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LEVEL SET METHOD FOR SOLVING POISSON’S EQUATION
WITH DISCONTINUOUS NONLINEARITIES

JOSEPH KOLIBAL

Abstract. We study semi-linear elliptic free boundary problems in which the
forcing term is discontinuous; i.e., a Poisson’s equation where the forcing term

is the Heaviside function applied to the unknown minus a constant. This ap-

proach uses level sets to construct a monotonic sequence of iterates which con-
verge to a class of solutions to the free boundary problem. The monotonicity

of the construction based on nested sets provides insight into the connectivity
of the free boundary sets associated with the solutions.

1. Introduction

We are interested in computing solutions to the semi-linear elliptic boundary-
value problem

−∆ψ = λH(ψ − 1) in Ω,
ψ = 0 on ∂Ω,

(1.1)

on bounded domains Ω ⊂ Rn, 1 ≤ n ≤ 3, where H is the Heaviside function,
H(t) = 0 for t ≤ 0 and H(t) = 1 for t > 0, and λ > 0 is a scalar parameter. The
semi-linear problem may be reformulated as the equivalent free boundary problem,
find ψ such that

−∆ψ =

{
λ on A,
0 on Ω \A,

ψ = 0 on ∂Ω

(1.2)

where A = {x ∈ Ω : ψ(x) ≥ 1} is the free boundary set and ∂A is the free boundary
which is to be determined. Since we may interpret the forcing term of (1.2) as λχA,
where χA is the characteristic function of the set A, we need only insist that the
solution be as regular as the solution of Poisson’s equation, −∆ψ = λχA in Ω with
ψ|∂Ω = 0 in order to completely specify ψ.

Equations of this type arise in the consideration of vortex flow, porous medium
combustion problems and plasma dynamics [7, 13, 19, 5]. In particular, problems
of the form −∆ψ = f(x, ψ) ≥ 0 where the forcing term f is Hölder continuous with
exponent α, 0 < α < 1, with suitable restrictions on the growth of f have been
shown to have solution ψ ∈ C2+α using isoperimetric variational methods [4]. In
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a related approach, Fraenkel and Berger [6] in R3, and Norbury [15] in R2, have
proven the existence of a solution of the semi-linear elliptic differential equation by
maximizing certain functionals on the surface of a sphere in a Sobolev space. By
taking the limit of Hölder continuous functions and using Steiner symmetrization
[16, 3] and the generalized maximum principle of Littman [14], Fraenkel and Berger
[6] are able to construct a solution ψ ∈ C1+α when the forcing term f is discon-
tinuous. Keady [11, 12] has dealt explicitly with (1.1); however, the interest was in
obtaining estimates for doubly symmetrized domains in R2.

The primary reason for considering the semi-linear form (1.1) of the problem is
the ease with which variational methods [3, 7, 19] yield results on the existence of
solutions with the computational aspects of the problem being reduced to consid-
ering an isoperimetric problem in the calculus of variations. The approach we take
to finding nontrivial solutions of (1.1) is based on considering the equivalent free
boundary problem (1.2). Although a direct attack on the semi-linear problem is
appealing, the alternative free boundary formulation can be utilized to construct
an efficient solution algorithm, and we consider our numerical scheme to be an im-
provement on that of Alexander and Fleishman [2]. Each stage of the construction
is based on solving Poisson’s equation

−∆ui+1 = λχAi
in Ω,

ui+1 = 0 on ∂Ω,
(1.3)

where the sets Ai are iteratively corrected so that Ai → A, without searching for
the boundary of A, that is, where u(x) = 1 in Ω. The approach exploits the linearity
of (1.3) along with the maximum principle and the scalability of (1.1) to construct
an algorithm which converges monotonically to the desired free boundary set. By
scalability we mean that if k > 0 and if υ = kψ and µ = λk, then −∆υ = µH(υ−k)
whenever −∆ψ = λH(ψ − 1) in Ω with ψ|∂Ω = υ|∂Ω = 0. Hence the rescaled
solution satisfies a closely related problem. The value of υ on the boundary of the
free boundary set which is implicit in the problem is now k instead of 1. This
algebraic result will be important in formulating the solution algorithm. To avoid
confusion with solving the related equation −∆ψ = λH(ψ − k), we consider only
the canonical case when k = 1.

