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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO
A QUASILINEAR ELLIPTIC PROBLEM IN RN

DRAGOS-PATRU COVEI

Abstract. We prove the existence of a unique positive solution to the problem

−∆pu = a(x)f(u)

in RN , N > 2. Our result extended previous works by Cirstea-Radulescu and

Dinu, while the proofs are based on two theorems on bounded domains, due
to Diaz-Saà and Goncalves-Santos.

1. Introduction

Our purpose in this paper is to study the problem

−∆pu = a(x)f(u) in RN

u > 0 in RN

u(x) → 0 as |x| → ∞ ,

(1.1)

where N > 2, ∆pu, (1 < p < ∞) is the p-Laplacian operator and the function a(x)
satisfies the following hypotheses:

(A1) a(x) ∈ C0,α
loc (RN ) for some α ∈ (0, 1);

(A2) a(x) > 0 in RN ;
(A3) For Φ(r) = max|x|=r a(x) and p < N ,∫ ∞

0

r1/(p−1)Φ1/(p−1)(r)dr < ∞ if 1 < p ≤ 2∫ ∞

0

r
(p−2)N+1

p−1 Φ(r)dr < ∞ if 2 ≤ p < ∞ .

This problem has been studied extensively in the case p = 2 and f(u) = u−γ ,
with γ > 0. Lazer and McKenna [12] studied the special case when Ω ⊂ RN

(N ≥ 1) is a bounded domain with smooth boundary. They proved the existence
and the uniqueness of a positive solution u ∈ C2+α(Ω) ∩ C(Ω) with homogeneous
Dirichlet boundary condition, provided that a(x) ∈ Cα(Ω) and a(x) > 0 for all
x ∈ Ω.
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The existence of entire positive solutions on RN for γ ∈ (0, 1) and under certain
additional hypotheses has been established by Edelson [7] and Kusano-Swanson
[10].

Kusano-Swanson proved that the problem (1.1) has an entire positive solution
in R2 with logarithmic growth at ∞ if a(x) > 0, x > 0, a(x) ∈ C(0,∞) and∫ ∞

e

t(Logt)−γ
(
max
|x|=t

a(x)
)
dt < ∞.

Edelson proved the existence of a solution provided that∫ ∞

1

rN−1+γ(N−2)(max
|x|=t

a(x))dt < ∞,

for some γ ∈ (0, 1). This result is generalized for any γ > 0 via the sub- and super
solutions method in Shaker [13] and by other methods by Dalmasso [4].

Shaker proved that problem (1.1) with p = 2 and f(u) = u−γ , γ > 0 has an
entire positive solution u(x) such that c1 ≤ u(x)|x|q|N−2| ≤ c2 for some c1, c2 and
0 < q < 1 as x →∞ if

(1) a(x) ∈ Cα
loc(RN ), a(x) > 0 for x ∈ RN\{0};

(2) There exists 0 < c < 1 such that cΦ(|x|) ≤ a(x) ≤ Φ(|x|) where Φ(r) :=
max|x|=r a(x) , r ∈ [0,∞);

(3)
∫∞
1

rN−1+γ(N−2)(max|x|=t a(x))dt < ∞.
Lair and Shaker continued in [11] the study of (1.1) for p = 2 and f(u) = u−γ ,

γ > 0. Under the above conditions the authors proved the existence of a unique
positive solution u ∈ C2,α

loc (RN ) vanishing at infinity to this special problem.
Zhang [14], imposed the following condition to guarantee the existence of positive

solutions to problem (1.1):
(A4) f ∈ C1((0,∞), (0,∞)), lims↘0+ limf(s) = ∞, and f ′(s) < 0, for all s ∈

(0,∞), namely, f is strictly decreasing in (0,∞).
Under the above condition Zhang’s proved that problem (1.1) has a unique pos-

itive solution, u ∈ C2+α
loc (RN ), vanishing at infinity.

Cirstea-Radulescu [2] and Dinu [6] extended the results of Lair, Shaker and
Zhang for the case of a nonlinearity that is not necessarily decreasing on (0,∞).

Our aim is to extend the results of Cirstea-Radulescu and Dinu in the sense that
1 < p < ∞. More exactly, let f : (0,∞) → (0,∞) be a C1 function that satisfies
the following assumptions:

(F1) There exists β > 0 such that the mapping u 7→ f(u)/(u+β)p−1 is decreasing
on (0,∞)

(F2) limu↘0 f(u)/up−1 = +∞ and f is bounded in a neighbourhood of +∞.
Our main results are the following:

Theorem 1.1. Under hypotheses (F1), (F2), (A1), (A2), (A3), problem (1.1) has
a unique positive global solution vanishing at infinity.

Theorem 1.2. Suppose a(r) is a positive radial function which is continuous on
RN and fulfills ∫ ∞

0

r1/(p−1)a1/(p−1)(r)dr = ∞ if 2 ≤ p < ∞

Then (1.1) has no positive radial solution.
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Theorem 1.3. Problem (1.1) has no positive radial solution if p ≥ N .

