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NONLINEAR BOUNDARY CONDITIONS FOR ELLIPTIC
EQUATIONS

PABLO AMSTER, MARÍA CRISTINA MARIANI, OSVALDO MÉNDEZ

Abstract. This work is devoted to the study of the elliptic equation ∆u =
f(x, u) in a bounded domain Ω ⊂ Rn with a nonlinear boundary condition.

We obtain various existence results applying coincidence degree theory and

the method of upper and lower solutions.

1. Introduction

In this paper we study the problem

∆u = f(x, u) in Ω (1.1)

subject to the nonlinear boundary condition
∂u

∂ν
= g(x, u) on ∂Ω, (1.2)

where f, g : Ω × Rn → R are continuous functions and Ω ⊂ Rn is a bounded C1,1

domain. There is a vast body of literature concerning nonlinear problems with
nonlinear boundary conditions, see e.g. [9] for a survey.

In section 2 we obtain solutions of (1.1)–(1.2) by the method of upper and lower
solutions. The proof relies in the associated maximum principle and the unique
solvability of the linear Robin problem

∆u− λu = ϕ in Ω,

∂u

∂ν
+ µu = ξ on ∂Ω

(1.3)

for λ, µ > 0 (see [8] and its references).
The method of super and subsolutions has been extensively used in nonlinear

analysis, both for ODE’s and PDE’s problems. In particular, for elliptic problems
with nonlinear boundary conditions, this method has been applied to obtain more
general existence results for example in [5], [12]-[13]. However, the method pre-
sented here allows to relax the assumptions: firstly, less regularity is required for
the domain Ω; secondly, only continuity is assumed for the nonlinearities f and g.
More precisely, we prove Theorem 1.1 below.
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Theorem 1.1. Assume there exist α ≤ β such that

∆α ≥ f(x, α) in Ω,
∂α

∂ν
≤ g(x, α) on ∂Ω

and

∆β ≤ f(x, β) in Ω,
∂β

∂ν
≥ g(x, β) on ∂Ω.

Then (1.1)–(1.2) admits at least one solution u, with α ≤ u ≤ β.

In section 3 we study problem (1.1)–(1.2) for bounded f and g applying coinci-
dence degree theory. We obtain an existence result under Landesman-Lazer type
conditions ([6], [7]. For further applications to problems of resonant type see [11]).
More precisely, we have

Theorem 1.2. Assume that f and g are bounded, and define

lim sup
t→±∞

f(x, t) := f±s (x), lim inf
t→±∞

f(x, t) := f±i (x)

lim sup
t→±∞

g(x, t) := g±s (x), lim inf
t→±∞

g(x, t) := g±i (x).

Then (1.1)–(1.2) admits at least one solution, provided that one of the following
assumptions holds: ∫

∂Ω

g+
i >

∫
Ω

f+
s and

∫
∂Ω

g−s <

∫
Ω

f−i (1.4)∫
∂Ω

g−i >

∫
Ω

f−s and
∫

∂Ω

g+
s <

∫
Ω

f+
i . (1.5)

2. Upper and lower solutions

In this section we present a proof of Theorem 1.1. First we recall the following
classical result.

Lemma 2.1. Let λ, µ > 0 and ϕ ∈ C(Ω), ξ ∈ C(∂Ω). Then the Robin problem
(1.3) admits a unique solution u. Furthermore, the operator T : C(Ω)× C(∂Ω) →
C(Ω) given by T (ϕ, ξ) = u is compact.

Remark 2.2. If λ = 0 it is possible to extend Lemma 2.1 (except the last state-
ment) to Lipschitz domains, in particular domains with corners or edges, considering
ϕ in a suitable Sobolev space and ξ in the corresponding trace space. In this case
it is also possible to replace µ with a function g ∈ Ln−1(Ω), see [8].