To illustrate some key aspects of this problem, consider an example on the unit
disk ⊂ R2. By symmetry the solution of (1.2) satisfies an ordinary differential
equation in the radial variable r,

−1
r

d

dr

(
r
dψ

dr

)
= λH(ψ − 1) in r ≤ 1,

ψ = 0 at r = 1 .
(1.4)

The solution to (1.4) is completely determined by imposing C1 continuity of ψ
across the free boundary at r = a, thus

ψ(r) =

{
1 + λ(a2 − r2)/4, 0 ≤ r ≤ a,

log(r)/ log(a), a ≤ r ≤ 1,
(1.5)

and it can be verified easily that λ = −2/a2 log(a). Since for all a > 0, ψ(0) =
1 + λa2/4 > 0, it might appear that radial solutions to (1.5) exist for all λ > 0;
however, since λ and a are not free parameters, a unique nontrivial solution pair
(ψ;λ) may not exist for all choices of λ. For solutions of (1.4) there are two values
of a which will yield exactly the same solution, corresponding to each branch of
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the solution curve. Only the trivial solution exists if λ < λmin = 4e. Moreover,
any algorithm which relies on solving (1.2) by successively solving a sequence of
related linear problem in which the free boundary set is fixed at each iteration
and then searching for the free boundary on the next iteration, must avoid having
the estimate for the free boundary set collapse into the trivial solution. This is
precluded from happening in the algorithm we present because the construction
is monotone increasing and solutions do not depend on the choice of λ. We never
attempt to compute solutions for values of λ which are below the minimum for which
solution will collapse into the trivial solution. In solving this example problem in
(1.4) the approach relied on choosing the value of a, or more generally the free
boundary set as the the free parameter, and then computing λ. In much the same
way, in developing a solution algorithm on arbitrary domains in R2, or R3, it will be
easier working with the free boundary set, computing the values of λ after having
obtained a solution. Thus, while λ may be taken as a free parameter in (1.1), we
prefer to work with (1.2) and the free boundary set, requiring instead that the value
of λ be determined after having found a free boundary set A.

The numerical algorithm we describe for solving this problem is an easy and
direct implementation of the constructive proof of the existence of solutions to (1.2).
In Section 2 we describe in detail the construction of the sequences of sets Ai which
in Section 3 are shown to converge to the set free boundary A on which the solution
of (1.1) depends. Since construction of the free boundary set A relies on solving an
elementary linear equation (1.3) at each step of the construction, numerical results
are easily obtained using a standard linear finite element formulation.

2. A monotone algorithm for constructing the sets Ai

We construct a sequence of nested sets, A0 ⊆ A1 ⊆ · · · ⊆ An, which in Section
3 will be shown to converge to the free boundary set A. Presently our concern
is only with the specifics of the construction, which is done recursively, and some
immediate consequences, notably the monotonicity of the sequence {cn} of numbers
associated with these subsets.

Let u ∈ C0(Ω), u > 0 in int(Ω), and consider a subset of the graph of a function
u, defined by selecting the level set

Σ(c) = {(u, x) : u(x) ≥ c, x ∈ Ω}, (2.1)

where 0 < c < maxu. We are interested in the projection of Σ(c) onto Ω, defined
by A = {x ∈ Ω | (u, x) ∈ Σ(c)}. The recursive construction of the nested sets {Ai}
is based on beginning with an initial solution to the boundary-value problem

−∆u0 = λχB in Ω,
u0 = 0 on ∂Ω,

(2.2)

where, as before, λ > 0 and B ⊆ Ω. The special case when B = Ω is examined
initially (and subsequently extended to more general solutions in which B is any
open subset of Ω). We shall refer to u0 obtained by considering B = Ω as the
basic solution to our problem, partly because on some elementary domains the free
boundary set A is easily generated or derived from this fundamental initial choice.