Theorem 1.4. Suppose a(r) is a positive radial function which is continuous on
RN and ∫ ∞

0

r
(p−2)N+1

p−1 a(r)dr = ∞ if 1 < p ≤ 2.

Then (1.1) has no positive radial solution.

2. Uniqueness

Suppose u and v are arbitrary solutions of problem (1.1). Let us show that u ≤ v
or, equivalently, ln(u(x)+β) ≤ ln(v(x)+β), for any x ∈ RN . Assume the contrary.
Since, we have

lim
|x|→∞

(ln(u(x) + β)− ln(v(x) + β)) = 0,

we deduce that
max
RN

(ln(u(x) + β)− ln(v(x) + β))

exists and is positive. At that point, say x0, we have

∇(ln(u(x0) + β)− ln(v(x0) + β)) = 0,

so
1

u(x0) + β
· ∇u(x0) =

1
v(x0) + β

· ∇v(x0),

and
1

(u(x0) + β)p−2
· |∇u(x0)|p−2 =

1
(v(x0) + β)p−2

· |∇v(x0)|p−2. (2.1)

By (f1) we obtain
f(u(x0))

(u(x0) + β)p−1
<

f(v(x0))
(v(x0) + β)p−1

. (2.2)

Since 0 ≥ ∆(ln(u(x0) + β)− ln(v(x0) + β)), it follows that

∆u(x0)
u(x0) + β

≤ ∆v(x0)
v(x0) + β

,

so
1

(u(x0) + β)p−1
· |∇u(x0)|p−2∆u(x0) ≤

1
(v(x0) + β)p−1

· |∇v(x0)|p−2∆v(x0) . (2.3)

Since

|∇ ln(u(x0) + β)|p−2 =
1

(u(x0) + β)p−2
· |∇u(x0)|p−2,

it follows that

∇(|∇ ln(u(x0) + β)|p−2)

= −(p− 2)
|∇u(x0)|p−2(u(x0) + β)p−3

(u(x0) + β)2(p−2)
· ∇u(x0) +

∇(|∇u(x0)|p−2)
(u(x0) + β)p−2

.

Then
∇(|∇ ln(u(x0) + β)|p−2) · ∇(ln(u(x0) + β))

= −(p− 2)
|∇u(x0)|p−2|∇u(x0)|2

(u(x0) + β)p
+
∇(|∇u(x0)|p−2) · ∇u(x0)

(u(x0) + β)p−1

(2.4)
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and

|∇ ln(u(x0) + β)|p−2∆(ln(u(x0) + β)) =
|∇u(x0)|p−2∆u(x0)

(u(x0) + β)p−1
− |∇u(x0)|p

(u(x0) + β)p
.

So, by (2.1), (2.2), (2.3) and (2.4) we have

0 ≥ ∆p(ln(u(x0) + β))−∆p(ln(v(x0) + β))

=
∆pu(x0)

(u(x0) + β)p−1
− (p− 1)

|∇u(x0)|p

(u(x0) + β)p
− ∆pv(x0)

(v(x0) + β)p−1

+ (p− 1)
|∇v(x0)|p

(v(x0) + β)p

=
∆pu(x0)

(u(x0) + β)p−1
− ∆pv(x0)

(v(x0) + β)p−1

= −a(x0)(
f(u(x0))

(u(x0) + β)p−1
− f(v(x0))

(v(x0) + β)p−1
) > 0

which is a contradiction. Hence u ≤ v. By symmetry we also have v ≤ u, and the
proof is complete.

3. Existence of a solution

We first show that our hypothesis (F1) implies limu↘0 f(u) exists, finite or +∞.
Indeed, since f(u)

(u+β)p−1 is decreasing, there exists L := limu↘0
f(u)

(u+β)p−1 ∈ (0,+∞].
It follows that limu↘0 f(u) = Lβp−1.

To prove the existence of a solution to Problem (1.1), we need to employ a
corresponding result by Diaz-Saà [5] for bounded domains. They considered the
problem

−∆pu = g(x, u) in Ω
u ≥ 0 in Ω

u(x) = 0 on ∂Ω,

(3.1)

where Ω ⊂ RN is a bounded domain with smooth boundary and g(x, u) : Ω ×
[0,∞) → R.

Assume that

-for a.e. x ∈ Ω the function u → g(x, u) is continuous on [0,∞)

and the function u → g(x, u)/up−1 is decreasing on (0,∞); (3.2)

-for each u ≥ 0 the function x → g(x, u) belongs to L∞(Ω); (3.3)

-there exists C > 0 such that g(x, u) ≤ C(up−1 + 1) a.e. x ∈ Ω, for all u ≥ 0.
(3.4)

Under these hypotheses on g, Diaz-Saà [5] proved that there is at most one
solution of (1.1).

Let us consider the problem
−∆puk = a(x)f(uk), if |x| < k,

uk(x) = 0, if |x| = k.
(3.5)

The following two distinct situations may occur:
Case 1: f is bounded on (0,+∞). In this case, as we have initially observed,
limu↘0 f(u) exists and is finite, so f can be extended by continuity at the origin.
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To obtain a solution to (3.5), it is sufficinet to verify that the hypotheses of the
Diaz-Saà theorem are fulfilled.

