham problem in plane geometry. We
consider a fluid between two parallel plates. Using the Navier-Stokes equation for
the viscous region and the Newton’s law for the rigid zone, we model the behavior
of the system. The boundary that separates the two regions is an unknown that
evolves in time. It is one of the most important unknown quantities of the problem.

We assume that the fluid is incompressible, laminar, and with constant density
ρ. Fixing the x coordinate along the direction of motion, y the perpendicular
coordinate to the plates, and z the remaining coordinate, we make the following
assumptions:

(1) The pressure gradient, ∇p, is applied in only one direction, that is, ∂p
∂y =

∂p
∂z = 0.

(2) The fluid is laminar, that is, the velocities v and w satisfy v = w = 0.
(3) The non-zero component of the velocity u depends only on time, t, and on

the perpendicular position, y, that is, ∂u
∂z = ∂u

∂x = 0.
(4) There is no transport of fluid through the free boundary, y = s(t). This is

a condition of no deformation, that is, uy(s(t), t) = 0, for all t > 0.
(5) The velocity of the fluid u at the walls of the plates is zero. This is an

adherence condition.
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Using the above hypotheses, we obtain a system of partial differential equations,
which we call problem (P),

ρut − ηuyy = f(t), s(t) < y < L, t > 0,

u(L, t) = 0, t > 0,

u(y, 0) = u0(y), s(0) = s0, 0 < s0 < y < L,

uy(s(t), t) = 0, t > 0,

ut(s(t), t) =
1
ρ

(
f(t)− τ0

s(t)
)
, t > 0.

(3.1)

where f(t) represents −∂p/∂x. We add to the problem above the equation (2.5)
for the evolution of α. In this case the dissipated power is

W (t) =
η

L

∫ L

s(t)

u2
y(y, t)dy +

τ0(α(t))
L

u(s(t), t). (3.2)

Then the evolution equation for α is

α′(t) = K1(1− α(t))− α(t)
K2

L

∣∣∣η ∫ L

s(t)

u2
y(y, t)dy + τ0(α(t))u(s(t), t)

∣∣∣, (3.3)

with the initial condition

α(0) = α0. (3.4)

Now we have the following model for the problem (3.1), called (Pα),

ρut − ηuyy = f(t), s(t) < y < L, t > 0, (3.5)

u(L, t) = 0, t > 0, (3.6)

uy(s(t), t) = 0, t > 0, (3.7)

ut(s(t), t) =
1
ρ

(
f(t)− τ0(α)

s(t)
)
, t > 0, (3.8)

s(0) = s0, (3.9)

u(y, 0) = u0(y), s0 ≤ y ≤ L, (3.10)

α′(t) = K1(1− α(t))− α(t)K2

L

∣∣η ∫ L

s(t)

u2
ydy − τ0(α(t))

∫ L

s(t)

uydy
∣∣, t > 0, (3.11)

α(0) = α0. (3.12)

To get the equation (3.11) we use the equation (3.3) and the fact that u(y, t) =
−

∫ L

y
uy(ξ, t)dξ.

The following problems will be useful for obtaining the discrete solution. We
transform the problem (Pα) using the function w = uy to obtain a new problem,
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denoted by (Pα
y ),

ρwt − ηwyy = 0, s(t) < y < L, t > 0, (3.13)

wy(L, t) = −f(t)/η, t > 0, (3.14)

w(s(t), t) = 0, t > 0, (3.15)

wy(s(t), t) = −τ0(α)/ηs(t), t > 0, (3.16)

s(0) = s0, (3.17)

w(y, 0) = u′0(y), 0 < s0 ≤ y ≤ L, (3.18)

α′(t) = K1(1− α(t))− α(t)K2

L

∣∣∣η ∫ L

s(t)

w2dy − τ0(α(t))
∫ L

s(t)

wdy
∣∣∣, t > 0, (3.19)

α(0) = α0. (3.20)

If z = ut then the function z satisfies the problem, (Pα
t ),

ρzt − ηzyy = f ′(t), s(t) < y < L, t > 0, (3.21)

z(L, t) = 0, t > 0, (3.22)

z(s(t), t) =
1
ρ

(
f(t)− τ0(α)

s(t)
)
, t > 0, (3.23)

zy(s(t), t) =
τ0(α)s′(t)

ηs(t)
, t > 0, (3.24)

s(0) = s0, (3.25)

z(y, 0) =
η

ρ
u′′0(y) +

f(0)
ρ

, 0 < s0 ≤ y ≤ L, (3.26)

α′(t) = K1(1− α(t))− α(t)K2

L

∣∣∣η ∫ L

s(t)

w2dy − τ0(α(t))
∫ L

s(t)

wdy
∣∣∣, t > 0, (3.27)

α(0) = α0. (3.28)

In [10] a theorem of local existence and uniqueness of the problem (Pα
t ) is proved.