Moreover, we shall use a maximum principle associated for the problem

Lemma 2.3. Let λ > 0, µ ≥ 0, and assume that w satisfies

∆w − λw ≥ 0 in U,

∂w

∂ν
+ µw ≤ 0, on Γ1,

w ≤ 0 on Γ2.

where U ⊂ Rn is a bounded domain with boundary ∂U = Γ1 ∪ Γ2. Then w ≤ 0 in
U .
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Proof. Let w+ = max{w, 0}, and U+ = {x ∈ U : w(x) > 0}. From our assumptions
we have

0 ≤
∫

U

(∆w − λw)w+ = −
∫

U+
|∇w|2 − λ

∫
U+

w2 +
∫

∂U

w+ ∂w

∂ν

Moreover, since ∂w
∂ν ≤ −µw on Γ1, we deduce that∫

∂U

w+ ∂w

∂ν
=

∫
Γ1

w+ ∂w

∂ν
≤ −µ

∫
Γ1

w+w ≤ 0.

Hence |U+| = 0, and the proof is complete. �

Proof of Theorem 1.1. Set two positive constants λ, µ, and define the function P :
Ω× R → R by

P (x, u) =


α(x) if u < α(x)
u if α(x) ≤ u ≤ β(x)
β(x) if u > β(x).

Next, consider the compact fixed point operator T : C(Ω) → C(Ω) given by Tv = u,
where u is the unique solution of the Robin problem

∆u− λu = f(x, P (x, v))− λP (x, v) in Ω
∂u

∂ν
+ µu = g(x, P (x, v)) + µP (x, v) on ∂Ω.

Using Schauder Theorem, it is straightforward to prove that T has a fixed point
u. We claim that α ≤ u ≤ β, and hence u is a solution the problem. Indeed, let
U = {x ∈ Ω : u(x) > β(x)}. For x ∈ U , we have

∆u(x)− λu(x) = f(x, β(x))− λβ(x) ≥ ∆β(x)− λβ(x).

Moreover, if x ∈ ∂U ∩ ∂Ω := Γ1, then

∂u

∂ν
(x) + µu(x) = g(x, β(x)) + µβ(x) ≤ ∂β

∂ν
(x) + µβ(x).

Thus, if w = u − β we deduce from Lemma 2.3 that w ≤ 0 in U , and hence U is
empty. In the same way we show that u ≥ α, and the proof is complete. �

Example 2.4. In particular, when α ≡ R− and β ≡ R+ for some constants
R− < R+, Theorem 1.1 guarantees the existence of solutions when f and g satisfy

f(x,R+) ≥ 0 ≥ f(x,R−) ∀x ∈ Ω

g(x,R+) ≤ 0 ≤ g(x, R−) ∀x ∈ ∂Ω.

For example, for r > 0 the problem

∆u = f(x, u) in Ω
∂u

∂ν
+ ϕ(x)|u|r = p(x) on ∂Ω

admits at least one solution R− ≤ u ≤ R+, provided that

f(x, R+) ≥ 0 ≥ f(x,R−)

and ϕ(x)|R−|r ≤ p(x) ≤ ϕ(x)|R+|r.
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3. Landesman-Lazer type conditions

For the sake of completeness, we summarize in this section the main aspects of
coincidence degree theory. This technique has been applied to many problems, see
e.g. [1] and [4]. For further details see [2, 10].

Let X and Y be real normed spaces, L : D ⊂ X → Y a linear Fredholm mapping
of index 0, and N : X → Y continuous.

Next, set two continuous projectors P : X → X and Q : Y → Y such that
Ran(P ) = ker(L) and ker(Q) = Ran(L) and an isomorphism J : Ran(Q) → ker(L).
It is readily seen that

LP := L|D∩ker(P ) : D ∩ ker(P ) → Ran(L)

is one-to-one; denote its inverse by KP . If B is a bounded open subset of X, N is
called L-compact on B if QN(B) is bounded and KP (I−Q)N : B → X is compact.

The following continuation theorem was proved in Mawhin [10].

Theorem 3.1. Let L be a Fredholm mapping of index zero and N be L-compact
on a bounded domain B ⊂ X. Suppose:

(1) Lx 6= λNx for each λ ∈ (0, 1] and each x ∈ ∂B.
(2) QNx 6= 0 for each x ∈ ker(L) ∩ ∂B.
(3) d(JQN,B ∩ ker(L), 0) 6= 0, where d denotes the Brouwer degree.