* Since f ∈ C1((0,∞), (0,∞)) it follows that the mapping u → a(x)f(u) is
continuous in [0,∞).

* From a(x) f(u)
up−1 = a(x) f(u)

(u+β)p−1 · (u+β)p−1

up−1 , using positivity of a and (F1) we

deduce that the function u → a(x) f(u)
up−1 is decreasing on (0,∞).

* For all u ≥ 0, since a(x) ∈ C0,α
loc (RN ), we obtain x → a(x)f(u) belongs to

L∞(Ω).
* By limu→∞

f(u)
up−1+1 = limu→∞

f(u)
up−1 · up−1

up−1+1 = 0 and f ∈ C1((0,∞), (0,∞)),
there exists C > 0 such that f(u) ≤ C(up−1+1) for all u ≥ 0. Therefore, a(x)f(u) ≤
C(up−1 + 1) for all u ≥ 0.

* Observe that a0(x) = limu↘0
p(x)f(u)

up−1 = +∞ and a∞(x) = limu→+∞
p(x)f(u)

up−1 =
0. Thus by Diaz-Saa, problem (3.5) has a unique solution uk which, by the maxi-
mum principle, is positive in |x| < k.

Case 2. limu↘0 f(u) = +∞. We will apply the method of sub- and supersolutions
in order to find a solution to the problem (3.5). We first observe that 0 is a
subsolution for this problem.

We construct in what follows a positive supersolution. By the boundedness of
f in a neighbourhood of +∞, there exists A > 0 such that f(u) ≤ A, for any
u ∈ (1,+∞). Let f0 : (0, 1] → (0,+∞) be a continuous nonincreasing function such
that f0 ≥ f on (0, 1]. We can assume without loss of generality that f0(1) = A. Set

g(u) =

{
f0(u), if 0 < u ≤ 1,

A, if u > 1.

Then g is a continuous nonincreasing function on (0,+∞). Let h : (0,+∞) →
(0,+∞) be a C1 nonincreasing function such that h ≥ g. Thus by in [8, Theorem
1.3] the problem

−∆pU = p(x)h(U), if |x| < k,

U = 0, if |x| = k.

has a positive solution. Now, since h ≥ f on (0,+∞), it follows that U is superso-
lution of (3.5).

In both cases studied above we define uk = 0 for |x| > k. Using a comparision
principle argument as already done above for proving the uniqueness, we can show
that uk ≤ uk+1 on RN .

We now justify the existence of a continuous function v : RN → R such that
uk ≤ v in RN . We first construct a positive radially symmetric function w such
that −∆pw = Φ(r), (r = |x|) on RN and limr→∞ w(r) = 0. A straightforward
computation shows that

w(r) := K −
∫ r

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ,

where

K =
∫ ∞

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ.
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We first show that (A3) implies that∫ +∞

0

[
ξ1−N

∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ,

is finite.

Theorem 3.1. If j : I ⊆ R → R is a locally integrable nonnegative function, then( 1
b− a

∫ b

a

j(x)dx
)h

≤ (resp. ≥)
1

b− a

∫ b

a

jh(x)dx

for all a, b ∈ I, a < b and 1 ≤ h < +∞ (resp 0 < h ≤ 1)

Case 1: Let 1 < p ≤ 2, so 0 < p− 1 ≤ 1, follows that 1 ≤ 1
p−1 < +∞. By Theorem

3.1 for any r > 0, we have∫ r

0

ξ
1−N
p−1

[ξ

ξ

∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ

=
∫ r

0

ξ
1−N
p−1 ξ1/(p−1)

[1
ξ

∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ

≤
∫ r

0

ξ
2−N
p−1

1
ξ

∫ ξ

0

σ
N−1
p−1 Φ1/(p−1)(σ)dσdξ

=
∫ r

0

ξ
2−N
p−1 −1

∫ ξ

0

σ
N−1
p−1 Φ1/(p−1)(σ)dσdξ

= − p− 1
N − 2

∫ r

0

d

dξ
ξ

2−N
p−1

∫ ξ

0

σ
N−1
p−1 Φ1/(p−1)(σ)dσdξ

=
p− 1
N − 2

[
− r

2−N
p−1

∫ r

0

σ
N−1
p−1 Φ1/(p−1)(σ)dσ +

∫ r

0

ξ1/(p−1)Φ1/(p−1)(ξ)dξ
]
.