4. Theoretical results

Now, we recall some hypotheses and we will add a few more.
Y-Hypotheses on τ0:

(Y1) τ0 : [0, 1] → [τm, τM ], with 0 < τm < τM < ∞.
(Y2) τ0 ∈ C1([0, 1]).
(Y3) τ0 is monotone non-decreasing.
(Y4) τm ≤ τ0(α0) ≤ τM .
(Y5) τ0 is Lipschitz with constant N ; that is,

|τ0(α1)− τ0(α2)| ≤ N |α1 − α2|. (4.1)

P-Hypotheses on f :
(P1) 0 < fm < f(t) < fM for all t > 0.
(P2) Operability condition: fm > τM/L.

This implies that the pressure gradient is bounded, but is big enough to allow that
the fluid can circulate inside the pipe.
A-Hypotheses on α0 and s0:
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(A1) sm < s0 < sM with sm = τm/fM y sM = τM/fm.
(A2) 0 ≤ α0 ≤ 1.

The aggregation factor is in the interval [0, 1] by definition.
U-Hypotheses on u0(y):

(U1) u0(y) ∈ C3([s0, L]).
(U2) u0(y) ≥ 0 for s0 ≤ y ≤ L; u0(L) = 0.
(U3) u′0(y) ≤ 0 for s0 ≤ y ≤ L; u′0(s0) = 0. u′m(y) ≤ u′0(y) ≤ u′M (y) in

s0 ≤ y ≤ L where

u′m(y) =

{
0, 0 ≤ y ≤ sm,

− fM

η (y − sm), sm ≤ y ≤ L,
(4.2)

u′M (y) =

{
0, 0 ≤ y ≤ sM ,

− fm

η (y − sM ), sM ≤ y ≤ L.
(4.3)

(U4) u′′0(y) < 0 in s0 < y < L; u′′0(s0) = −τ0(α0)/s0. These are conditions of
smoothness on u0.

As a consequence of the Maximum Principle, and the Hopf’s Lemma, we have

u(y, t) ≥ 0, s(t) < y < L, 0 < t < T0, (4.4)

uy(y, t) ≤ 0, s(t) < y < L, 0 < t < T0, (4.5)

uyy(y, t) ≤ 0, s(t) < y < L, 0 < t < T0. (4.6)

where T0 is the maximum time of existence. Besides that, properties of the free
boundary problem and the relationship of the velocity field with respect to the
initial conditions can be proved.

sm < s(t) < sM < L, (4.7)

u′m(y) ≤ uy(y, t) ≤ u′M (y), (4.8)

uM (y) ≤ u(y, t) ≤ um(y), (4.9)

where

uM (y) = −fm

2η
(y2 − L2) +

fmsM

η
(y − L), sM < y < L, (4.10)

um(y) = −fM

2η
(y2 − L2) +

fMsm

η
(y − L), sm < y < L. (4.11)

Let’s suppose now that the problem (Pα) has a solution for all time, and that
for t big enough, the solution tends asimptotically to a stationary solution (time
independent). Therefore, we get the following stationary problem (Pα

E ),

u′′∞(y) = −f∞/η, y ∈ [s∞, L], (4.12)

u∞(L) = 0, (4.13)

u′∞(s∞) = 0, (4.14)

f∞ − τ0(α∞)/s∞ = 0, (4.15)

K1(1− α∞)− K2

L
α∞

∣∣∣η ∫ L

s∞

u
′2
∞dy + τ0(α∞)u∞(s∞)

∣∣∣ = 0. (4.16)
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The unknowns are u∞, s∞ and α∞. From the equations (4.12)-(4.14) we can deduce

u∞(y) =
f∞
2η

(L2 − y2) +
f∞
η

s∞(y − L), s∞ ≤ y ≤ L. (4.17)

We use the other two equations to obtain the values of α∞ and s∞. Manipulating
algebraically we have

