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ASYMPTOTIC BEHAVIOR FOR THE
CENTERED-RAREFACTION APPEARANCE PROBLEM

RUBEN FLORES-ESPINOZA, GEORGII A. OMEL’YANOV

Abstract. We construct a uniform in time asymptotic behavior, describing
the interaction of two isothermal shock waves with the same direction of mo-

tion. The main result is that any smooth regularization of the problem implies

the realization of the stable scenario of interaction. In particular, the rarefac-
tion wave appearance is described.

1. Introduction

Let us consider the gas dynamics system in the isothermal case
∂ρ

∂t
+
∂(ρu)
∂x

= 0, x ∈ R1, t > 0,

∂(ρu)
∂t

+
∂

∂x
(ρu2 + c20ρ) = 0.

(1.1)

Let the initial data be two shock waves with the same direction of motion (to the
right):

ρ
∣∣
t=0

= ρ0 + e1H(−x+ x0
1) + e2H(−x+ x0

2),

u
∣∣
t=0

= v1H(−x+ x0
1) + v2H(−x+ x0

2).
(1.2)

Here H(x) is the Heaviside function, ei = ρi − ρi−1 > 0 and vi = ui − ui−1 > 0,
i = 1, 2, are the amplitudes of jumps, u0 = 0, and ρi, ui, c0 > 0 are constants. For
definiteness, we assume that x0

1 > x0
2. The initial shock waves are assumed to be

stable, so that
u1 = c0

e1√
ρ0ρ1

, u2 = u1 + c0
e2√
ρ1ρ2

. (1.3)

The solution of problem (1.1), (1.2) seems to be well-known nowadays. Indeed, the
standard procedure of “step-by-step” consideration before and after the interaction
time instant t = t∗ shows that the solution is described by the two noninteracting
shock waves for t < t∗, namely

ρ = ρ0 + e1H
(
− x+ ϕ10(t)

)
+ e2H

(
− x+ ϕ20(t)

)
,

u = v1H
(
− x+ ϕ10(t)

)
+ v2H

(
− x+ ϕ20(t)

)
,

(1.4)
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where ϕi0 = ϕi0t
t+ x0

i are the phases of the shocks,

ϕ10t
= c0

√
ρ1

ρ0
, ϕ20t

= u1 + c0

√
ρ2

ρ1
. (1.5)

Next, at the time instant t∗ of the confluence, the initial conditions (1.2) are
replaced by the shock wave with the amplitudes ρ2 and u2 of the jumps of ρ and u
which are concentrated at the point x∗ := ϕ10(t∗) = ϕ20(t∗). Solving this Riemann
problem we obtain that the solution for t > t∗ is a uniquely defined combination of
a shock wave and a centered rarefaction (see, for example [1, 10]). Let us call this
behavior of the solution the “stable scenario”.

However, the uniqueness of weak solutions for hyperbolic systems of conserva-
tion laws has been proved (with additional conditions) only for sufficiently small
amplitudes of shocks (see [1, 2, 9]). It is well–known that apart from the above
mentioned solution, the Riemann problem admits a family of artificial solutions
(see, for example, [9]). Therefore, the described construction can not be treated as
a well-posed one for the case of arbitrary amplitudes of shocks.

It is clear that the weak point of this scheme is the consideration of shock waves
as noninteracting ones for time close to t∗. Moreover, this conflicts with the physical
sense of the problem since the actual gas dynamics include viscosity phenomena.
Therefore, it is necessary to smooth the solution for time close to t∗ and to consider
the process of interaction in detail.

Whitham [11] was the first to solve a similar problem for the inviscid Burgers-
Hopf equation

∂u

∂t
+

∂

∂x
f(u) = 0 (1.6)

with the quadratic nonlinearity f(u) = u2. Passing to the Burgers regularization
and using the Hopf-Cole transformation, Whitham found the exact solution for
the initial data similar to (1.2) and, as a result, established that the regularization
implies the choice of a stable scenario of interaction. However, this procedure can be
applied uniquely for the quadratic nonlinearity. A progress in this problem has been
achieved only recently by Danilov and Shelkovich for equation (1.6) with convex
nonlinearities ([3]; see also [4, 5]). Since it is impossible to find exact solutions in
the general case, they constructed an asymptotic solution in the framework of the
“weak asymptotic method” [3, 4, 5, 6, 7, 8]. The main point here is the treatment
of the solution uε(x, t) of the regularized problem as a C∞([0, T ]; C∞(R1)) mapping
for ε a positive constant and a C([0, T ];D′(R1)) mapping uniformly in ε ∈ [0, 1],
where ε is a parameter of regularization. Respectively, a family uε(t, x) is called an
asymptotic mod OD′(ε) solution of equation (1.6) if the relation

d

dt

∫ ∞

−∞
uεψdx−

∫ ∞

−∞
f(uε)

∂ψ

∂x
dx = O(ε)

holds for any test function ψ = ψ(x). The main advantage of this approach is the
possibility to describe the interaction of nonlinear waves by an ordinary differential
equation. Let us note that this method allows also to describe interactions of
solitons for non integrable problems [5, 8].

Our aim is a generalization of the weak asymptotic method for hyperbolic sys-
tems of conservation laws. Using system (1.1) as a simple but meaningful example
we show that this tool easily allows to construct a uniform in time asymptotic
solution. The case of shock waves with opposite directions of motion has been
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examined in the paper [7]. In the present paper we consider the case of the same
direction of shock waves motion. It is necessary to note that the construction of a
weak asymptotic solution for a system of conservation laws entails the appearance
of a dynamical system (instead of an equation in the scalar case). Analysis of this
system requires the use of the specifics of the original problem. This can be done
for any particular problem and we indicate the way how to do this in the general
case (see Conclusion).

Specifically for problem (1.1), (1.2), we consider the phenomena of a rarefaction
wave appearance as the most interesting effect. That is why we point out this
part of the work in the title of the paper. Note also that the origin of centered
rarefaction is possible exclusively for systems. To consider rarefaction waves in
scalar cases we should set such wave as the initial data or set discontinuous initial
data with appropriate sign of the jump. Asymptotic behavior for the corresponding
problems of weak discontinuities interaction for the inviscid Burgers-Hopf equation
have been constructed recently in [4].

2. Construction of the asymptotic solution

2.1. Definitions and statement of the main result. Following the ideas sketched
above we arrive at:

Definition 2.1. Sequences ρε(t, x) and uε(t, x) are called a weak asymptotic
mod OD′(ε) solution of system (1.1) if ρε(t, x) and uε(t, x) belong to C∞([0, T ]×R1)
for ε=constant> 0 and to C(0, T ;D′(R1)) uniformly in ε ∈ [0, const] and if the
relations

d

dt

∫ ∞

−∞
ρεψ1dx−

∫ ∞

−∞
ρεuε

∂ ψ1

∂ x
dx = O(ε),

d

dt

∫ ∞

−∞
ρεuεψ2dx−

∫ ∞

−∞
(ρεu

2
ε + c20ρε)

∂ ψ2

∂ x
dx = O(ε)

(2.1)

hold for any test function ψi = ψi(x) ∈ D(R), i = 1, 2.

It is necessary to note that any O(ε) diffusion (or diffusion–dispersion) regu-
larization (see, for example [9]) of equations (1.1) implies the appearance of O(ε)
corrections in relations (2.1).

To present the asymptotic solution, let us denote ω = ω(η) ∈ C∞(R1) an auxil-
iary function such that

lim
η→−∞

ω = 0 and lim
η→∞

ω = 1.