Now, by L’Hôpital’s rule, we have

lim
r→∞

[
− r

2−N
p−1

∫ r

0

σ
N−1
p−1 Φ1/(p−1)(σ)dσ +

∫ r

0

ξ1/(p−1)Φ1/(p−1)(ξ)dξ
]

= lim
r→∞

−
∫ r

0
σ

N−1
p−1 Φ1/(p−1)(σ)dσ + r

N−2
p−1

∫ r

0
ξ1/(p−1)Φ1/(p−1)(ξ)dξ

r
N−2
p−1

= lim
r→∞

∫ r

0

ξ
1

p−1 Φ1/(p−1)(ξ)dξ

=
∫ ∞

0

ξ1/(p−1)Φ1/(p−1)(ξ)dξ < ∞,

Case 2: Let 2 ≤ p < +∞, so 1 ≤ p− 1, it follows that 1 ≥ 1
p−1 > 0. Set∫ ξ

0

σN−1Φ(σ)dσ ≤ 1 for ξ > 0, or∫ ξ

0

σN−1Φ(σ)dσ > 1 for ξ > 0,

In the first case [ ∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

≤ 1,
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so ∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ ≤
∫ r

0

ξ
1−N
p−1 dξ

is finite as r →∞ and N > p. In the second case,[ ∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

≤
∫ ξ

0

σN−1Φ(σ)dσ

for ξ ≥ 0, so∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1Φ(σ)dσ
]1/(p−1)

dξ ≤
∫ r

0

ξ
1−N
p−1

∫ ξ

0

σN−1Φ(σ)dσdξ .

Integration by parts gives∫ r

0

ξ
1−N
p−1

∫ ξ

0

σN−1Φ(σ)dσdξ

= − p− 1
N − p

∫ r

0

d

dξ
ξ

p−N
p−1

∫ ξ

0

σN−1Φ(σ)dσdξ

=
p− 1
N − p

(−r
p−N
p−1

∫ r

0

σN−1Φ(σ)dσ +
∫ r

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ) .

Now, by L’ Hôpital’s rule, we have

lim
r→∞

[
− r

p−N
p−1

∫ r

0

σN−1Φ(σ)dσ +
∫ r

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ
]

= lim
r→∞

−
∫ r

0
σN−1Φ(σ)dσ + r

N−p
p−1

∫ r

0
ξ

(p−2)N+1
p−1 Φ(ξ)dξ

r
N−p
p−1

= lim
r→∞

∫ r

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ

=
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ < ∞,

From cases 1 and 2 above, it follows that

K =
p− 1
N − 2

·
∫ ∞

0

ξ
1

p−1 Φ1/(p−1)(ξ)dξ if 1 < p < 2, or

K =
p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ if 2 ≤ p < +∞.

Clearly, for all r > 0,

w(r) <
p− 1
N − 2

·
∫ ∞

0

ξ1/(p−1)Φ1/(p−1)(ξ)dξ if 1 < p ≤ 2, or

w(r) <
p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ if 2 ≤ p < +∞,

An upper-solution to (1.1) will be constructed. Consider the function f(u) =
(f(u) + 1)1/(p−1), for u > 0.

Note that the hypothesis u → f(u)/(u+β)p−1 is a decreasing function on (0,∞)
implies that u → f(u)/up−1 is a decreasing function on (0,∞), because v+β

v ≤
u+β

u ⇔ vu + βu ≤ vu + vβ ⇔ β(u− v) ≤ 0, is true ∀u ≤ v and β > 0. We have

(F1’) f(u) ≥ f(u)1/(p−1)
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(F2’) limu↘0 f(u)/u = ∞ and u 7→ f(u))/up−1 is decreasing on (0,∞).

Let v be a positive function such that w(r) = 1
C

∫ v(r)

0
tp−1/f(t) dt, where C

is a positive constant such that KC ≤
∫ C1/(p−1)

0
tp−1/f(t) dt. We prove that we

can find C > 0 with this property. From our hypothesis (F2’) we obtain that
limx→+∞

∫ x

0
tp−1/f(t) dt = +∞. Now using L’Hôpital’s rule we have

lim
x→∞

1
xp−1

∫ x

0

tp−1

f(t)
dt = lim

x→∞

x

(p− 1)f(x)
= +∞.

This means that there exists x1 > 0 such that
∫ x

0
tp−1/f(t) dt ≥ Kxp−1, for all

x ≥ x1. It follows that for any C ≥ x1,

KC ≤
∫ C1/(p−1)

0

tp−1

f(t)
dt.

But w is a decreasing function, and this implies that v is a decreasing function too.
Then ∫ v(r)

0

tp−1

f(t)
dt ≤

∫ v(0)

0

tp−1

f(t)
dt = C · w(0) = C ·K ≤

∫ C1/(p−1)

0

tp−1

f(t)
dt.

It follows that v(r) ≤ C1/(p−1) for all r > 0. From w(r) → 0 as r → +∞ we deduce
v(r) → 0 as r → +∞. By the choice of v we have

∇w =
1
C
· vp−1

f(v)
∇v and ∆w =

1
C
· vp−1

f(v)
∆v +

1
C

(vp−1

f(v)

)′|∇v|2.

so

|∇w|p−2 =
1

Cp−2

(vp−1

f(v)

)p−2|∇v|p−2 .