Thus the basic solution is initiated by solving (the elastic torsion problem),

−∆u0 = λ in Ω,

u0

∣∣
∂Ω

= 0.
(2.3)
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Fix an arbitrary c0 ∈ (0,maxu0) to be the starting level and denote the projection
of Σ(c0) onto Ω as

A0 = {x ∈ Ω : u0(x) ≥ c0}. (2.4)

Continuing recursively, for i ≥ 1 we denote by ui the solution of

−∆ui = λχAi−1 in Ω and ui

∣∣
∂Ω

= 0, (2.5)

and determine
ci = min

x∈Ai−1
ui(x). (2.6)

By projecting Σ(ci) onto Ω, the set

Ai = {x ∈ Ω : ui(x) ≥ ci} (2.7)

is obtained, and the motivation for the algorithm is now apparent.
Let An be the estimate for the free boundary set on the n-th iteration, then solve

(1.3) assuming that An solves (1.2). If it does, then the solution on the boundary
of An equals some constant, say k. By rescaling the solution, we can make it equal
to one on the boundary of An and we are done. Otherwise, find the minimum of
this new solution over An and extend An to An+1, constructed so that it includes
all those point where this new solution is greater than k. Then test whether An+1

is a solution, continuing in this fashion until a sufficiently converged estimate of the
free boundary set A is attained.

The choice of B = Ω is the largest set which solves the linear problem (1.3), and
the extent to which (1.1) is satisfied, or nearly satisfied by any particular set A0

generated by projecting Σ(c0) on the first iterative step depends on the extent to
which the boundary of the free boundary set is similar to the boundary of Ω. For
example, for symmetric solutions on the unit disk D, solving −∆u0 = λ in D gives
the set A0 = {x ∈ D | x · x ≤ a} where 0 < a < 1 is determined only by the choice
of 0 < c0 < ‖u0‖∞. In this example, each solution to (1.1) is a disk contained in
D which is obtained immediately on the first projection to A0. On more complex
domains, we will find that ∂A corresponds, in a sense, to a homotopy between the
initial guess ∂A0 and ∂Ω. Indeed, the number of steps taken to arrive at a solution
will in part depend on the number of projections needed to achieve this deformation
by iterative projection.

If the ui are continuous on the domain and the domain is sufficiently regular,
this procedure produces a monotonic sequence of numbers {ci} and an associated
sequence of nested subsets {Ai} ⊆ Ω.

3. Preliminaries

In proving the existence of solutions to the semi-linear equation, we take Ω
sufficiently smooth and regular so as to apply standard results from the theory of
partial differential equations [1, 18, 17]. We take Ω bounded, obeying the cone
condition [18]. We also require that ∂Ω is either C2 or that Ω is convex polyhedral
[9].

As usual, we introduce the Sobolev spaces Hm and Hm
0 , defined as the closure

of C∞ and C∞0 , respectively, in the norm

‖u‖Hm =
{ ∑
|k|≤m

‖Dku‖2
L2

}1/2

, (3.1)
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where k = (k1, k2, . . . , kn) is an n-tuple of non-negative integers, and where Dk =
Dk1

1 Dk2
2 . . . Dkn

n is the partial derivative of order | k |= k1 +k2 + · · ·+kn. We define
the bilinear form (u, v) corresponding to the Laplace operator as

(u, v) =
∫

Ω

∇u · ∇v dΩ, (3.2)

It will also be convenient to introduce the inner product of two functions in L2,

〈u, v〉 =
∫

Ω

uv dΩ. (3.3)

Throughout, we take x ∈ Rn, and denote the Lebesgue measure of the set A by
m(A). By a solution u of the linear partial differential equation we mean u satisfies

(u, v) = λ〈χA, v〉, ∀v ∈ H1
0 (Ω); (3.4)

in other words, u is a weak solution of the differential equation, although we will
continue to pose the problem classically using −∆u = λA. We remark that u ≡ 0 for
all λ is the trivial solution and henceforth solution means nontrivial, weak solution.