For simplicity, we assume that ω tends to its limiting values at an exponential rate.
Moreover, let

ω′η > 0, and ω(η) + ω(−η) = 1. (2.2)

Obviously this implies that ω(η)− 1/2 is an odd function and ω((−x+φ)/ε) tends
to the Heaviside function H(−x+ φ) as ε→ 0.
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Now, let us write the weak asymptotic solution for the problem (1.1), ( 1.2) in
the following form:

ρε = ρ0 +
2∑

i=1

Eiωi + (R3 −R)ω3 − (R4 −R)ω4,

uε =
2∑

i=1

(Viωi +Wiω
′
i) + U{(x− φ4)ω4 − (x− φ3)ω3},

(2.3)

where

ωi = ω
(−x+ φi

ε

)
, ω′i =

dω(η)
dη

∣∣∣
η=(−x+φi)/ε

, R = ρ2e
−β(x−φ3)/c0 , (2.4)

φi = φi0(τ, t) + εϕi2(τ), φi0 = ϕi0(t) + ψ0(t)ϕi1(τ) for i = 1, 2,

φj = φj0(τ, t) + εϕj2(τ), φj0 = ϕj0(t) + ψ1(t)ϕj1(τ) for j = 3, 4,
(2.5)

ψ0 = ϕ20 − ϕ10, ψ1 = ϕ40 − ϕ30, Rj = R|x=φj
, τ = ψ0/ε . (2.6)

The functions ϕ10 and ϕ20 are the phases (1.5) of noninteracting shock waves (1.4)
(for t < t∗), Ei = Ei(τ), Vi = Vi(τ), Wi = Wi(τ), β = β(τ, t, ε) > 0, U =
U(τ, t, ε) > 0, and ϕk1, ϕk2, k = 1, . . . , 4, are smooth functions. We will assume
that

Ei → ei, Vi → vi, Wi → 0, ϕi1 → 0, ϕj1 → ϕj1 as τ → −∞, (2.7)

Ei → Ei, Vi → V i, Wi →W i, ϕi1 → ϕi1, ϕj1 → 0 as τ → +∞, (2.8)

ϕk2 → ϕk2,± as τ → ±∞. (2.9)

Here Ei, V i, W i, ϕk1, ϕk2,± are constants, i = 1, 2, j = 3, 4, k = 1, 2, 3, 4.
Moreover, we assume that

φ30 − φ40 → 0 as τ → −∞, φ10 − φ20 → 0 as τ → +∞, (2.10)

and set the geometric conditions for the phases of the regularized waves

for t < t∗ : φ2 < φ1 < φj mod O(ε), j = 3, 4, (2.11)

for t > t∗ : φ3 < φ4 < φi mod O(ε), i = 1, 2. (2.12)

The notation mod O(ε) means here that we do not compare these phases when
the distances between the paths are O(ε).

For the functions β and U we assume the convergence

β(τ, t, ε) → β
±

(t) +O(ε), U(τ, t, ε) → U
±

(t) +O(ε) as τ → ±∞ (2.13)

to some bounded by constants (in C-sense) smooth functions. However, we suppose
the following relations hold:

β(0, t∗, ε) = O(ε−1), U(0, t∗, ε) = O(ε−1). (2.14)

We will assume also that all convergences mentioned above are of exponential rate.
Assumptions (2.7) and the first assumption (2.10) imply that the anzatz (2.3)

describes the two noninteracting waves (1.4) before the interaction (t < t∗, so that
for τ → −∞ as ε → 0). After the time instant of interaction (t > t∗, so that for
τ → +∞ as ε → 0) anzatz (2.3) describes shock waves with amplitudes Ei, V i

completed by weak discontinuities on the curves x = φ3 and x = φ4. In fact, we
will prove that β

+
(t) = U

+
(t) = 1/(t − t∗). Therefore, the terms U(x − φ4) and

R−R4 describe in the limit as τ →∞ a centered rarefaction concentrated between



EJDE-2005/148 ASYMPTOTIC BEHAVIOR 5

the curves x = φ3 and x = φ4. The phase corrections εϕk2 describe small shifts
of the trajectories which appear as a result of the interaction. The terms Wiω

′
i

describe soliton–type corrections concentrated at the time of the waves interaction.
Now let us formulate our main result.

Theorem 2.1. Any smooth regularization of the problem (1.1), (1.2) implies the
existence of a weak asymptotic solution which describes uniformly in time the stable
scenario of the shock waves interaction.

Remark 2.2. We choose a regularization ω of the initial data with additional
properties (2.2) since these assumptions allow to simplify the analysis. However,
it is clear that these assumptions have only a technical nature, and a similar to
Theorem 2.1 result holds for any general regularization (see, for example, [5]).

In what follows we will use the notation:

Definition 2.2. A sequence f(t, x, ε) is said to be of the value OD′(εk) if the
relation ∫ ∞

−∞
f(x, t, ε)ψ(x)dx = O(εk) (2.15)

holds for any test function ψ = ψ(x) ∈ D(R).

2.2. Preliminary calculations. To determine the asymptotic statement (2.3) we
should calculate weak expansions of ρε and of the products ρεuε, ρεu

2
ε. Almost

trivial calculations show that

ρε = ρ0 +
2∑

i=1

EiHi + (R3 −R)H3 − (R4 −R)H4 +OD′(ε2). (2.16)

Here and in what follows we have

Hi = H(−x+ φi).

Next, products ωiωj appear in the formulas for ρεuε and ρεu
2
ε. For example,

ρεuε =
2∑

i=1

Vi(ρ0ωi + Eiω
2
i ) + (E1V2 + E2V1)ω1ω2

+ U
4∑

j=3

(−1)j(x− φj)(ρ0ωj − (−1)j(Rj −R)ω2
j )

+ U
(
(x− φ4)(R3 −R)− (x− φ3)(R4 −R)

)
ω3ω4

+
2∑

i=1

4∑
j=3

(−1)j
(
UEi(x− φj)− Vi(Rj −R)

)
ωiωj +

2∑
i=1

{
ρ0 + Eiωi

+ (R3 −R)ω3 − (R4 −R)ω4

}
Wiω

′
i +W1E2ω

′
1ω2 +W2E1ω1ω

′
2.

(2.17)

Lemma 2.1. Under the assumptions mentioned above the following relations hold

ωk
i = Hi + ε dk δi +OD′(ε2), (2.18)

ωk
i ω

`
j = Bk`(σji)Hi +B`k(σij)Hj − ε{Ck`(σji)δi + C`k(σij)δj}+OD′(ε2), (2.19)

ωjω
′
i = εB11(σji)δi +OD′(ε2), (2.20)
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where k, ` > 1, dk are some constants, d1 = 0 and

Bk`(σji) = k

∫ ∞

−∞
ωk−1(η)ω′(η)ω`(σji + η)dη,

Ck`(σji) = k

∫ ∞

−∞
η ωk−1(η)ω′(η)ω`(σji + η)dη.

(2.21)

Here and in what follows

σji :=
φj − φi

ε
, d2 :=

∫ ∞

−∞
ω(η)ω(−η)dη, δi = δ(−x+ φi), (2.22)

where δ is the Dirac delta-function.

Proof of Lemma 2.1. Relation (2.18) is almost obvious. Let us note only that the
equality d1 = 0 is a direct consequence of the equality in (2.2). Furthermore,
considering the left-hand side of relation (2.19) in the weak sense we obtain the
following:

I :=
∫ ∞

−∞
ωk

(−x+ φi

ε

)
ω`

(−x+ φj

ε

)
ψ(x)dx

=
∫ ∞

−∞
ωk

(−x+ φi

ε

)
ω`

(−x+ φj

ε

) d
dx

∫ x

−∞
ψ(x′)dx′ dx

= −
∫ ∞

−∞
ψ0(x)

{
ω`

(−x+ φj

ε

) ∂
∂x
ωk

(−x+ φi

ε

)
+

+ ωk
(−x+ φi

ε

) ∂
∂x
ω`

(−x+ φj

ε

)}
dx

= k

∫ ∞

−∞
ωk−1(η)ω′(η)ω`(σji + η)ψ0(φi − εη)dη+

+ `

∫ ∞

−∞
ω`−1(η)ω′(η)ωk(σij + η)ψ0(φj − εη)dη,

(2.23)

where ψ ∈ D(R1), ψ0(x) =
∫ x

−∞ ψ(x′)dx′ and we took into account the exponential
rate of vanishing of the product ωiωjψ0 as x → ±∞. Now applying the Taylor
expansion and using the notation (2.21), (2.22) we can rewrite the right-hand side
in (2.23) in the form

I = Bk`(σji)ψ0(φi) +B`k(σij)ψ0(φj)− εCk`(σji)ψ(φi)− εC`k(σij)ψ(φj) +O(ε2).