It follows that

|∇w|p−2∆w =
1

Cp−2
(
vp−1

f(v)
)p−2|∇v|p−2

( 1
C

vp−1

f(v)
∆v +

1
C

(
vp−1

f(v)
)′|∇v|2

)
=

1
Cp−1

(
vp−1

f(v)
)p−1|∇v|p−2∆v +

1
Cp−1

(
vp−1

f(v)
)p−2(

vp−1

f(v)
)′|∇v|p,

so

∇(|∇w|p−2) · ∇w

=
{ 1

Cp−2
(
vp−1

f(v)
)p−2∇(|∇v|p−2) +

1
Cp−2

[
(
vp−1

f(v)
)p−2

]′
|∇v|p−2∇v

}
· [ 1

C
· vp−1

f(v)
∇v]

=
1

Cp−1
(
vp−1

f(v)
)p−2∇(|∇v|p−2) · ∇v +

1
Cp−1

[
(
vp−1

f(v)
)p−2

]′ vp−1

f(v)
|∇v|p,

so that

∆pw =
1

Cp−1

(vp−1

f(v)

)p−1
[
|∇v|p−2∆v +∇(|∇v|p−2) · ∇v

]
+

1
Cp−1

(vp−1

f(v)

)p−2|∇v|p(vp−1

f(v)
)′ +

1
Cp−1

[(vp−1

f(v)

)p−2
]′ vp−1

f(v)
|∇v|p

=
1

Cp−1
(
vp−1

f(v)
)p−1∆pv + (p− 1)

1
Cp−1

|∇v|p(vp−1

f(v)
)p−2(

vp−1

f(v)
)′.

(3.6)
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From (3.6) we deduce that

∆pw =
1

Cp−1
(
vp−1

f(v)
)p−1∆pv + (p− 1)

1
Cp−1

|∇v|p(vp−1

f(v)
)p−2(

vp−1

f(v)
)′. (3.7)

From (3.7) and the fact that u → f(u)
up−1 is a decreasing function on (0,+∞), we

deduce that

∆pv ≤ Cp−1
( f(v)
vp−1

)p−1∆pw = −Cp−1
( f(v)
vp−1

)p−1Φ(r) ≤ −f(v)Φ(r). (3.8)

By (3.7) and (3.8) and using in an essential manner the hypothesis (F1), as already
done for proving the uniqueness, we obtain that uk ≤ v for |x| ≤ k and, hence, for all
RN . Now we have a bounded increasing sequence u1 ≤ u2 ≤ · · · ≤ uk ≤ dots ≤ v
with v vanishing at infinity. Thus there exists a function, say u ≤ v such that
uk → u pointwise in RN . Using

u′(r) =
[
r1−N

∫ r

0

σN−1p(σ)f(u(σ))dσ
]1/(p−1)

,

u′′(r) = −
p(r)f(u(r)) + (1−N)r−N

∫ r

0
σN−1p(σ)f(u(σ))dσ

p− 1

×
[
r1−N

∫ r

0

σN−1p(σ)f(u(σ))dσ
] 2−p

p−1
,

2− p

p− 1
≥ 0 ⇐⇒ 1 < p ≤ 2

lim
r→0

∫ r

0
σN−1p(σ)f(u(σ))dσ

rN
= 0

lim
r→0

∫ r

0
σN−1p(σ)f(u(σ))dσ

rN−1
= 0

it is easy to prove that u(r) ∈ C2(RN ) if 1 < p ≤ 2 because limr→∞ u′′(r) is finite
and u(r) ∈ C1(RN ) if 2 < p < ∞ because limr→∞ u′(r) is finite.

4. Proof of Theorem 1.2

Suppose (1.1) has a solution u(r), then

(rN−1|u′(r)|p−2u′(r))′ = −rN−1f(u(r))a(r),

integrating from 0 to r, we have

|u′(r)|p−2u′(r) = −r1−N

∫ r

0

σN−1f(u(σ))a(σ)dσ,

hence u′(r) < 0. We put ln(u(r) + 1) := u(r) > 0 for all r > 0. Then we have

∆pu(r) =
∆pu(r)

(u(r) + 1)p−1
− (p− 1)

|∇u(r)|p

(u(r) + 1)p
.

Then u(r) satisfies

1
rN−1

(
rN−1(−u′(r))p−2u′(r)

)′
+ (p− 1)

|∇u(r)|p

(u(r) + 1)p
= − f(u(r))a(r)

(u(r) + 1)p−1
. (4.1)
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Multiplying (4.1) by rN−1 and integrating on (0, ξ) yield

∫ ξ

0

(
(−u′(σ))p−1σN−1

)′
dσ − (p− 1)

∫ ξ

0

σN−1|∇u(σ)|p

(u(σ) + 1)p
dσ

=
∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ,

equivalently

(−u′(ξ))p−1ξN−1 −
∫ ξ

0

(p− 1)
σN−1|∇u(σ)|p

(u(σ) + 1)p
dσ =

∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ . (4.2)

Multiplying equation (4.2) by ξ1−N , we deduce

(−u′(ξ))p−1 − ξ1−N (p− 1)
∫ ξ

0

σN−1|∇u(σ)|p

(u(σ) + 1)p
dσ = ξ1−N

∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ.