Lemma 3.1. Consider the construction using (2.5)–(2.7). Let −∆ui = λχAi−1

and Ai ⊂ Ω, ui

∣∣
∂Ω

= 0. Then ui ∈ H2(Ω) ∩H1
0 (Ω). Also, ui ∈ C0(Ω) if Ω ⊂ Rn,

n ≤ 3.

Proof. This is a straightforward consequence of elliptic regularity and the Sobolev
Imbedding Theorem since χAi ∈ L2(Ω) [1, 18, 10]. �

See [10, Chapter 11.6, Theorem 11.6.6] for a discussion and in particular [8,
Chapter 7] which shows that we could improve the results of this lemma (for more
general Ω, or for more general elliptic operators, or with regard to the smoothness
of ui), however we have chosen to exploit only the continuity of each ui. Although
the solution is smoother than this on either side of the boundary of Ai and for that
matter across Ai, continuity of the solutions is entirely sufficient to demonstrate
the construction. Note that for Ai ⊂ Ω, χAi will vanish in a neighborhood of ∂Ω so
that we are only considering harmonic functions outside of Ai near ∂Ω. We remark
that in the construction defined in Section 2, since we consider weak solutions of the
differential equation, the inequality defining the subset of the graph of ui given by
Σ(ci) could have excluded the equality without effect, with Ai being defined using
open sets and the infimum replacing the minimum. In particular, this construction
and the continuity of u results in sets Ai which are nice in the sense that intAi is
open, being the projection of intΣ(ci) onto Ω.

We are now ready to formally demonstrate that the construction described in
Section 2 produces an algorithm which is convergent to a solution of (1.1). We begin
by showing that on each iteration, when we examine the graph of the solution ui

restricted to the set Ai, that no minima can exist in the interior of Ai. Otherwise
the algorithm would fail since the level sets Σ(ci) used in constructing the next
support set Ai+1 are based on finding ci, the minimum of ui over the set ∂Ai.
Algorithmically, this avoids the examination of ui over all of Ai; equally, it shows
that the free boundary set cannot develop on any open set which is interior to the
current estimator Ai of A.
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Lemma 3.2. Consider Ai ⊂ Ω constructed using (2.5)–(2.7) with −∆ui = χAi−1

in Ω, ui

∣∣
∂Ω

= 0. Then the minimum of ui over Ai−1 occurs on the boundary of
Ai−1.

Proof. From Lemma 3.1, ui ∈ H2(Ω) ∩ H1
0 (Ω) and is continuous on Ω. Define

wi to be the restriction of ui to Ai−1. The solution wi of −∆wi = 1 on Ai−1,
w

∣∣
∂Ai−1

= ui

∣∣
∂Ai−1

We apply the weak maximum principle to wi along with wi(x) =
ui(x)|Ai−1 ,∀x ∈ Ai−1, to conclude that

min
∂A

ui ≤ min
Ai−1

ui.

From the continuity of ui, equality can be achieved at most on a set of measure
zero. Otherwise there is an open ball, inside a set of positive measure in Ai−1, on
which ∆ui = 0 by direct differentiation. This contradicts −∆ui = 1 on Ai−1. �

Lemma 3.2 demonstrates the equivalence between the semi-linear and free bound-
ary formulation. Since the minimum occurs on the boundary of Ai−1, if ui = 1
on ∂Ai−1, then ui solves (1.2) with ui > 1 in the interior of Ai−1, consequently
ui solves (1.1). Observe, that since we construct Ai from the level set of ui, the
existence of a minimum (on a set of measure 0) in the interior equal to that which
occurs on the boundary of Ai also has no effect on the construction.

Lemma 3.3. Consider the construction (2.3)–(2.7) for i ≥ 1, if ui−1 ∈ H2(Ω) ∩
C0(Ω), then Ai−1 ⊆ Ai, ui ≤ ui+1 ≤ u0, and ci ≤ ci+1 ≤ c0.

Proof. The set inclusion follows since on the set Ai−1, ui has minimum value ci
while the set Ai includes all those values of x for which ui ≥ ci.