1− α∞

[
1 +

K2f
2
∞

6K1ηL
(L− s∞)2(2L + s∞)

]
= 0. (4.18)

From now on we need to know the function τ0. As a first approximation, we can
suppose a linear relation

τ0(α) = τm + α(τM − τm). (4.19)

Using this information, and combining the equations (4.15) and (4.18) we have the
identity

(s∞f∞ − τm)
[
1 +

K2f
2
∞

6K1ηL
(L− s∞)2(2L + s∞)

]
= τM − τm. (4.20)

Let’s define the function

g(s) = (sf∞ − τm)
[
1 +

K2f
2
∞

6K1ηL
(L− s)2(2L + s)

]
. (4.21)

If the following condition holds

τM

L
< f∞ <

√
6

L

√
ηK1

K2
, (4.22)

there exists a unique stationary solution s∞ and α∞, where s∞ can be calculated
as the only root of g in the interval [0, L], and α∞ is obtained computing

α∞ =
s∞f∞ − τm

τM − τm
. (4.23)

This is possible because the function g satisfies g(0) < 0, g(L) > 0 and g′(s) > 0
for s ∈ [0, L].

5. Method of the Straight Lines.

Some examples of this method can be found in [1]- [23]. In this case, the idea is to
discretize the time, and get an ordinary differential equation system. The difficulty
is that we do not know if the numerical solution exists, because the domain is also
an unknown.

Choosing a fixed time step ∆t > 0, we define:

tn = (n− 1)∆t, n ∈ N,

sn = s(tn), n ∈ N,

fn = f(tn), n ∈ N,

wn(r) = w(r, tn), n ∈ N,

q =

√
1

∆t
.
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We approximate time derivatives with the incremental quotient, and the evolution
equation for α is discretized with the Euler’s method. In this way, the (Pα

y ) system
is transformed into the (Pα

y,d) system. For all n in N we have:

w′′n+1 −
ρ

η
q2wn+1 = −ρ

η
q2wn, sn+1 < y < L, n ∈ N, (5.1)

wn+1(sn+1) = 0, n ∈ N, (5.2)

w′n+1(sn+1) = −τ0(αn+1)/ηsn+1, n ∈ N, (5.3)

w′n+1(L) = −fn+1/η, n ∈ N, (5.4)

s1 = s0, (5.5)

w1(y) = u′0(y), s0 ≤ y ≤ L, (5.6)

αn+1 = αn +
1
q2

(
K1(1− αn)− αn

K2

L

∣∣∣η ∫ L

sn

w2
ndy − τ0(αn)

∫ L

sn

wndy
∣∣∣), n ∈ N.

(5.7)

α1 = α0. (5.8)

Now we will try to prove existence and uniqueness of the solution of the problem
(Pα

y,d), but before we will prove a technical lemma.

Lemma 5.1. Consider the system of equations

w′′ − ρ

η
q2w = g, s < y < L,

w(s) = 0,

w′(s) = −T/ηs,

(5.9)

where ρ, η, q, s, L y T are positive numbers and g is a continuous function. Then

w(y) = − T
√

ρηsq
sinh

(√ρ

η
q(y − s)

)
+

∫ y

s

g(ξ)√
ρ/ηq

sinh
(√ρ

η
q(y − ξ)

)
dξ, (5.10)

w′(y) = − T

ηs
cosh

(√ρ

η
q(y − s)

)
+

∫ y

s

g(ξ) cosh
(√ρ

η
q(y − ξ)

)
dξ. (5.11)

Proof. The proof of this lemma can be found in [22]. The only thing to do is to
convert the second order differential equation into a differential equation system
of first order. The system can be uncoupled and the problem is reduced to the
resolution of two first order ordinary differential equations. �

We have just deduced that the solution of the equations (5.1)-(5.3) is

wn+1(y) = − τ0(αn+1)√
ρηsn+1q

sinh
(√ρ

η
q(y − sn+1)

)
−

∫ y

sn+1

√
ρ

η
qwn(ξ) sinh

(√ρ

η
q(y − ξ)

)
dξ,

(5.12)

w′n+1(y) = −τ0(αn+1)
ηsn+1

cosh
(√ρ

η
q(y − sn+1)

)
−

∫ y

sn+1

ρ

η
q2wn(ξ) cosh

(√ρ

η
q(y − ξ)

)
dξ.