(4.3)
From (4.3), we have

(
− u′(ξ)

)p−1 ≥ ξ1−N

∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ,

so

−u′(ξ) ≥ ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

, (4.4)

integrating (4.4) on (0, r), we have

u(0)− u(r) ≥
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ.

We observe that u(r) < u(0), for all r > 0 implies u(r) < u(0), for all r > 0.
If β ≥ 1, then the function u 7→ f(u)

(u+β)p−1 is decreasing on (0,+∞). This implies

f(u(σ))
(u(σ) + 1)p−1

>
f(u(0))

(u(0) + 1)p−1
. (4.5)

Since u is positive, we have∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ ≤ u(0), ∀r > 0,

substituting (4.5) into this expression, we obtain

∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

a(σ)σN−1dσ
]1/(p−1)

dξ ≤ u(0) + 1

f(u(0))
1

p−1
u(0) < ∞.
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Let 2 ≤ p < +∞, so 1 ≤ p− 1, follows that 1 ≥ 1
p−1 > 0. We have∫ r

0

ξ
1−N
p−1

[ξ

ξ

∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ

=
∫ r

0

ξ
1−N
p−1 ξ1/(p−1)

[1
ξ

∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ

≥
∫ r

0

ξ
2−N
p−1

1
ξ

∫ ξ

0

σ
N−1
p−1 a1/(p−1)(σ)dσdξ

=
∫ r

0

ξ
2−N
p−1 −1

∫ ξ

0

σ
N−1
p−1 a1/(p−1)(σ)dσdξ

= − p− 1
N − 2

∫ r

0

d

dξ
ξ

2−N
p−1

∫ ξ

0

σ
N−1
p−1 a1/(p−1)(σ)dσdξ

=
p− 1
N − 2

(−r
2−N
p−1

∫ r

0

σ
N−1
p−1 a1/(p−1)(σ)dσ +

∫ r

0

ξ1/(p−1)a(ξ)1/(p−1)dξ)

≥ p− 1
N − 2

1

r
N−2
p−1

∫ r

0

[
r

N−2
p−1 − (t)

N−2
p−1

]
t1/(p−1)a1/(p−1)(t)dt

≥ p− 1
N − 2

1

r
N−2
p−1

(
r

N−2
p−1 − (

r

2
)

N−2
p−1

) ∫ r/2

0

t1/(p−1)a1/(p−1)(t)dt

=
p− 1
N − 2

(1− (
1
2
)

N−2
p−1 )

∫ r/2

0

t1/(p−1)a1/(p−1)(t)dt →∞ as r →∞.

So

∞ >
u(0) + 1

f(u(0))1/(p−1)
u(0) ≥ ∞,

which is a contradiction.
If β < 1 then the function u 7→ (u+β)p−1

(u+1)p−1 is increasing on (0,+∞). In this case

u(0) ≥
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ

=
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)(u(σ) + β)p−1σN−1

(u(σ) + β)p−1(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ

≥ f(u(0))1/(p−1)

u(0) + β
β

∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ,

which implies

∞ >
u(0) + β

f(u(0))1/(p−1)β
u(0) ≥

∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ ≥ ∞,

which is a contradiction.

5. Proof of Theorem 1.3

Assume u is positive for r > 0 and satisfies

(rN−1|u′(r)|p−2u′(r))′ = −rN−1f(u(r))a(r).

Since f(u(r))a(r) is positive for r > 0, follows that

(rN−1|u′(r)|p−2u′(r))′ < 0, for r > 0,
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and that rN−1|u′(r)|p−2u′(r) is a decreasing function. Because this function is
decreasing and u′ < 0,

rN−1|u′(r)|p−2u′(r) ≤ −C, for r ≥ R,

where C is positive constant. As a consequence

−u′(r) ≥ C1r
− 1−N

p−1 , with C1 > 0.

Integrating this inequality from R to r we have

u(R)− u(r) ≥ C1

∫ r

R

r−
1−N
p−1 dr, for r ≥ R.

Letting r →∞, we arrive at a contradiction.

6. Proof of Theorem 1.4

As in proof of Theorem 1.2, we have

u(0)− u(r) ≥
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ,

We observe that u(r) < u(0), for all r > 0 implies u(r) < u(0), for all r > 0. If
β ≥ 1 then the function u 7→ f(u)

(u+β)p−1 is decreasing on (0,+∞). This implies

f(u(σ))
(u(σ) + 1)p−1

>
f(u(0))

(u(0) + 1)p−1
, (6.1)

Since u is positive, we have∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ ≤ u(0), ∀r > 0

substituting 6.1 into this expression we obtain∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

a(σ)σN−1dσ
]1/(p−1)

dξ ≤ u(0) + 1
f(u(0))1/(p−1)

u(0) < ∞.