We show next that c0 ≥ ci. For functions in H2(Ω) the necessary generalization
of the usual maximum principle to precisely the weak solutions that we require is
discussed in Gilbarg and Trudinger [8, Chapter 8]. We have constructed u0 such
that the support of the forcing term is Ω, A0 is the projection of Σ(c0) into Ω, and
ui is the function which solves the differential equation where the support of the
forcing term is Ai−1. Hence the maximum principle and the inclusion of A0 in Ai−1

may be used to find

Ai−1 ⊆ Ω ⇒ χAi−1 ≤ χΩ

⇒ ui(x) ≤ u0(x)

⇒ min
x∈Ai−1

ui(x) ≤ min
x∈Ai−1

u0(x) ≤ min
x∈A0

u0(x).

By the definition (2.6) of ci and (2.4) of A0 we have

ci ≤ c0 .

For i ≥ 1, we recall constructing Ai as the set of all x such that ui(x) > ci, and
ui+1 as the solution of the differential equation where the support of the forcing
term is Ai. Hence, again using the maximum principle

Ai−1 ⊆ Ai ⇒ χAi
≥ χAi−1

⇒ ui+1(x) ≥ ui(x)

⇒ min
x∈Ai

ui+1(x) ≥ min
x∈Ai

ui(x).

Since ci+1 is the minimum value taken by the function ui+1 on Ai, while Ai is the
set where ui > ci, we have ci+1 ≥ ci. �
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An obvious special case occurs if Ai = Ai−1 for some i. Then an easy argument
shows that ci = ci+1 (and thus all subsequent iterations Ai+n coincide with Ai,
with ci+n = ci for all n) and we have found a set A which solves the free boundary
problem. Indeed, we have two cases to consider: either we trivially find a solution
for some fixed i and there is no growth in the sets Ai, or there is growth and
Ai−1 ⊂ Ai strictly, for every i.

The next result affirms that if the sets Ai are not all identically the free boundary
set, then the sequence, {ci}, i = 1, 2, . . . induced by the iterative construction is
strictly monotone increasing, and consequently the functions ui and ui+1 solving
(2.5) are strictly monotone increasing, i.e., ui+1 > ui in int(Ω). Specifically, we
wish to show that in the non-trivial case, if each solution ui is continuous, then
the constructive algorithm discussed in (2.5)–(2.7) provides the strict monotonicity
required for convergence.

Lemma 3.4. Let ui and ui+1 be continuous solutions of −∆ui = χAi−1 in Ω based
on the construction in (2.3)–(2.7) with Ai−1 ⊂ Ai ⊂ Ω, and ui, ui+1

∣∣
∂Ω

= 0, then
ui+1 > ui, for all x in interior or (Ω).

Proof. Let v = ui+1−ui with v
∣∣
∂Ω

= 0. Since v is continuous, there is an open disk
D contained in Ai\Ai−1. Construct f(x) ∈ C∞(Ω) with f = 1 in int(D) and f = 0
on Ω \D. Then χAi\Ai−1 ≥ f on Ω. Since f ∈ L2(Ω), by comparing the solution
of −∆v = χA=i\Ai−1 , v

∣∣
∂Ω

, with −∆v̂ = f , v̂
∣∣
∂Ω

= 0, using the weak maximum
principle for weak solutions and the continuity of v and v̂, from Lemma 3.3 we
obtain that v ≥ v̂ on Ω. Now since v̂ ∈ C2(Ω) ∩ C(Ω), we obtain by the strong
maximum principle of classical solutions of Poisson’s equation that v̂ > 0 in Ω.
Hence ui+1 > ui in int(Ω). �

It remains to show that the sets {Ai} will always grow boundedly to the set A
which solves the free boundary problem.

In the construction of the sets Ai in Section 2, Ai−1 ⊆ Ai, however the sets may
have the same measure, i.e., m(Ai \Ai−1) = 0. This would be insufficient to assure
convergence, except in the special case when Ai corresponds to a free boundary
set, when Ai = Ai−1 for all i. However, in the nontrivial case the construction
described in Section 2, along with the continuity of the ui, is sufficient to assure
that m(Ai \Ai−1) > 0. Then we have

Lemma 3.5. Consider the construction in (2.3)–(2.7) with Ai−1 ⊆ Ai, ci =
min{ui(x) | x ∈ ∂Ai−1}, and −∆ui = χAi−1 ≥ 0 in Ω. If di = max{ui(x) |
x ∈ ∂Ai−1} > ci, then m(Ai \Ai−1) > 0.