Since ψ0(φi) =
∫∞
−∞H(−x+ φi)ψ(x)dx, we obtain relation (2.19). Furthermore,∫ ∞

−∞
ωjω

′
iψ(x)dx = ε

∫ ∞

−∞
ω(η + σji)ω′(η)ψ(φi − εη)dη = εB11(σji)ψ(φi) +O(ε2),

as was to be proved. �

A simple analysis of the integrals in (2.21) implies the statement

Lemma 2.2. The convolutions Bk` and Ck` exist and have the following properties:

Bk`(σij) +B`k(σji) = 1,

lim
σ→−∞

Bk`(σ) = lim
σ→−∞

Ck`(σ) = 0, lim
σ→+∞

Bk` = 1 for k, ` > 1, (2.24)

lim
σ→+∞

C1` = 0, lim
σ→+∞

C2` = d2, for ` > 1. (2.25)
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Applying the statement of Lemma 2.1 we obtain that the weak asymptotic be-
havior of the right-hand side in formula (2.17) has the form

ρεuε =
4∑

i=1

MiHi + ε
2∑

i=1

Niδi +OD′(ε2), (2.26)

where for i = 1, 2:

Mi = Mi0 +
4∑

j=3

(−1)j
(
UEi(x− φj)− Vi(Rj −R)

)
B11(σji),

Mi0 = Vi(ρ0 + Ei) + (E1V2 + E2V1)B11(σīi),

(2.27)

Ni =d2ViEi − (E1V2 + E2V1)C11(σīi) +Wi

{
ρ0 + Ei/2

+WiEiB11(σii) + (R3 −R)B11(σ3i)− (R4 −R)B11(σ4i)
}
,

ī = 2 for i = 1, ī = 1 for i = 2;

(2.28)

for i = 3, 4,

Mi =(−1)i
{
ρ0U(x− φi) +

2∑
j=1

(
UEj(x− φi)− Vj(Ri −R)

)
B11(σji)

}
− U(x− φi)(Ri −R)

+ U
(
(x− φ4)(R3 −R) + (x− φ3)(R4 −R)

)
B11(σīi),

ī = 4 for i = 3, ī = 3 for i = 4.

(2.29)

Now let us calculate the time derivatives of ρε and ρεuε. Since

dτ(t, ε)
dt

=
ψ0t

ε
, ψ0t

= ϕ20t
− ϕ10t

, (2.30)

to obtain the precision O(ε) in the right-hand side of relations (2.1) we should take
into account the terms of order OD′(ε) in (2.16) and (2.26). At the same time, the
phase derivatives do not include O(1/ε) terms since

dφi0

dt
= ϕi0t + ψ0tϕi1 +

ψ0

ε
ψ0tϕ

′
i1 = ϕi0t + ψ0t(τϕi1)′, i = 1, 2 (2.31)

and similarly
dφj0

dt
= ϕj0t

+ α(τϕj1)′, j = 3, 4. (2.32)

Here and in what follows the apostrophe denotes terms of value O(1) of the deriv-
ative with respect to τ (or, what is the same, terms O(1/ε) of the derivative with
respect to t) and

α = ψ1t
/ψ0t

. (2.33)
Thus, using formula (2.16), the obvious equalities (Rj − R)δj = 0, j = 3, 4 and
notation (2.31) we find that

∂ρε

∂t
=
ψ0t

ε

{ 2∑
i=1

E′iHi −R′H3 + (R′ −R′4)H4

}
+

2∑
i=1

dφi

dt
Eiδi −

dR

dt
H3 +

d

dt
(R−R4)H4 +OD′(ε).

(2.34)
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Here and in what follows df/dtmeans all terms of valueO(1) of the partial derivative
∂f(x, t, τ(t, ε))/∂t.

Next, we need to use the following statement:

Lemma 2.3. Let S = S(τ) be a function from the Schwartz space and let a function
φk = φk(τ, ε) ∈ C∞ have the representation

φk = x∗ + εχk,

where x∗ is a constant and χk = χk(τ, ε) is a slowly increasing function. Then

SH(−x+ φk) = SH(−x+ x∗) + εSχkδ(x− x∗) +OD′(ε2). (2.35)

Moreover,

Sδ(x− x∗) = Sδ(x− φk) +OD′(ε) = Sδ(x− φk0) +OD′(ε). (2.36)

At the same time

H(−x+ φk) = H(−x+ φk0) + εϕk2δ(x− φk0) +OD′(ε2), (2.37)

if φk = φk0 + εϕk2 and ϕk2 = ϕk2(τ) is a uniformly bounded function.

Proof. For any test function ψ = ψ(x) we have

S〈H(−x+ φk), ψ(x)〉

= S
{∫ x∗

−∞
+

∫ x∗+εχk

x∗

}
ψ(x)dx

= S〈H(−x+ x∗), ψ(x)〉+ εS
(
χkψ(x∗) +

∫ χk

0

(
ψ(x∗ + εη)− ψ(x∗)

)
dη

)
.

The last integral is bounded by εcχk, where c is a constant. However, the product
χk(τ)S(τ) remains bounded by a constant uniformly in τ . This implies relation
(2.35). Next,

S〈δ(x− x∗), ψ(x)〉
= Sψ(x∗ ± εχk)

= S〈δ(x− φk), ψ(x)〉+O(ε)

= S〈δ(x− φk0), ψ(x)〉+ εSϕk2ψ
′(φk0 + εθϕk2) +O(ε), θ ∈ [0, 1].

Thus, we obtain both equalities (2.36). To prove relation (2.37) is enough to take
into account the boundedness of the function ϕk2. Let us take notes that the second
equality in (2.36) holds for any smooth function S if the difference φk − φk0 is a
function of the value O(ε). This completes the proof. �

The relations mentioned in Lemma 2.3 allow to simplify the right-hand side
in formula (2.34). Indeed, denoting by x∗, t∗ the point and the time instant of
intersection of the paths x = ϕi0(t), i = 1, . . . , 4, we obtain the equality

τ =
ψ0(t)
ε

= ψ0t

t− t∗

ε
. (2.38)

Thus, for the functions of the form (2.5) we have

φi = x∗ + ετ
(ϕi0t

ψ0t

+ ϕi1(τ)
)

+ εϕi2 =: x∗ + εχi(τ), i = 1, 2,

φj = x∗ + ετα
(ϕj0t

ψ1t

+ ϕj1(τ)
)

+ εϕj2 =: x∗ + εχj(τ), j = 3, 4.
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Here and in the sequel χk = χk0 + ϕk2, k = 1, 2, 3, 4,

χi0 = τ
(ϕi0t

ψ0t

+ ϕi1

)
, i = 1, 2, χj0 = ατ

(ϕj0t

ψ1t

+ ϕj1

)
, j = 3, 4. (2.39)

The assumptions for Ei, φi, and β allow to use the statement of Lemma 2.3. There-
fore,

1
ε

{ 2∑
i=1

E′iHi −R′H3 + (R′ −R′4)H4

}
=

1
ε
(

2∑
i=1

Ei −R4)′H(x− x∗)

+
( 2∑

i=1

χiE
′
i − χ4R

′
4 + (χ4 − χ3)R′

)
δ(x− x∗) +OD′(ε).