(5.13)



EJDE-2005/130 METHOD OF STRAIGHT LINES 9

We need to know the value of sn+1 (we do not know yet if it exists). Replacing our
solution (5.13) into the equation (5.4), we deduce that

−fn+1

η
= w′n+1(L)

= −τ0(αn+1)
ηsn+1

cosh
(√ρ

η
q(L− sn+1)

)
−

∫ L

sn+1

ρ

η
q2wn(ξ) cosh

(√ρ

η
q(L− ξ)

)
dξ.

We define

Fn+1(s) =
fn+1

η
− τ0(αn+1)

ηs
cosh

(√ρ

η
q(L− s)

)
−

∫ L

s

ρ

η
q2wn(ξ) cosh

(√ρ

η
q(L− ξ)

)
dξ.

(5.14)

Then sn+1 must be a root of Fn+1 in the interval (0, L).

Theorem 5.2. If the hypotheses (Y1)-(Y5), (P1)-(P2), (A1)-(A2),(U1)-(U4), hold
and we have the following condition, for the discretization parameter,

max
(
K1,

K2

L
η

∫ L

sm

u
′2
mdy − K2

L
τM

∫ L

sm

u′mdy
)
≤ q2, (5.15)

then there exists a unique solution of the problem (Pα
y,d).

Proof. We will prove the theorem by induction. For n = 1, the quantities α1, s1

and w1 are defined by the initial conditions. Moreover, it is true that

0 ≤ α1 ≤ 1, (5.16)

w1 ≡ 0, in [0, s1], (5.17)

w1 ≤ 0, (5.18)

w′1 ≤ 0, (5.19)

s1 ∈ (0, L). (5.20)

u′m ≤ w1 ≤ u′M (5.21)

sm ≤ s1 ≤ sM (5.22)

We observe that (5.17) is satisfied since we can extend the function u′0 continuously
by zero in the interval [0, s0]. Then, suppose that exists a unique solution until the
level n with the following properties: 0 ≤ αn ≤ 1, wn ≡ 0 in [0, sn], wn ≤ 0, w′n ≤ 0
and sn ∈ (0, L), u′m ≤ wn ≤ u′M and sm ≤ sn ≤ sM . Now we consider the level
n + 1.
I 0 ≤ αn+1 ≤ 1. Using the inductive hypothesis we have

αn+1 ≥
αn

q2

[
q2 − K2

L
η

∫ L

sn

w2
ndy +

K2

L
τ0(αn)

∫ L

sn

wndy
]
. (5.23)

Using the bounds and sign of wn and the bounds of sn, we obtain

αn+1 ≥
αn

q2

[
q2 − K2

L
η

∫ L

sm

u
′2
mdy +

K2

L
τ0(αn)

∫ L

sm

u′mdy
]
. (5.24)
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Using the bounds of τ0 and the condition on q,

αn+1 ≥
αn

q2

[
q2 − K2

L
η

∫ L

sm

u
′2
mdy +

K2

L
τM

∫ L

sm

u′mdy
]
≥ 0. (5.25)

Moreover using the signs of wn,

αn+1 ≤
1
q2

(
αnq2 + K1(1− αn)

)
. (5.26)

Due to the condition on q, we obtain

αn+1 ≤
1
q2

(
αnq2 + q2(1− αn)

)
= αn ≤ 1. (5.27)

Then τ0(αn+1) is a well-defined number.
I There exists at least a root of Fn+1 in (0, L). The function Fn+1 is continuous
in the interval (0, L]. Moreover:

Fn+1(L) =
1
η

(
fn+1 −

τM

L

)
> 0,

due to the operability condition;

lim
s→0+

Fn+1(s) = −∞,

because the integral is bounded. Then, by continuity, it exists a root of Fn+1 in
the interval (0, L).
I Fn+1 may have more than one root in (0, L). From (5.14) we obtain

F ′n+1(s) =
τ0(αn+1)

ηs2
cosh

(√
ρ

η
q(L− s)

)
+

τ0(αn+1)
ηs

√
ρ

η
q sinh

(√
ρ

η
q(L− s)

)
+

ρ

η
q2wn(s) cosh

(√
ρ

η
q(L− s)

)
.