Then the equation Lx = Nx has at least one solution in D ∩ B.

In this context, we may consider X = H1(Ω), D = H2(Ω), Y = L2(Ω) ×
H−1/2(∂Ω) and L, N the operators given by

Lu =
(
∆u,

∂u

∂ν

∣∣
∂Ω

)
,

Nu =
(
f(·, u), g(·, u|∂Ω)

)
.

We recall that the operator N is defined in X = H1. Hence, the trace of a function
u is well defined, and we can see that g(·, u|∂Ω) ∈ H−1/2(∂Ω).

Since f and g are bounded, it is immediate to prove that N is well defined and
continuous. Moreover,

ker(L) = R,

Ran(L) = {(ϕ, ξ) ∈ Y :
∫

Ω

ϕ =
∫

∂Ω

ξ}.

Thus L is a Fredholm mapping of index zero, and we may consider the projectors
P : X → X and Q : Y → Y given by

Pu = u :=
1
|Ω|

∫
Ω

u,

Q(ϕ, ξ) =
1

|Ω|+ |∂Ω|

( ∫
Ω

ϕ−
∫

∂Ω

ξ,

∫
∂Ω

ξ −
∫

Ω

ϕ
)
.

Also define J : Ran(Q) → ker(L) as

J(c,−c) = c.
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Hence, for (ϕ, ξ) ∈ Ran(L) it follows that KP (ϕ, ξ) is the unique solution u ∈ H2(Ω)
of the problem

∆u = ϕ

∂u

∂ν

∣∣
∂Ω

= ξ

u = 0.

We shall use the following estimate.

Lemma 3.2. There exists a constant c such that

‖u‖H2 ≤ c‖∆u‖L2 (3.1)

for every u ∈ H2(Ω) such that

∂u

∂ν

∣∣
∂Ω

= 0, u = 0.

Proof. ¿From the Neumann condition for u we have that
∫

∂Ω
u∂u

∂ν = 0, and using
Green’s identity, −

∫
Ω

u∆u =
∫
Ω
|∇u|2. It follows that

‖∇u‖2L2 ≤ ‖u‖L2‖∆u‖L2 .

On the other hand, as λ0 = 0 is the first eigenvalue of the problem

−∆u = λu,
∂u

∂ν

∣∣
∂Ω

= 0,

with eigenfunction u ≡ 1, it follows for the second eigenvalue λ1 that

λ1 = inf
u=0,u 6=0

∫
Ω
|∇u|2∫
Ω

u2
.

Hence ‖u‖L2 ≤ 1√
λ1
‖∇u‖L2 , and it follows that

‖∇u‖L2 ≤ 1√
λ1

‖∆u‖L2 , ‖u‖L2 ≤ 1
λ1
‖∆u‖L2 .

Let us recall the following result (see e.g. [3]): There exists a constant c such that
if u is a weak solution of the problem ∆u − u = f , with homogeneous Neumann
condition, then ‖u‖H2 ≤ c‖f‖L2 .

Since we already know that ‖u‖H1 ≤ c‖∆u‖L2 , we may define f = ∆u − u and
hence

‖u‖H2 ≤ c‖f‖L2 ≤ c(‖∆u‖L2 + ‖u‖L2) ≤ C‖∆u‖L2 .

Thus, the proof is complete. �

Lemma 3.3. Let L and N be as before and assume that f and g are bounded.
Then N is L-compact on B for any bounded domain B ⊂ H1(Ω).

Proof. If ‖w‖H1 ≤ R, and (ϕ, ξ) = (I−Q)N(w), it follows that ‖ϕ‖L2 +‖ξ‖L2(∂Ω) ≤
C for some constant C depending only on R. Let u = KP (ϕ, ξ), and define

cξ =
1
|Ω|

∫
∂Ω

ξ,
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and vξ the unique solution of the problem

∆vξ = cξ

∂vξ

∂ν

∣∣
∂Ω

= ξ

vξ = 0.