(2.40)

Furthermore, let us define the function β in the following form:

β = {t− t∗ + εg1(τ)/ψ0t
}−1 = ψ0t

{ε(τ + g1(τ))}−1. (2.41)

Here g1 is assumed to be a smooth function such that with an exponential rate

g1 → 0 as τ → +∞ and g1 → ḡ1|τ | as τ → −∞, (2.42)

where ḡ1 is a constant. Then

β(φ4 − φ3) = ψ0t

χ4 − χ3

τ + g1
. (2.43)

Respectively, R4 does not depend on t, whereas the derivative R′ does not include
any term of the value O(1). Therefore, formulas (2.34), (2.40), and (2.43) imply
the relation

∂ρε

∂t
=
ψ0t

ε
(E1 + E2 −R4)′H(−x+ x∗) +

dR

dt
(H4 −H3)

+
2∑

i=1

dφi

dt
Eiδi + ψ0t{

2∑
i=1

χiE
′
i − χ4R

′
4}δ(x− x∗) +OD′(ε).

(2.44)

Observe now that
dφi

dt
=
dφi0

dt
+ ψ0tϕ

′
i2

and the derivative ϕ′i2 is assumed to be a function from the Schwartz space. Ap-
plying the statement of Lemma 2.3 again we can transform formula (2.44) to the
final form

∂ρε

∂t
=
ψ0t

ε
(E1 + E2 −R4)′H(−x+ x∗) +

dR

dt
(H4 −H3)

+
2∑

i=1

dφi0

dt
Eiδi + ψ0t{

2∑
i=1

(Eiϕi2)′ + L1}δ(x− x∗) +OD′(ε),
(2.45)

where

L1 =
2∑

i=1

χiE
′
i − χ4R

′
4. (2.46)
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Carrying out similar calculations for the time derivative of ρεuε we obtain the
formula

∂ ρεuε

∂ t
=
ψ0t

ε

4∑
i=1

M ′
iH(−x+ x∗) +

2∑
i=1

dφi

dt
Miδi

+
4∑

i=1

dMi

dt
Hi + L2δ(x− x∗) +OD′(ε),

(2.47)

where notation (2.27)-(2.29) has been used and

L2 = ψ0t

{ 2∑
i=1

N ′
i +

4∑
i=1

M ′
iχi

}
. (2.48)

The explicit formulas (2.27), (2.29) and simple algebra imply the identity
4∑

i=1

Mi = (ρ0 + ρ2 + E1 + E2 −R4)
(
V1 + V2 + U(φ3 − φ4)

)
. (2.49)

Since the spatial derivatives of ρε, ρεuε and ρεu
2
ε do not include any term of value

OD′(ε−1), the definition of the asymptotic solution and formulas (2.44), (2.47) and
(2.49) require the following equalities:

∂

∂τ
(E1 + E2 −R4) = 0,

∂

∂τ

(
V1 + V2 + U(φ3 − φ4)

)
= 0. (2.50)

Firstly, let us define the function U in the form similar to (2.41), namely

U = {t− t∗ + εg2(τ)/ψ0t
}−1 = ψ0t

{ε(τ + g2(τ))}−1, (2.51)

where g2 is a smooth function with the same properties as g1. Then the product
U(φ3 − φ4) does not depend on t. Next, to obtain the constants of integration of
equations (2.50) it is enough to consider the limits of the expressions as τ → −∞
and to use the first assumptions in (2.7) and (2.10). Therefore, we obtain the
identities

ρ0 + E1 + E2 = R4, V1 + V2 + U(φ3 − φ4) = u2. (2.52)
Actually, these identities require the continuity of the solution on the curve x = φ4

that separates the shock waves and the centered rarefaction after the interaction.
Now let us note that Mi −Mi0, i = 1, 2, are soliton-type functions with respect

to τ . Indeed, Mi − Mi0 → 0 as τ → ∞ since B11(σji) → 0 as τ → ∞ and
i = 1, 2, j = 3, 4. For τ → −∞ the convolutions B11(σji) → 1. So under the first
assumption (2.10)

Mi −Mi0 → UEi(φ3 − φ4) + Vi(R3 −R4) → 0, i = 1, 2.

Therefore, we can apply the statement of Lemma 2.3 and rewrite formula (2.47) in
the form

∂ρεuε

∂t
=

2∑
i=1

dφi

dt
Mi0δi +

4∑
i=1

dMi

dt
Hi + L3δ(x− x∗) +OD′(ε), (2.53)

where

L3 =
2∑

i=1

dφi

dt
(Mi −Mi0) + L2, (2.54)

and L2 is defined in (2.48), and the equalities (2.52) have been took into account.
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Let us transform the term
∑4

i=1HidMi/dt. Since Mi0 = Mi0(τ), i = 1, 2, we
can apply the statement of Lemma 2.3 again and obtain the relation

4∑
i=1

dMi

dt
Hi =

4∑
j=3

dMj

dt
Hj +

2∑
i=1

dMi

dt
H(−x+ x∗) +OD′(ε)

=
3∑

i=1

dMi

dt
H3 +

dM4

dt
H4 +OD′(ε).

Furthermore, since the equalities (2.49) and (2.52) imply the identity
3∑

i=1

dMi

dt
= −dM4

dt
,

we derive the relation
4∑

i=1

dMi

dt
Hi =

dM4

dt
(H4 −H3) +OD′(ε). (2.55)

Next, the explicit formula (2.29) for i = 4 and the first equality (2.52) allow to
rewrite M4 as follows

M4 = R
(
V1 + V2 + U(x− φ4)

)
−

(
R(V1 + V2) + U(x− φ4)(E1 + E2)

)
B11(σ41)

+ U
(
(x− φ4)(R3 −R) + (x− φ3)(R4 −R)

)
B11(σ34)

−
(
UE2(x− φ4) + V2R

)(
B11(σ42)−B11(σ41)

)
−R4

(
V1B11(σ14) + V2B11(σ24)

)
.

The last term here does not depend on t. Furthermore, under the geometric as-
sumptions (2.11), (2.12) the function B11(σ42) − B11(σ41) belongs to the Schwarz
space. Next, dϕk2/dt belong to the Schwarz space also whereas φk − φk0 have
the value of O(ε), k = 1, . . . , 4. This and the statement of Lemma 2.3 imply the
equality

dM4

dt
(H4 −H3) =

dM40

dt
(H4 −H3) + L4δ(x− x∗) +OD′(ε), (2.56)

where
M40 = R

(
V1 + V2 + U(x− φ40)

)
+M401B11(σ34)

− {R(V1 + V2) + U(E1 + E2)(x− φ40)}B11(σ41),

M401 = U
(
(x− φ40)(R3 −R) + (x− φ30)(R4 −R)

) (2.57)

and

L4 = − d

dt

{(
UE2(x− φ4) + V2R

)(
B11(σ42)−B11(σ41)

)
+ εϕ42U

(
R− (E1 + E2)B11(σ41) + (R3 −R)B11(σ34)

)
+ εϕ32U(R4 −R)B11(σ34)

}
.

(2.58)

Next, by similar reasons we derive the equality
2∑

i=1

dφi

dt
Mi0δi =

2∑
i=1

dφi0

dt
Mi0δi + ψ0t

2∑
i=1

dϕi2

dτ
Mi0δ(x− x∗) +OD′(ε). (2.59)
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Combining (2.55) - (2.59) we rewrite formula (2.53) in the resulting form

∂ρεuε

∂t
=

2∑
i=1

dφi0

dt
Mi0δi +

dM40

dt
(H4 −H3) + L5δ(x− x∗) +OD′(ε), (2.60)

where

L5 = L3 + L4 + ψ0t

2∑
i=1

dϕi2

dτ
Mi0, (2.61)

and L3, L4 are presented in (2.54), (2.58).
Now let us pass to the calculation of spatial derivatives. Carrying out similar as

above analysis we obtain the statement

Lemma 2.4. Under the assumptions mentioned above the following relations hold

∂ ρε

∂ x
= −

2∑
i=1

Eiδi +
∂ R

∂ x
(H4 −H3) +OD′(ε),

∂ ρεuε

∂ x
= −

2∑
i=1

Mi0δi +
∂M40

∂ x
(H4 −H3) +M∗δ(x− x∗) +OD′(ε),

∂ ρεu
2
ε

∂ x
= −

2∑
i=1

Kiδi +
∂ K4

∂ x
(H4 −H3) +K∗δ(x− x∗) +OD′(ε),

(2.62)

where

Ki =V 2
i (ρ0 + Ei) + 2ρ0V1V2B11(σīi) + V1(V1E2 + 2V2E1)Bīi(σīi)

+ V2(V2E1 + 2V1E2)Bīi(σīi), i = 1, 2,

K4 =R
(
U(x− ϕ40) + V1 + V2

)2
B11(σ14)

− U2(x− ϕ40)
(
(E1 + E2 −R)(x− ϕ40)B11(σ41)

+ 2ρ0(x− ϕ30)B11(σ34)
)

and K∗, M∗ are smooth functions from the Schwarz space.