(5.28)
If Fn+1 has no critical points the proof is concluded. Otherwise, suppose that there
exists at least a s∗ such that F ′n+1(s∗) = 0; that is,

0 =
τ0(αn+1)

ηs2
∗

cosh
(√

ρ

η
q(L− s∗)

)
+

τ0(αn+1)
ηs∗

√
ρ

η
q sinh

(√
ρ

η
q(L− s∗)

)
+

ρ

η
q2wn(s∗) cosh

(√
ρ

η
q(L− s∗)

)
.

(5.29)

Clearly s∗ 6= 0 since wn ≡ 0 in [0, sn]. Multiplying (5.29) by the inverse of the first
member of the sum, we have that s∗ is a zero of the function

B(s) = h(s) +
ρq2s2wn(s)
τ0(αn+1)

, (5.30)

where

h(s) = 1 + s

√
ρ

η
q tanh

(√
ρ

η
q(L− s)

)
. (5.31)

It can be shown that the function h is concave and positive in the interval (0, L).
See [22]. The function B is a sum of a positive concave function h (where h(0) =
h(L) = 1), and a negative decreasing function. Now, the second term of the right
hand side of the equation (5.30) could eventually equal the function h in several
points in the interval where h is increasing. Therefore the statement is concluded.
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I sn+1 can be chosen as the minimum root of Fn+1. We already know that there
exists at least one root of Fn+1 in the interval (0, L), and that lims→0+ Fn+1(s) =
−∞ (that is, s = 0 can not be a root of Fn+1). Now, let’s suppose that we have a
set R = {ri} (finite or infinite) of roots of Fn+1. If R is finite, we define sn+1 as the
minimum of the roots of Fn+1. If R is infinite, then we take sn+1 as the infimum
of R. Then there exists a subsequence of roots that converges to sn+1. As Fn+1 is
a continuous function, sn+1 is also a root and therefore the minimum of R.

Now we can solve wn+1 using (5.12) and (5.13). Until now we have solved the
level n + 1, but we need the properties of wn+1 and sn+1 in order to continue the
inductive step.
I wn+1 ≡ 0 in [0, sn+1]. We extend wn+1 by zero in [0, sn+1] and due to (5.2) this
extension is continuous, but the derivative does not exits at sn+1 because of (5.3).
I wn+1 ≤ 0 in [0, L]. We know that wn+1 = 0 in [0, sn+1]. If we denote wn+1 by
A, sn+1 by s, and ρq2/η by γ2, it is clear that wn+1 satisfies the system

A′′ − γ2A ≥ 0, s < y < L,

A(s) ≤ 0,

A′(L) ≤ 0.

(5.32)

Here we have used (5.1), (5.2) and (5.4), and the inductive hypothesis. In [22] it is
proved that A ≤ 0 in the interval [0, L], that is equivalent to wn+1 ≤ 0 in [sn+1, L].
That means the statement is finished.
I w′n+1 ≤ 0 in [0, L]. In [0, sn+1) is clear that w′n+1 = 0. In [sn+1, L], it holds

w′′′n+1 −
ρ

η
q2w′n+1 = −ρ

η
q2w′n, sn+1 < y < L,

w′n+1(sn+1) = −τ0(αn+1)/ηsn+1,

w′n+1(L) = −fn+1/η.

(5.33)

We denote w′n+1 by A, sn+1 by s and ρq2/η by γ2, then w′n+1 satisfies the system

A′′ − γ2A ≥ 0, s < y < L,

A(s) < 0,

A(L) < 0.

(5.34)

In [22] it is proved that A ≤ 0 in the interval [s, L], that means that w′n+1 ≤ 0 in
[sn+1, L]. The statement is proved.
I sm ≤ sn+1 ≤ sM . Let s be such that 0 < s < sm. Note that the function

1
s

cosh
(√

ρ

η
q(L− s)

)
(5.35)

is decreasing in the interval (0, L]. Taking into account that wn = 0 in [s, sm]
(because sm ≤ sn using inductive hypothesis), we can deduce that

Fn+1(s) ≤ Fn+1(sm) (5.36)

Now, using that τ0 ≥ τm and wn ≥ u′m we can obtain

Fn+1(sm) ≤fn+1

η
− τm

ηsm
cosh

(√
ρ

η
q(L− sm)

)
+

∫ L

sm

ρ

η
q2 fM

η
(ξ − sm) cosh

(√
ρ

η
q(L− ξ)

)
dξ.