Then
‖u− vξ‖H2 ≤ c‖ϕ− cξ‖L2 ≤ C

for some constant C depending only on R. Moreover, ‖vξ‖L2 ≤ c‖∇vξ‖L2 , and by
Cauchy-Schwarz inequality and the continuity of the trace function Tr : H1(Ω) →
L2(∂Ω) we have

‖∆vξ‖L2 .‖vξ‖L2 ≥ ‖∇vξ‖2L2 − C‖vξ‖H1

for some constant C. Since ‖∆vξ‖L2 ≤ C for some constant C depending only on
R, it follows that ‖vξ‖H2 ≤ C for some constant C depending only on R. Hence,
the norm of u is bounded by a constant depending only on R, and the result follows
from the compactness of the imbedding H2(Ω) ↪→ H1(Ω). �

Proof of Theorem 1.2. We shall prove that if R is large enough, then the assump-
tions of Theorem 3.1 are fulfilled for B = BR(0) ⊂ H1(Ω).
Step 1: There exists a constant R such that if Lu = λNu for some λ ∈ (0, 1], then
‖u‖H1 < R. Indeed this is so, otherwise there exists a sequence {un}n∈N such that

Lun = λnNun, ‖un‖H1 → +∞
with λn ∈ (0, 1]. Let vn = un − un. Then vn satisfies

∆vn = λnf(x, un)
∂vn

∂ν

∣∣
∂Ω

= λng(x, un|∂Ω)

vn = 0.

(3.2)

As in the proof of the previous lemma, it follows that ‖vn‖H2 ≤ C for some constant
C, and hence |un| → +∞. Taking a subsequence, assume for example that un →
+∞. Integrating (3.2), as λn 6= 0 we obtain:∫

Ω

f(x, un) =
∫

∂Ω

g(x, un).

If (1.4) holds, taking a subsequence if necessary we get, by Fatou’s Lemma,

lim sup
n→∞

∫
Ω

f(x, un) ≤
∫

Ω

lim sup
n→∞

f(x, un)

=
∫

Ω

f+
s

<

∫
∂Ω

g+
i

≤ lim inf
n→∞

∫
∂Ω

g(x, un),

a contradiction. The proof for un → −∞ is analogous. In the same way, we obtain
a contradiction if (1.5) holds.
Step 2: For R is large enough, if u ∈ ∂BR ∩ ker(L) then QN(u) 6= 0 and

d(JQN,B ∩ ker(L), 0) 6= 0.
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Indeed, for u ∈ BR ∩ ker(L) = [−R,R], by definition we have that

JQN(u) =
1

|Ω|+ |∂Ω|

( ∫
Ω

f(x, u)−
∫

∂Ω

g(x, u)
)
.

In the same way as before, if (1.4) holds, we obtain

lim sup
n→∞

∫
Ω

f(x, un)− lim inf
n→∞

∫
∂Ω

g(x, un) < 0

for un → +∞ and

lim inf
n→∞

∫
Ω

f(x, un)− lim sup
n→∞

∫
∂Ω

g(x, un) > 0

for un → −∞. Thus, for R large enough∫
Ω

f(x,R)−
∫

∂Ω

g(x,R) < 0 <

∫
Ω

f(x,−R)−
∫

∂Ω

g(x,−R),

and the result holds. The proof is analogous if (1.5) holds. �
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of resonance, Bol. de la Sociedad Española de Mat.Aplicada 16 (2000), 45-65.

[12] J. Mawhin, K. Schmitt, Upper and lower solutions and semilinear second order elliptic equa-
tions with non-linear boundary conditions, Proc. Royal Soc. Edinburgh 97A (1984), 199-207.

[13] J. Mawhin, K. Schmitt, Corrigendum: Upper and lower solutions and semilinear second
order elliptic equations with non-linear boundary conditions, Proc. Royal Soc. Edinburgh
100A (1985), 361.

Pablo Amster
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