Let 1 < p < 2, so 0 < p− 1 < 1, it follows that 1 < 1
p−1 < +∞. Set∫ ξ

0

rN−1a(r)dr < 1 for ξ > 0, or∫ ξ

0

rN−1a(r)dr ≥ 1 for ξ > 0,

In the second case, we have[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

≥
∫ ξ

0

σN−1a(σ)dσ,

so ∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ ≥
∫ r

0

ξ
1−N
p−1

∫ ξ

0

σN−1a(σ)dσdξ .
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Integration by parts gives∫ r

0

ξ
1−N
p−1

∫ ξ

0

σN−1a(σ)dσdξ

= − p− 1
N − p

∫ r

0

d

dξ
ξ

p−N
p−1

∫ ξ

0

σN−1a(σ)dσdξ

=
p− 1
N − p

(−r
p−N
p−1

∫ r

0

σN−1a(σ)dσ +
∫ r

0

ξ
(p−2)N+1

p−1 a(ξ)dξ)

≥ p− 1
N − p

1

r
N−p
p−1

∫ r

0

[
r

N−p
p−1 − (t)

N−p
p−1

]
t

(p−2)N+1
p−1 p(t)dt

≥ p− 1
N − p

1

r
N−p
p−1

(r
N−p
p−1 − (

r

2
)

N−p
p−1 )

∫ r/2

0

t
(p−2)N+1

p−1 a(t)dt

=
p− 1
N − p

(1− (
1
2
)

N−p
p−1 )

∫ r/2

0

t
(p−2)N+1

p−1 a(t)dt

= ∞ as r →∞.

Then

∞ >
u(0) + 1

f(u(0))1/(p−1)
u(0) ≥ ∞,

which is a contradiction.
If β < 1 we have u+β

u+1 > β ⇐⇒ u + β > βu + β ⇐⇒ (1− β)u > 0 is true. In this
case we have

u(0) ≥
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)σN−1

(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ

=
∫ r

0

ξ
1−N

p−1

[ ∫ ξ

0

f(u(σ))a(σ)(u(σ) + β)p−1σN−1

(u(σ) + β)p−1(u(σ) + 1)p−1
dσ

]1/(p−1)

dξ

≥ f(u(0))1/(p−1)

u(0) + β
β

∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ,

which implies

∞ >
u(0) + β

f(u(0))1/(p−1)β
u(0) ≥

∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ ≥ ∞,

which is a contradiction.
In the first case we observe that we can not have

∫ ξ

0
r

(p−2)N+1
p−1 a(r)dr = ∞ because∫ r

0

ξ
1−N
p−1 dξ >

∫ r

0

ξ
1−N
p−1

∫ ξ

0

σN−1a(σ)dσdξ

≥ p− 1
N − p

(1− (
1
2
)

N−p
p−1 )

∫ r/2

0

t
(p−2)N+1

p−1 a(t)dt →∞ as r →∞

which is a contradiction.

Remark 6.1. Let 2 ≤ p < +∞. Then 1 ≥ 1
p−1 > 0. From the above proofs we

observe if that ( ∫ ξ

0

σN−1a(σ)dσ
)1/(p−1)

≤ 1
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then

p− 1
N − 2

(1− (
1
2
)

N−2
p−1 )

∫ r/2

0

t1/(p−1)a1/(p−1)(t)dt

≤
∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ

≤
∫ r

0

ξ
1−N
p−1 dξ.

As r →∞, we have
∫∞
0

t
1

p−1 a1/(p−1)(t)dt 6= ∞.

On the other hand, if ( ∫ ξ

0

σN−1a(σ)dσ
)1/(p−1)

> 1,

then

p− 1
N − 2

(1− (
1
2
)

N−2
p−1 )

∫ r/2

0

t1/(p−1)a1/(p−1)(t)dt

≤
∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ

≤ p− 1
N − p

∫ r/2

0

t
(p−2)N+1

p−1 a(t)dt.

Then if
∫∞
0

t1/(p−1)a1/(p−1)(t)dt = ∞ we have
∫∞
0

t
(p−2)N+1

p−1 a(t)dt = ∞.

Remark 6.2. Let1 < p ≤ 2. Then 1 ≤ 1
p−1 < +∞. From the above proofs we

observe that∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ ≤ p− 1
N − 2

∫ ∞

0

t1/(p−1)a1/(p−1)(t)dt.

If
∫ ξ

0
σN−1a(σ)dσ ≥ 1, then

N − 1
N − p

(1− (
1
2
)

N−p
p−1 )

∫ r/2

0

t
(p−2)N+1

p−1 a(t)dt

≤
∫ r

0

ξ
1−N
p−1

[ ∫ ξ

0

σN−1a(σ)dσ
]1/(p−1)

dξ .

Then if
∫∞
0

t
(p−2)N+1

p−1 a(t)dt = ∞ we have
∫∞
0

t1/(p−1)a1/(p−1)(t)dt = ∞.

Acknowledgments. The author thanks Professor V. Radulescu for proposing this
problem, as well as for his valuable suggestions on this subject.
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Corrigendum posted on October 8, 2007

The author wants to correct some misprints and to clarify the existence and the
non-existence of solutions to the problem considered in this article.