(5.37)
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Using integration by parts in the second member of the inequality in the integral
(5.37) we obtain

Fn+1(sm) ≤ 1
η

(fn+1 − fM ) < 0. (5.38)

Then, Fn+1(s) ≤ Fn+1(sm) < 0 for all s such that 0 < s ≤ sm. Then sm ≤ sn+1.
In a similar way, we take now s ∈ [sM , L]. Using that wn ≤ u′M in [sM , L] we

get

Fn+1(s) ≥
fn+1

η
− τ0(αn+1)

ηs
cosh

(√
ρ

η
q(L− s)

)
+

∫ L

s

ρ

η
q2 fm

η
(ξ − sM ) cosh

(√
ρ

η
q(L− ξ)

)
dξ.

(5.39)

Integrating by parts in the second member of the inequality in the integral (5.39),
and using that τ0 ≤ τM we obtain

Fn+1(s) ≥
1
η
(fn+1 − fm) > 0. (5.40)

Then Fn+1(s) > 0 for all s in [sM , L]; therefore, sn+1 ≤ sM , so we conclude the
statement.
I wn+1 ≤ u′M . Let Bn+1 = wn+1 − u′M be. If y ∈ [0, sn+1] then Bn+1(y) = 0. If
y ∈ [sn+1, sM ] then Bn+1(y) = wn+1(y) ≤ 0. If y ∈ [sM , L] it satisfies

B′′
n+1 −

ρ

η
q2Bn+1 ≥ 0, sM < y < L,

Bn+1(sM ) ≤ 0,

B′
n+1(L) ≤ 0.

(5.41)

As before we can prove that Bn+1 ≤ 0, so the statement is proved.
I u′m ≤ wn+1. It follows in the same way.

So the proof is complete. �

Corollary 5.3. Assume the conditions of theorem 5.2 are satisfied. Then:
• wn ≤ 0, in [0, L], for all n ∈ N.
• w′n ≤ 0, in [0, L], for all n ∈ N.
• wn < 0, in (sn, L] for all n ∈ N.
• sm < sn < sM for all n ∈ N.
• u′m ≤ wn ≤ u′M for all n ∈ N.

We observe that the properties of the discrete solutions agree with the classical
solution.

Proposition 5.4. The stationary solution of problem (Pα
y ) with the equations

(3.13)-(3.20) is

s∞ =
τ0(α∞)

f∞
, w∞(y) =

{
0, if y ∈ [0, s∞),
−f∞

η (y − s∞), if y ∈ [s∞, L],
(5.42)

where α∞ and s∞ satisfy

K1(1− α∞)− K2

L
α∞

∣∣∣η ∫ L

s∞

w2
∞dy − τ0(α∞)

∫ L

s∞

w∞dy
∣∣∣ = 0. (5.43)
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Proof. We observe that the system (3.13)-(3.20) has a stationary solution that
satisfies

w′′∞ = 0, s∞ < y < L,

w′∞(L) = −f∞/η,

w∞(s∞) = 0,

w′∞(s∞) = −τ0(α∞)/ηs∞,

(5.44)

added to the equality (5.43). Clearly, the solution of the system (5.44) is the
stationary solution. �

Theorem 5.5. Assume the hypotheses of Theorem 5.2 are satisfied. If there exists
a unique stationary solution, and if

lim
n→∞

αn = α∗, lim
n→∞

sn = s∗, lim
n→∞

wn = w∗, (5.45)

then α∗ = α∞, s∗ = s∞ and w∗ = w∞.

Proof. We take limn→∞ in (5.12) to obtain

w∗(y) = − τ0(α∗)√
ρηs∗q

sinh
(√

ρ

η
q(y − s∗)

)
−

∫ y

s∗

√
ρ

η
qw∗(ξ) sinh

(√
ρ

η
q(y − ξ)

)
dξ.

(5.46)
When we compute the derivatives of w∗, we obtain

w′′∗ = 0, y ∈ [s∗, L], w∗(s∗) = 0, w′∗(s∗) = −τ0(α∗)
ηs∗

. (5.47)

Moreover if we take limn→∞ in (5.13), we obtain

lim
n→∞

w′n+1(y)

= −τ0(α∗)
ηs∗

cosh
(√

ρ

η
q(y − s∗)

)
−

∫ y

s∗

ρ

η
q2w∗(ξ) cosh

(√
ρ

η
q(y − ξ)

)
dξ.