Proof. Since ui ∈ C0(Ω), we have that intAi = {x ∈ Ω|ui(x) > ci}, and similarly
intAi−1, are open. Since ui(x) > ci for all x ∈ intAi−1 and since ci < ui(x) < di for
some x ∈ Ai, ∃y ∈ Ai such that y /∈ Ai−1. Thus for some ε > 0, ∃D(y, ε), an open
ball around y, such that D(y, ε)∩Ai−1 = ∅ ⇒ m(Ai \Ai−1) ≥ m(D(y, ε)) > 0. �

We introduce formally now the re-scaling property of the forcing term, λH(u−k)
which is central to the development of this algorithm.

Lemma 3.6. Let A ⊂ Ω and u be a solution of −∆u = χA in Ω, u
∣∣
∂Ω

= 0. If u is
constant on ∂A, then u solves (1.1).



8 J. KOLIBAL EJDE-2005/132

Proof. If u is constant on ∂A, say k > 0, then ∂A = {x ∈ Ω | u(x) = k}, con-
sequently −∆u = λH(u − k). If we write kυ = u and kµ = λ, then −k∆υ =
kµH(kυ − k) in Ω and kυ

∣∣
∂Ω

= 0. Thus

−∆υ = µH(k(υ − 1)) = µH(υ − 1) and υ|∂Ω = 0.

Hence the re-scaled solution υ satisfies (1.1) as desired. �

If (u;λ) is a solution such that u
∣∣
∂A

= k, then (υ;µ) is a solution such that
υ
∣∣
∂A

= 1. With these ideas in place, we prove that the sequence of nested subsets
converges to give a solution of the free boundary problem.

Theorem 3.7. Given Ω ⊂ Rn, 1 ≤ n ≤ 3, λ > 0, and the sequence of nested
subsets, A0 ⊆ A1 ⊆ A2 · · · ⊆ Ai · · · ⊆ Ω constructed in Section 2, the sequence
of solutions of −∆ui = λχAi−1 converges to a solution u of −∆u = λχA, where
A = ∪Ai, and where u, ui

∣∣
∂Ω

= 0. Furthermore, u is constant on the boundary of
A.

Proof. We recall the construction in Section 2 and Lemma 3.3. We have a sequence
of solutions {ui} of the differential equation, the support of each forcing term is
the set Ai−1, and the minimum value of ui on Ai−1 is ci. The support of the
forcing terms is increasing and the supports form a nested sequence of sets in Ω.
The ci, i ≥ 1, form an increasing sequence bounded from above by c0, and hence
a convergent sequence. Similarly, m(Ai) is increasing and bounded from above by
m(Ω), and hence these form a convergent sequence.

Define A ⊆ Ω and c ∈ [c1, c0] by

A = ∪∞i=0Ai, c = lim
i→∞

ci.

Denote by u the solution of the partial differential equation −∆u = λχA, and
u
∣∣
∂Ω

= 0. Since the projection of the open subset intΣ(ci) of the graph of ui is open,
each set ntAi is open, whence we have that each χAi ∈ L2(Ω) and χA ∈ L2(Ω).
This follows from the construction, since intAi = {x ∈ Ω | ui(x) > ci} and each ui

is continuous by Lemma 3.1 since χAi−1 ∈ L2(Ω).
Let vi = u−ui. Since ∆vi ∈ L2, we have using elliptic regularity and the Sobolev

Imbedding Theorem that ‖vi‖H2 ≤ C1‖χA − χAi
‖L2

and ‖vi‖c ≤ C2‖vi‖H2 , where
C1 and C2 are constants depending only on Ω and where ‖u‖c is the maximum
norm. Since ‖χA − χAi‖L2

can be made arbitrarily small for i sufficiently large, it
follows that ui → u uniformly on Ω. Since u is continuous and c 6= 0, it follows that
A 6= Ω. Now if u does not equal c everywhere on ∂A, then by Lemmas 3.4 and 3.5
we can extend A by projection onto Ω, and obtain a solution, which is everywhere
in Ω strictly larger than the solution we have obtained for −∆u = χA, contradicting
the fact that c is a limit point of the sequence. Hence u = c everywhere on ∂A. �

Again, if at any i ≥ 1 we find that Ai = Ai−1, then we have that ui = ci on
∂Ai−1. Because of this, there is no possibility of having the sets grow, and the
sequences are (trivially) Ai+j = Ai and ci+j = ci. By solution, we mean the pair
(u;λ) which satisfies

(u, v) = λ〈H(u− c), v〉 ∀v ∈ H1
0 (Ω), and u = 0 on ∂Ω; (3.5)

or; in other words, the pair (u;λ) is a weak solution of the problem. Consequently,
if c = lim ci,



EJDE-2005/132 LEVEL SET METHOD 9

Theorem 3.8. The pair (u/c;λ/c) is a solution of problem (1.1).

Proof. The result of this theorem follows immediately from Lemma 3.2, Lemma 3.6
which shows that a solution to the free boundary problem may be rescaled, and
Theorem 1 which shows that the free boundary problem produces a solution in Ω
which has the value of k on the boundary of the free boundary set A. �

Observe, that this rescaling can be done at convergence, or we may rescale each
iterate so that at each stage in the construction,

min
x∈Ai−1

ui(x) = 1. (3.6)

This latter approach has the numerical advantage of keeping the problem normal-
ized.

4. Some properties of solutions

The reason for introducing the pair (u;λ) is that the free parameter in the
problem in the solution algorithm is the estimator of the free boundary set A0 and
not λ. The value of λ is determined by the value of c. This is a familiar result in
the isoperimetric variational approach where λ is determined by the choice of the
constraint set. Even in the elementary example of the radial solution on the unit
disk, it was inconvenient to take λ as a freely defined parameter in the problem.

The isoperimetric variational principle is formulated by considering the func-
tional

J(u) =
∫

Ω

∫ u

0

H(s− 1) ds dΩ, (4.1)

where the domain of integration over Ω can be restricted to the set where H(s−1) 6=
0, the free boundary set A. Then (3.5) yields a stationary value u of the restriction
of the bilinear form (u, u) to the set

σ(µ) = {u ∈ H1
0 (Ω) | J(u) = µ > 0}.) (4.2)

In constructing the isoperimetric variational inequality (in the sense of [6]) we
constrain the value of J(u) on the free boundary set. In choosing c0 using the
algorithm in (2.3)–(2.7), we constrain the minimum size of the free boundary set;
that is, we find solutions for which A0 ⊂ A, where A0 is the set with which we
begin the iteration. Thus, in a sense, these approaches are related in that in the
isoperimetric approach J(u) is constrained to depend on m(A) such that u satisfies
(4.2) while in the free boundary approach we constrain m(A) ≥ m(A0).

In the convergence proof of Theorem 3.7 we used the upper bound provided by
the basic solution to show that the sequence we constructed converged. Because
the solution of Poisson’s equation in any compact domain is bounded irrespective
of the choice of χB , the sequence of Ai will converge for any initial guess B ⊂ Ω.
Thus, as an easy consequence of Theorem 3.7, we have the following result.

Corollary 4.1. Let B be any subset contained in Ω. If we solve −∆u0 = χB in
place of (2.3), then the iterative procedure in Section 2 converges to a solution of
(1.1).

Of course, actually knowing the Green’s function for Ω when B is a ball, −∆(u) =
χB with u = 0 on ∂(Ω) as discussed in [12, Theorem 3.3]. In particular, the orderly
construction of the free boundary set A from any initial iterate gives,
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Corollary 4.2. There are an (uncountably) infinite number of solutions.