We do not present the explicit formulas of K∗ and M∗ since they are huge. It is
important only that K∗ and M∗ depend on ϕi2, i = 1, 2 via convolutions Bkl(σij)
only since σij = (φi0 − φj0)/ε+ ϕi2 − ϕj2.

Substituting the expressions (2.45), (2.60) and (2.62) into the definition (2.1),
we derive our main relations for obtaining of the asymptotic solution parameters

2∑
i=1

(
dφi0

dt
Ei −Mi0)δi +

(dR
dt

+
∂M40

∂ x

)
(H4 −H3)

+
(
ψ0t

2∑
i=1

(Eiϕi2)′ + L1 +M∗
)
δ(x− x∗) = OD′(ε),

(2.63)

2∑
i=1

(
dφi0

dt
Mi0 −Ki − c20Ei)δi +

(dM40

dt
+
∂ K4

∂ x
+ c20

∂ R

∂ x

)
(H4 −H3)

+(L5 +K∗)δ(x− x∗) = OD′(ε).
(2.64)
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3. Analysis of the shock wave dynamics

Let us consider the system obtained by setting equal to zero the coefficients of
the functions δi

dφi0

dt
Ei = Vi(ρ0 + Ei) + (E1V2 + E2V1)B11(σı̄i), (3.1)

dφi0

dt
(Vi(ρ0 + Ei) + (E1V2 + E2V1)B11(σı̄i))

= V 2
i (ρ0 + Ei) + 2ρ0V1V2B11(σı̄i) + V1(V1E2 + 2V2E1)Bı̄i(σı̄i)

+ V2(V2E1 + 2V1E2)Biı̄(σı̄i) + c20Ei, i = 1, 2.

(3.2)

Lemma 3.1. Let the assumptions mentioned above hold. Then the second assump-
tion (2.10) holds and system (3.1), (3.2) describes the confluence of the shock waves
for τ →∞.

Proof. Let us denote

zi = Vi/Ei, i = 1, 2 (3.3)

and divide equations (3.1) by Ei. Obviously, we obtain

dφi0

dt
= zi(ρ0 + Ei) + Eī(z1 + z2)B11(σīi), i = 1, 2. (3.4)

Subtracting equation (3.4) for i = 1 from (3.4) for i = 2 and changing the coefficient
of the δ(x−x∗) function in (2.63) we derive the following equation for the difference
σ21 = (φ2 − φ1)/ε

ψ0t

dσ21

dτ
= z2

{
ρ0

(
1− z1

z2

)
+ (E1 + E2)

(
1−

(
1 +

z1
z2

)
B11(σ21)

)}
, (3.5)

since
d

d t
(φ2 − φ1) = ψ0t

dσ21

dτ
.

Note that the assumptions (2.7) require the scattering–type ”initial” datum

σ21/τ |τ→−∞ → 1. (3.6)

Next, using notation (3.3) and equations (3.1) again, we can rewrite equations (3.2)
in the form(

zi(ρ0 + Ei) + Eī(z1 + z2)B11(σīi)
)2

= c20 + Eiz
2
i (ρ0 + Ei) + 2ρ0z1z2EīB11(σīi) + E2

ī (z2
ī + 2z1z2)B12(σīi)

+ E1E2(z2
i + 2z1z2)B21(σīi), i = 1, 2.

(3.7)

Therefore, treating Ei as known coefficients we obtain two algebraic equations for
the functions z1 and z2. To solve them let us subtract one equation (3.7) from
another one. Obviously, we obtain a homogeneous quadratic equation. Solving this
equation and choosing the sign using the first two assumptions (2.7), we pass to
the equality

z1 = Lz2, (3.8)
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where

L =
(√

b2 + a1a2 − b
)
/a1,

aj =
(
ρ0 + Ej + Ej̄B11(σj̄j)

)2 − Ej

(
ρ0 + EjB11(σjj̄)

2 +
2∑

i=1

EiB21(σj̄j)
)
,

b =
(
E1 + E2B11(σ21)

)2 −
(
E2 + E1B11(σ12)

)2 + E1E2(1− 2B11(σ21))

− (E1 + E2)
(
E1B21(σ21)− E2B21(σ12)

)
.

A simple analysis of the convolutions Bij(σ) and the Hölder inequality result in the
statement

Lemma 3.2. The function B2
11(σ)−B12(σ) is even and negative. The inequality

2B11(σ)−B21(σ) > 0

holds uniformly in σ.

Therefore,

B2
11(σjj̄) +B21(σj̄j) = 1 +B2

11(σjj̄)−B12(σjj̄) 6 1.

This implies the inequality

aj =ρ0

(
ρ0 + Ej + 2Ej̄B11(σj̄j)

)
+ E1E2

(
2B11(σj̄j)

2 −B21(σj̄j)
)

+ E2
j

(
1−B2

11(σjj̄)−B21(σj̄j)
)
> 0, j = 1, 2,

and the existence of the function L.
Now we can write out the solutions zj of equations (3.7) as functions of E1, E2,

and σ21,
z1 = c0LM, z2 = c0M, (3.9)

where

M = {α1L2 + 2α2L+ α3}−1/2,

α1 =ρ0

(
ρ0 + E1 + 2E2B11(σ21)

)
+ E1E2

(
2B11(σ21)−B21(σ21)

)
+ E2

2B
2
11(σ21),

α2 = E1E2

(
B11(σ21)−B21(σ21)

)
+ E2

2

(
B2

11(σ21)−B12(σ21)
)
,

α3 = E2
2

(
B2

11(σ21)−B12(σ21)
)
.

Furthermore, considering L and M as functions of σ21 and using the properties of
the convolutions Bij(σ21), one can prove the following statement.

Lemma 3.3. Let Ei(τ) > 0 uniformly in τ . Then the function L = L(σ21) de-
creases from the value L−∞ > 1 to the value L∞ < 1 as σ21 goes from −∞ to ∞
and L|σ21=0 = 1, where

L−∞ =
√
ρ0 + E1 + E2√

ρ0
, L∞ =

√
ρ0√

ρ0 + E1 + E2
.

Conversely, the function M = M(σ21) increases from the value M−∞ to the value
M∞ as σ21 goes from −∞ to ∞, where

M−∞ =
(
(ρ0 + E1)(ρ0 +

2∑
i=1

Ei)
)− 1

2 , M∞ =
√
ρ0 + E1 + E2√

ρ0

(
ρ0E1 + (ρ0 + E2)2

) .



EJDE-2005/148 ASYMPTOTIC BEHAVIOR 15

At the point σ21 = 0, M = M0, where

M0 =
(
ρ0(ρ0 +

2∑
i=1

Ei)
)− 1

2 . (3.10)

Using the first two assumptions (2.7) we find now the limiting values M̄ and z̄i

of M and zi

M̄ = 1/
√
ρ1ρ2, z̄1 = c0/

√
ρ0ρ1, z̄2 = c0/

√
ρ1ρ2 as σ21 → −∞. (3.11)

Therefore, we obtain the limiting value of the right-hand side F = F (τ, σ21) of
equation (3.5), namely

F → F̄ = c0(
√
ρ2 −

√
ρ0)/

√
ρ1 as σ21 → −∞. (3.12)

According to formulae (1.3), (1.5) and (2.30), the limiting right-hand side (3.12) is
equal to ψ0t. So that

σ21 → τ as τ → −∞, (3.13)
which justifies the existence of a solution with the property (3.6).