(5.48)

From (5.46) and (5.48) we deduce that limn→∞ w′n(y) = w′∗(y). Then

w′∗(L) = lim
n→∞

w′n+1(L) = −fn+1/η = −f∞/η.

We take limit as n →∞ in (5.7) and we obtain (5.43). We have proved that w∗, s∗
and α∗ satisfy the system (5.44) with (5.43). That means that w∗ = w∞, s∗ = s∞
and α∗ = α∞, because there exists only one stationary solution. �

6. Numerical results

The numerical experiments shown below prove that the algorithm reproduces
the physical behaviour of the solution. In the following figures there are examples
of several cases.

In Figure 1, from left to right and from top to bottom we have the following
data

• Example 1: s0 = 0.7, α0 = 0.25, f(t) = 4, u′0(y) = −4(y − 0.7), τ0(α) =
1 + α.

• Example 2: s0 = 0.1, α0 = 0.25, f(t) = 4, u′0(y) = −4(y − 0.1), τ0(α) =
1 + α.

• Example 3: s0 = 0.7, α0 = 0.25, f(t) = 4 + 0.25t, u′0(y) = −4(y −
0.7), τ0(α) = 1 + α.
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Figure 1. Method of straight lines - Plane geometry - τ0 variable.

• Example 4: s0 = 0.7, α0 = 0.25, f(t) = 4 + sin(t)/4, u′0(y) = −4(y −
0.7), τ0(α) = 1 + α.

Concluding Remarks. Waxy crude oils are highly non-Newtonian fluids known
to cause pipeling difficulties because their rheological properties are strongly af-
fected by paraffin crystallization. On the basis of experimental data, a physical
model has been used to describe the behaviour of these crudes. The mathemati-
cal problem has been studied in planar geometry, and a method of lines with the
time as a discrete variable has been developed. We prove that the method is well
defined for all times, a monotone property, qualitative behaviours of the solution,
and asymptotic convergence for large times. In the experiments we tested four ex-
amples with different initial conditions for the free boundary, and different pressure
gradients. In the first and second examples we can see that, no matter the initial
position of the free boundary is, the pressure gradient pushes the solution towards
the asymptotic solution. In the third example we observe that the free boundary
tends to zero as the pressure gradient tends to infinity, and in the last example the
pressure gradient and the free boundary behave periodically. Clearly, these exam-
ples show that, asymptotically, the free boundary s(t) behaves like τ0(α(t))/f(t),
as predicted theoretically.
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di Laurea, Universitá degli Studi di Firenze, 1995.

[11] Ferris, S.W. & Cowles, H.C.; Crystal behavior of paraffin wax, Ind. Eng. Chem. 37, 1054-1062

(1945).
[12] Glowinky-Lions Tremolieres, Analyse Numerique des Inequalities Variationales, vol. 1,2, Du-

momd, 1976.

[13] Gupta, R. S. & Kumar, D., Variable Time Step Methods for One-Dimensional Stefan Problem
with Mixed Boundary Condition, Int. J. Heat Mass Transfer., vol 24, pp. 251-259, 1981.

[14] Martinez, V. & Marquina, A. & Donat, R.; Shooting methods for one dimensional diffusion

absorption problems, SIAM J. Numer. Anal., 31 (1994), pp. 572-589.
[15] Meyer, G. H.; An application of the method of lines to multidimensional free boundary prob-

lems, J. Inst. Math. Appl., 20:317-329, 1977.

[16] Meyer, G. H.; The method of lines and invariant embedding for elliptic and parabolic free
boundary problems, SIAM J. Numer. Anal., 18:150-164, 1981.

[17] Murray, W. D. & Landis, F.; Numerical and Machine Solutions of Transient Heat-Conduction
Problems Involving Melting or Freezing, J. Heat Transfer. 81C, pp. 106-112, 1959.

[18] Primicerio, M.; Problemi di Diffusione a Frontiera Libera, Bolletino U.M.I. (5) 18-A (1981),

pp. 11-68.
[19] Rubinstein ,L. I.; The Stefan Problem, Trans. Math. Monographs-vol. 27, Amer. Math. Soc.,

Providence 1971.

[20] Tarzia, D. A.; Introducción a las Inecuaciones Variacionales Eĺıpticas y sus Aplicaciones a
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