Page 2, line 8. In the formula∫ ∞

1

rN−1+γ(N−2)(max
|x|=t

a(x))dt < ∞,

replace the factor rN−1+γ(N−2) with tN−1+γ(N−2).
Page 2, line 17. In the formula∫ ∞

1

rN−1+γ(N−2)(max
|x|=t

a(x))dt < ∞,

replace the factor rN−1+γ(N−2) with tN−1+γ(N−2).
Page 3, line 1. Replace “Problem (1.1) has no positive radial solution if p ≥ N .”

with “Suppose a(r) is a positive radial function which is continuous on RN . Then
problem (1.1) has no positive radial solution if p ≥ N .”

Page 4, line 16. Replace “bounded domain” with “smooth open bounded do-
main”.

Page 4, line 21. Replace “bounded domain with smooth boundary” with “smooth
open bounded domain”.

Page 5, line 25-26. Replace “[8, Theorem 1.3]” with “[8, Theorem 1.3 and lower-
upper solutions method]”

Page 5, line 27. In the equation

−∆pU = p(x)h(U), if |x| < k,

replace p(x) with a(x).
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Page 7, line 17. In the formula

K =
p− 1
N − 2

·
∫ ∞

0

ξ
1

p−1 Φ1/(p−1)(ξ)dξ

replace the symbol “ = ” with “ ≤ ”.
Page 7, line 18. Replace

K =
p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ if 2 ≤ p < +∞.

with “

K ≤ p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ or K ≤ Const. +
∫ ∞

1

ξ
1−N
p−1 dξ,

if 2 ≤ p < +∞ and for the above considered cases.”
Page 7, line 21. Replace

w(r) <
p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ if 2 ≤ p < +∞.

with “

w(r) ≤ p− 1
N − p

·
∫ ∞

0

ξ
(p−2)N+1

p−1 Φ(ξ)dξ or w(r) ≤ Const. +
∫ ∞

1

ξ
1−N
p−1 dξ.

if 2 ≤ p < +∞ and for the above considered cases.”
Page 8, line 1. “(F2’)” must be replaced by “(F2’) limu↘0 f(u)/u = ∞, limu↗∞ f(u)/u =

0 and u 7→ f(u)/up−1 is decreasing on (0,∞).”
Page 9. line 10. Replace “Using” with “If u(x) is radially symmetric solution

(see [8] for conditions to a(x) and f(u(x))) then, using”
Page 9. line 15. Replace

lim
r→0

∫ r

0
σN−1p(σ)f(u(σ))dσ

rN
= 0

with

lim
r→0

∫ r

0
σN−1a(σ)f(u(σ))dσ

rN
=

a(0)f(u(0))
N

Page 9. line 16. Replace p(σ) with a(σ).
Page 9. After line 18, insert “If u(x) is a weak solution, then applying the regu-

larity theory for quasilinear elliptic equations (see for example [16] or [15, Theorem
1.3]) we find that u ∈ C1,α(RN ).”

Page 12. line 5. Replace r−
1−N
p−1 with r

1−N
p−1 .

Page 12. line 7. Replace r−
1−N
p−1 with r

1−N
p−1 .

Page 13. line 5. Replace p(t) with a(t).
Page 14. After line 18 insert “On the other hand, if( ∫ ξ

0

σN−1a(σ)dσ
)1/(p−1)

< 1,

we observe that
∫∞
0

t
(p−2)N+1

p−1 a(t)dt 6= ∞ as in Case 2, Theorem 1.1.”
Also the author wants to present an alternative proof for the existence of solutions

(see section 3. Existence of a solution).
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Proof. The existence of solutions will be established by solving the approximate
problems

−∆pu = a(x)f(u + ε), if |x| < k,

u(x) = 0, if |x| = k,
(6.2)

for ε > 0 and then showing the convergence of uε as ε → +0 to a solution u. It is
clear that the problems (6.2) has a unique solution which is due to Diaz-Saà. In the
next steps we established some properties for such solution. For this, let ε := εn be
a decreasing sequence converging to 0 and set un := uεn

with n > k ≥ 1 in (6.2).
By [15] we see that un ≥ c0,Bk

ϕ1,Bk
and there exists some function uk ∈ C(Bk)

such that
((i) un → uk a.e. in Bk as n →∞,
(ii) uk ≥ c0,kϕ1 a.e. in Bk,

where ϕ1 := ϕ1,Bk
is the first eigenfunction for the eigenvalue λ1 of (−∆p) in

W 1,p
0 (Bk) and Bk := {x ∈ RN : |x|}. Moreover using Diaz-Saà’s comparison

lemma we have a sequence {uk} (which is 0 for |x| > k), as in the present paper,
such that

u1 ≤ u2 ≤ · · · ≤ uk ≤ · · · ≤ v in RN ,

where v is the same function as above and so the existence of solution u to the
problem (1.1) is proved. �

This alternative proof is treated more generally in [15]. With this alternative
proof we observe that it is sufficient to apply the rest the reference [5]. This tech-
nique is inspired by [3] and by another results due to Goncalves and Santos, which
are treated more generally in [15].
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