Next, z1 = z2 at the point σ21 = 0. Thus, F = 0 at this point since B11(0) = 1/2.
Moreover, close to this point

F = σ21F
′(τ, 0), F ′(τ, 0) < 0.

Therefore, the value σ21 = 0 can be reached only as τ → ∞. Furthermore, stabi-
lization of Ei requires the vanishing of the derivative F ′τ as τ → ∞. Respectively,
one can prove that all derivatives of F vanish as τ →∞. Hence,

σ21 → 0 as τ →∞. (3.14)

It remains to show that system (3.1), (3.2) coincides with the standard Rankine-
Hugoniot conditions as τ → ±∞. Indeed, let τ → −∞. Since z̄i = ei/vi, the last
two equalities in (3.11) present the standard formulas (1.3) for the velocities u1 and
u2. It is obvious now that formulas (3.4) define in this limit the same values of ϕi0t

as by standard formulas (1.5).
Let τ →∞. Using the limiting value (3.10) ofM it is easy to derive the following

relations:

zi → z =:
c0√

ρ0(ρ0 + E1 + E2)
,

dφi0

dt
→ φ0t

=: c0

√
ρ0 + E1 + E2

ρ0
, (3.15)

V1 + V2 → V 1 + V 2 =: c0
E1 + E2√

ρ0(ρ0 + E1 + E2)
. (3.16)

Therefore, we obtain again the standard formulas but for an alone shock wave. This
completes the proof of Lemma 3.1. �

The statement of this lemma describes qualitatively the behavior of the system
(3.1), (3.2) solution and justifies our main assumptions ( 2.10). However, actually
we do not need to solve this system exactly. Indeed, according to formulas (3.3),
(3.15) and (3.16) we can specify

Vi(τ) = vi + (V i − vi)ζ1(τ), ϕi1(τ) = ϕi1ξi(τ), i = 1, 2, (3.17)

where
V i = zEi, ϕi1 = (φ0t

− ϕi0t
)/ψ0t

, (3.18)
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and ζ1(τ), ξi(τ) are smooth functions that increase monotonically from zero to
unit as τ goes from −∞ to ∞. Obviously, functions (3.17), (3.18) satisfy the
corresponding assumptions (2.7), (2.8) and (2.10). Moreover, the analysis drawn
above imply that the differences of the left and right hand sides of equalities (3.1),
(3.2) become soliton-type functions after substitution Vi and ϕi1 of the form (3.17),
(3.18). Therefore, according to the statement of Lemma 2.3 these differences can
be supplemented to the coefficients of the δ(x − x∗) functions in relations (2.63)
and (2.64).

So we define Vi and ϕi1, i = 1, 2, by formulas (3.17), ( 3.18). Consequently, we
obtain the equalities(dφi0

dt
Ei −Mi0

)∣∣∣
∗

def= Gi1,
(dφi0

dt
Mi0 −Ki − c20Ei

)∣∣∣
∗

:= Gi2, (3.19)

where the stars mean the substitution of Vj , ϕj1, j = 1, 2, mentioned above and
Gik = Gik(τ) are soliton-type functions. As for the amplitudes Ei, they remain
indeterminate on this stage.

4. Analysis of the centered rarefaction

Considering the centered rarefaction terms in (2.63) and (2.64) we will use the
statement of Lemma 2.3 again. However, we can not neglect soliton type terms
now, since the functions U and β are not bounded uniformly in t as ε→ 0. Hence,
we should take into account some soliton terms as the coefficients of δ(x − x∗)
functions.

Let us start with some algebraic transformations.

Lemma 4.1. Let functions U , β and φj, j = 3, 4 be such that

dR

dt
+
∂M40

∂ x
= F1, (4.1)

where F1 is a soliton-type function. Then

dM40

dt
+
∂ K4

∂ x
+ c20

∂ R

∂ x

= R
{(dU

dt
+ U2

)
(x− φ4)− U

(dφ4

dt
− V1 − V2

)}
+ c20

∂ R

∂ x

−
{

(E1 + E2)
((dU

dt
+ U2

)
(x− φ4)− U

dφ4

dt

)
+RU(V1 + V2)

}
B11(σ41) + F2 = 0.

(4.2)

Here F2 is the soliton-type function defined by

F2 =−
{
U(2x− φ3 − φ4)

(
U

(
E1 + E2 −R+ 2ρ0 − 2

∂ R

∂ x
(x− φ4)

)
−N2B11(σ34)

)
+ U2(x− φ4)(R3 +R4 − 2R) +

dM401

dt

}
B11(σ34)

+ F1{V1 + V2 + U
(
(x− φ4)B11(σ43)− (x− φ3)B11(σ34)

)
},

and N2, M40, M401 are defined in formulas (2.27), (2.57).

To prove this statement it is sufficient to eliminate the term dR/dt from the
derivative dM40/dt using the equality (4.1).
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Let us analyze equations (4.1) and (4.2) beforehand. To this aim, consider
equation (4.1) on the curve x = φ3. Neglecting soliton - type functions we obtain
the equation

dφ30

dt
+ c0

U

β
− U(φ3 − φ4)− (V1 + V2)B11(σ14)− c0

U

βρ2

2∑
i=1

Ei = 0. (4.3)

Considering the left-hand side of equation (4.3) for τ → ±∞ and taking into account
the geometric assumptions (2.11), (2.12), we derive

dϕ30

dt
+ c0

U
+

β
+ − U

+
(ϕ30 − ϕ40)− (V 1 + V 2) = 0 as τ →∞, (4.4)

dφ30

dt
+ c0

ρ0

ρ2

U
−

β
− = 0 as τ → −∞. (4.5)

Next, consider equation (4.2) on the curve x = φ4. Neglecting soliton - type
functions we obtain(

1− E1 + E2

R4
B11(σ41)

)dφ40

dt
+ c0

β

U
− (V1 + V2)B11(σ14) = 0. (4.6)

Therefore,

dϕ40

dt
+ c0

β
+

U
+ − (V 1 + V 2) = 0 as τ →∞, (4.7)

dφ40

dt
+ c0

ρ2

ρ0

β
−

U
− = 0 as τ → −∞. (4.8)

Now let us consider equations (4.1) and (4.2) on the curves x = φ4 and x = φ3

respectively. Neglecting soliton - type functions again and using the equalities (4.3),
(4.6) we derive the following equalitites:

(φ30 − φ40)
{dβ
dt

+ Uβ
(
1− 2B11(σ34)

)}
= 0,

(φ30 − φ40)
{dU
dt

+ U2
}

= 0.
(4.9)

This implies the desired equations for the limiting functions

dβ
+

dt
+ U

+
β

+
= 0,

dU
+

dt
+ U

+2
= 0 as τ →∞. (4.10)

Therefore,

β
+

= U
+

= (t− t∗)−1 as τ →∞, (4.11)

which coincides with formulas (2.41), (2.42) and (2.51). Moreover, formulas (2.52)
and (4.11) allow to rewrite equations (4.4) and (4.7) as follows:

dϕ30

dt
= u2 − c0,

dϕ40

dt
= V 1 + V 2 − c0 as τ →∞. (4.12)

It is clear now that ϕ30 and ϕ40 are the standard characteristics which go to the
left in the media with the velocities u = u2 and u = V 1 + V 2 respectively.
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Now let us consider the situation as τ → −∞. Equations (4.5) and (4.8) imply
the congruence of the curves x = φ30 and x = φ40 if and only if(U −

β
−

)2

=
(ρ2

ρ0

)2

.