Proof. Let u be any solution (1.2) with free boundary set A. On Ω take as a new
starting value any set B ⊃ A. Then the sequence of sets Â0, Â1, . . . converges to a
solution Â of (1.1). Since Â0 ⊃ A, the monotonicity of the construction leads to a
new solution with Â ⊃ A. �

An additional advantage of the monotonic nesting of the sets Ai lies in the
characterization of the topology of the solutions. In place of dealing abstractly
with a functional in the variational approach we deal directly with iterates which
converge to the free boundary set. A simple but important result which applies to
the class of solutions which we construct is the following.

Corollary 4.3. Every connected component of the free boundary set obtained by
the iterative procedure in Section 2 contains (at least) a local maximum of the initial
solution of (2.2).

This corollary is an immediate consequence of the way we construct the free
boundary set, since Ai ⊃ A0,∀i and A0 has the stated property.

Thus the connectivity of any free boundary solution obtain using (2.3)–(2.7) is
related to the location of the maxima of the initial iterate u0 and the growth of
the sets Ai. Consider using the basic solution as the starting iterate. By taking a
level c0 sufficiently close to the maxima of the basic solution, the projected set A0

contains components which are not connected whenever the maxima are distinct,
i.e., if Σ(c0) contains components which are not connected. If the sequence of nested
sets Ai converges to the free boundary set A before the components of Ai merge,
then the the free boundary problem can be seen to admit solution sets which are
not connected. The connectivity of the free boundary set is seen to be a property
of the initial guess and the growth of the iterates. Since the maxima of the the
initial solution −∆u0 = χB are easily computable, free boundary sets which are
not connected would appear to be admissible as solutions of (1.1) only when it is
possible to bound the growth of the iterates.

Finally, consider the rescaling property of the semi-linear differential equation in
Lemma 3.6. We consider boundary-value problems of the form −∆u = H(u−k/λ).
When λ > 0 and k → 0 or when λ → ∞ and k > 0, we obtain the basic solution
of −∆u = 1. For solutions for which the free boundary set is small, then λ → ∞
as m(A) → 0. This follows since λ〈χA, v〉 → 0 for fixed λ as m(A) → 0, and
the solution to (1.1) collapses into the trivial solution unless λ is made arbitrarily
large. Based on this, solutions will not be unique for large λ since there is the
possibility of the following two solutions sharing the same value of λ: one with the
free boundary decreasing in measure, approaching a point in Ω (necessitating that
λ become arbitrarily large) and the other with the free boundary set approaching
the domain Ω. Between these two extremes, the value of λ has a minimum, below
which only the trivial solution is possible. If we let (u;λ) be the basic solution
to the problem with maximum value umax, then a bound for the minimum value,
λmin of (1.1) is given by λmin ≥ λ/umax.

Conclusion and further work. Using a technique of successive linear approxi-
mations, we have shown the existence of a class of solutions of a semi-linear elliptic
boundary-value problem with a discontinuity in the forcing term (1.1). A sequence
of linear elliptic boundary-value problems is constructed whose solution converged
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to a desired solution of the related free boundary-value problem. This construc-
tion applies in any domain in R2 or R3 in which we can obtain solutions for the
underlying linear elliptic boundary-value problem. In addition we gain insight into
the connectivity of the free boundary sets for this class of solutions based on the
maxima of the basic solution.

In practice, preliminary numerical results in applying the method show that
the most significant factor affecting the convergence rate of this algorithm was the
choice of the initial set Bh. Taking Bh based on the basic solution, invariably lead to
solutions which were obtained within a few iterations to within machine accuracy.
The method was found to be robust and the convergence rate of the iteration
scheme was found to depend on the shape of the domain and the size of the free
boundary set relative to the mesh being used. In particular, the use of a mesh fitted
to the equipotential lines associated with the basic solution on the domain Ωh is
recommended to enhance the resolution of the method for solutions with small free
boundary sets. Initial results also show that the use of adaptive gridding of the
domain is needed in order to capture the details of small free boundary sets.

It is worth observing there may exist solutions to which the numerical procedure
cannot converge since we have not shown that every solution of the problem belongs
to the class computable by this algorithm. That is, it may be possible for solutions
to exist which are not the limits of monotone sequences we can construct for any
choice of initial solution.
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