Extracting the root and taking into account geometric assumption (2.11) we obtain
the condition

U

β
→ ρ2

ρ0
as τ → −∞. (4.13)

At the same time, equations (4.9) do not prescribe anything as τ → −∞. Therefore,
we can try to define the functions β and U in an arbitrary manner preserving the
properties (4.11) and (4.13 ) to within O(ε). To this aim we use the representation
(2.41) and (2.51) setting

g1 = (1 + ρ2)
√
τ2 + γ2

1 ζ3(−τ), g2 = (1 + ρ0)
√
τ2 + γ2

2 ζ4(−τ), (4.14)

where γi > 0 are arbitrary constants, ζi(τ) > 0 are smooth functions such that
ζi(τ) → 0 as τ → −∞ and ζi(τ) → 1 as τ →∞, i = 3, 4. Moreover, let

ζ3(0) = (1 + ρ2)−1, ζ4(0) = (1 + ρ0)−1. (4.15)

It is easy to check that this choice of gi guarantees the fulfillment of both the
inequalities β−1(τ) > const > 0 and U−1(τ) > const > 0 for any τ ∈ R1, and the
limiting relations (4.11), (4.13).

This representation of β, U and formulas (4.5), (4.8) have as consequence the
equations

dφ30

dt
=
dφ40

dt
= −c0 as τ → −∞. (4.16)

Obviously we obtain that φi0, i = 3, 4, are the standard characteristics which go to
the left in the media with the velocity u = 0.

Completing the preliminary analysis we define the functions φi0, i = 3, 4, by
formulas (2.5), where ϕi0 are determined in (4.12) and

ϕ31 = − u2

ψ1t

ξ3(−τ), ϕ41 = −V 1 + V 2

ψ1t

ξ4(−τ). (4.17)

Here ξi(τ), i = 3, 4, are smooth functions which increase from zero to unit.
Now we need to justify the choice (4.12), (4.14) and (4.17). To this aim let us

substitute these formulas into the left-hand side of equality (4.1) and denote the
result of substitution by F1.

Lemma 4.2. Under the choice (4.12), (4.14) and (4.17) the following relation
holds:

F1(H4 −H3) = F ∗1 δ(x− x∗) +OD′(ε), (4.18)

where F ∗1 = F ∗1 (τ, ε) is a function from the Schwarz space.

Proof. Obviously,

F1(H4 −H3) = f1(H4 −H3) +OD′(ε), f1 = F1

(
ω
(x− φ4

ε

)
− ω

(x− φ3

ε

))
.
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Next, using the representation (2.4) of R we rewrite F1 in the form

F1 =− R

c0

{ d

dt

(
β(x− φ3)

)
+ β(V1 + V2)B11(σ14) + βU(x− φ4)

}
+RU − U(E1 + E2)B11(σ41)

+ U
{
R(2x− φ3 − φ4)

β

c0
+R3 +R4 − 2R

}
B11(σ34).

(4.19)

Let us consider F1 for τ >> 1. Since the convolutions B11(σ41), B11(σ34) vanish
we derive the relation for τ →∞,

F1 = −Rβ
+

c0

{ (x− ϕ30)

β
+

dβ
+

dt
− dϕ30

dt
+ U

+
(x− ϕ40) + V 1 + V 2 − c0

}
+ . . . ,

where the dots mean vanishing terms and terms of value O(ε). Since β → U →
(t − t∗)−1 as τ → ∞, it is clear now that formulas (4.12) and (4.14) imply the
vanishing of F1 as τ →∞.

Next, considering F1 for τ � −1 we rewrite the equality (4.19) as follows:

F1 = −(x− φ3)
R

c0

dβ

dt
+ (R− ρ2)

β

c0

dφ30

dt
+ F11,

where

F11 =β
(ρ2

c0

dφ3

dt
+ ρ0

U

β

)
+ βU(φ40 − φ30)

R

2c0

+
1
2
U

(
ρ2 +R4 − 2(ρ0 + E1 + E2)

)
+ . . . ,

and the dots denote small terms as τ → −∞. Under the choice (4.14) and (4.17)
the function F11 vanishes. Furthermore,

|x− φ3|
(
ω
(x− φ4

ε

)
− ω

(x− φ3

ε

))
6 |φ40 − φ30| → 0 as τ → −∞.

Estimating R − ρ2 similarly we obtain that f1 → 0 as τ → −∞ . Thus, we
can apply the statement of Lemma 2.3 and obtain relation (4.18), where F ∗1 =
ε(χ4 − χ3)f1|x=x∗ .

It remains to estimate F ∗1 for |τ | 6 const. Obviously, to this aim it is enough
to estimate the maximum values of β and (x∗ − φ3)dβ/dt. Formulas (2.41), (4.14)
and (4.15) imply the inequalities

εβ 6
ψ0t

γ1
, ε

∣∣∣(x∗ − φ3)
dβ

dt

∣∣∣ = |ε2β2(1 + g′1τ )χ3| 6 const.

This completes the proof of Lemma 4.2. �

Considering in the same way the coefficients of the Heaviside functions in relation
(2.64) we obtain the similar to Lemma 4.2 statement

Lemma 4.3. Under the choice (4.12), (4.14) and (4.17) the following relation
holds: {dM40

dt
+
∂ K4

∂ x
+ c20

∂ R

∂ x

}
(H4 −H3) = F3δ(x− x∗) +OD′(ε), (4.20)

where F3 is a function from the Schwarz space.
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Therefore, we define the functions β, U , and φj0, j = 3, 4, in accordance with
formulas (4.12), (4.14), (4.17) and supplement the corresponding corrections to the
coefficients of δ(x − x∗) functions in relations (2.63), (2.64). We stress that the
limiting values V i remain undefined and conditions (4.15) remain unique ones for
the functions ζ3 and ζ4.

5. Completion of the construction

Now we can complete the construction of the shock waves and the centered
rarefaction defining the functions Ei, ξi, and ζj . To this aim let us consider the
continuity conditions (2.52). For the exact solutions Vi = Vi(E1, E2, τ) of the
Rankine–Hugoniot conditions (3.1), (3.2) (see formulas (3.3), (3.9)) system (2.52)
implies the appearance of a transcendental algebraic equation for Ei. However, we
can simplify the procedure using the arbitrariness in representation of the functions
Ei, Vi, gi and φj . Indeed, taking into account the exact formulas (2.4), (2.6) for
R4 we pass to the algebraic equations

ρ0 + E1 + E2 = ρ2e
− β

c0
(φ4−φ3),

V1 + V2 = u2 + U(φ4 − φ3).
(5.1)

Let us eliminate the term φ4 − φ3 from this system. Then we obtain the equation

ρ0 + E1 + E2 = ρ2e
− β

c0U (V1+V2−u2). (5.2)

Lemma 5.1. Under the choice (3.17), (4.12), (4.14) and (4.17) there exist mono-
tonic functions Ei, i = 1, 2, which satisfy equation (5.2) and

Ei → ei as τ → −∞, E1 + E2 → ρ0(M2
0 − 1) as τ →∞. (5.3)

Here the Mach number M0 is the solution of the equation

ρ0M
2 = ρ2e

−
{

M− 1
M−u2

c0

}
(5.4)

and satisfies the inequalities √
ρ1

ρ0
< M0 <

√
ρ2

ρ0
. (5.5)

Proof. First of all consider equation (5.2) in the limit as τ → ∞. Representation
(3.17) of Vi and formula (3.16) imply the dependence of the right-hand side of
equation (5.2) on E1 + E2. Let us use the standard notation M0 for the Mach
number calculated before the shock wave front. In the case under consideration

M0 =

√
ρ0 + E1 + E2√

ρ0
.

Since V 1+V 2 = c0(M0+1/M0) and β/U → 1 as τ →∞, we see that equation (5.2)
takes the form (5.4) in the limit. The left-hand side of this equation is the mono-
tonically increasing function whereas the right-hand side monotonically decreases
with respect to M > 1. This implies the existence of a unique root M = M0 > 1 of
the equation since ρ2 > ρ0 and u2 > 0. Respectively, we derive the desired limiting
amplitudes

E1 + E2 = ρ0(M2
0 − 1). (5.6)

Note also that inequality M0 > 1 is the stability condition for shock waves.
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Next, let us set M = M∗ :=
√
ρ1/ρ0. Direct calculations and the exact formula

(1.3) of u2 show that

M∗ − 1
M∗ −

u2

c0
= − e2√

ρ1ρ2
.

Thus, the right-hand side of (5.4) is greater than ρ2 whereas ρ0M
∗2 = ρ1 < ρ2.

Therefore, M∗ < M0 and we derive the first inequality in (5.5). To prove the second
inequality in (5.5) consider the number M∗ > 0 such that

M∗ −
1
M∗

=
u2

c0
.

Solving this equation and using formula (1.3) again we deduce M∗ as a function
with respect to ρ0, ρ1, and ρ2. Next, simple algebra shows that ρ0M

2
∗ < ρ2. Thus,

M0 > M∗. Therefore,

V 1 + V 2 = c0(M0 −
1
M0

) > u2. (5.7)

This implies the desired inequality

ρ0M
2
0 = ρ0 + E1 + E2 < ρ2. (5.8)

We stress that inequalities (5.7) and (5.8) guarantee the stability of the limiting
rarefaction wave.

Furthermore, in accordance with (2.7) we have

ρ0 + E1 + E2 → ρ0 + e1 + e2 = ρ2, V1 + V2 → v1 + v2 = u2 as τ → −∞.

This implies the consistency of equation (5.2) and assumptions (2.7).
Now we can use the arbitrariness of the functions Ei, Vi, gi and φj . We set

γ1 = θγ2, θ > 1 (5.9)

and fix a monotonic function ζ4. Then there exists a function ζ3 such that the ratio
β/U monotonically increases from ρ0/ρ2 to 1. Let us fix a monotonic function ζ1
in representation (3.17) of Vi and define the amplitudes Ei as follows

Ei = ei + (Ei − ei)ζ2(τ), i = 1, 2, (5.10)

where 0 < Ei < ei are numbers such that equality (5.6) holds. Then formulas (5.6),
(5.7) and equation (5.2) allow to define the function ζ2, namely(

1− ρ0

ρ2
M2

0

)
ζ2(τ) = 1− exp

(
− β

U

(M2
0 − 1
M0

− u2

c0

)
ζ1(τ)

)
. (5.11)

It is easy to check that ζ2 is the smooth function which increases monotonically
from zero to unit. This completes the proof of Lemma 5.1. �

Furthermore, the second equation in (5.1) allows to define the difference φ4−φ3.
Indeed, this equation and (3.17), (5.7) imply the equality

φ4 − φ3 = U−1(V1 + V2 − u2) = U−1
(
c0(M0 −

1
M0

)− u2

)
ζ1(τ). (5.12)

Thus, the difference φ4 − φ3 is positive and tends to zero as τ → −∞. Moreover,
in accordance with (2.5), (4.12), (4.17) we have

φ4−φ3 =
(
(V 1 +V 2)(1− ξ4(−τ))−u2(1− ξ3(−τ))

)
(t− t∗)+ ε(ϕ42−ϕ32). (5.13)

The function U−1 varies rapidly in a small neighborhood of the point t = t∗ whereas
U−1 ∼ t − t∗ and U−1 ∼ ρ0|t − t∗| for t − t∗ ∼ ±ε1−γ , γ > 0, respectively. It is
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clear now that we can set ϕ32 = −ϕ42 and choose ϕ42 as a soliton–type function.
The equality

(φ4 − φ3)|t=t∗ = εγ2

(
c0(M0 −

1
M0

)− u2

)
ζ1(0) (5.14)

shows that the amplitude of ϕ42 is positive and proportional to γ2.
The last step of the construction is consideration of the coefficients of δ(x− x∗)

functions in the relations (2.63) and (2.64). Taking into account the statements of
Lemmas 4.2, 4.3 and formulas (3.19) we obtain the equations

ψ0t(
2∑

i=1

Eiϕi2)′ + L1 +M∗ + F ∗1 +
2∑

i=1

Gi1 = 0,

L5 +K∗ + F3 +
2∑

i=1

Gi2 = 0.

(5.15)

Setting ϕ12 = ϕ22, W1 = W2 and using formulas (2.46), (2.61) we rewrite equations
(5.15) in the standard form

2∑
i=1

Ei
dϕ12

dτ
= f1(τ, ϕ12),

d(aW1)
dτ

= f2(τ), (5.16)

where

a =2ρ0 +
1
2

2∑
i=1

Ei

(
1 + 2B11(σīi)

)
+ (R3 −R∗)

2∑
i=1

B11(σ3i) + (R∗ −R4)
2∑

i=1

B11(σ4i),

(5.17)

and fi are soliton-type functions.

Lemma 5.2. There exist such numbers γ2, E2 and functions ζ1, ξi, i = 1, 2, 3,
that equations (5.16) have uniformly bounded in τ solutions.

Proof. The solvability of the first equation (5.16) is obvious since E1+E2 > const >
0 uniformly in τ . We specify ϕ12 by the condition ϕ12|τ=0 = 0. Note that the choice
ϕ12 = ϕ22 implies the independence σ21 of this correction and allows to write out
the difference φ1 − φ2 in the form

φ1 − φ2 =
{
ψ0t(1− ξ2) + (φ0t

− ϕ10t
)(ξ2 − ξ1)

}
(t∗ − t). (5.18)

Let ξ2(τ) > ξ1(τ). Then (t∗ − t)(φ1 − φ2) > 0 accordingly to (5.18) and the first
inequality in (5.5).

To prove the inequality a > const > 0 let us denote τ∗i , i = 1, 2, the time
instants of the intersections of the line x = x∗ and the curves x = φ3 and x = φ4

respectively. Using the explicit formula ( 2.4) of R it is easy to check that the
inequalities R3 > R∗ > R4 hold for τ ∈ [τ∗1 , τ

∗
2 ], where R∗ = R|x=x∗ . Thus, all

terms in (5.17) are positive for such τ .
Furthermore, let us note the fulfillment of the relations

φ3|τ=0 = x∗ − εϕ42(0) < x∗ < x∗ + εϕ42(0) = φ4|τ=0.

Hence, φ3|τ=0 → −0 and φ4|τ=0 → +0 as γ2 → 0 , whereas φ1|τ=0 = x∗ and
this position does not depend on γ2. Therefore, there exist such number γ2 and
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functions ξ1, ξ3 that the inequalities

φ1|τ=τ∗
1

6 x∗, φ1|τ=τ∗
2

> x∗ (5.19)

hold for any fixed ζ1. Then the formulas for φi, i = 1, . . . , 4 and (5.18) imply the
fulfillment of more precise version of geometric conditions ( 2.11) and (2.12)

φ2 < φ1 < φ3 < φ4 for τ∗1 > τ > −T,
φ3 < φ4 < φ1 < φ2 for τ∗2 < τ < T,

(5.20)

where T > max{−τ∗1 , τ∗2 } is a constant and φ2 − φ1 → +0, φ4 − φ3 → +0 as
τ → ±∞ respectively.

Let τ ∈ (τ∗2 , T ). Then R3 > R4 > R∗. Simple transformations and the first
equality (2.52) allow to rewrite formula (5.17) as follows:

a =ρ0

(1
2

+B11(σ21)
)

+ (R3 −R∗)
2∑

i=1

B11(σ3i) +R∗

2∑
i=1

B11(σ4i)

+ E2

(
1− 2B11(σ12)

)
+R4

(1
2

+B11(σ12)−
2∑

i=1

B11(σ4i)
)
.

(5.21)

The second inequalities in (5.20) imply that B11(σ12) < 1/2 and B11(σ41) < 1/2.
Moreover, B11(σ12) > B11(σ42) since σ42 = σ41 + σ12. Hence, a > const > 0
for such τ . For τ > T and sufficiently large T we obtain the desired estimate
a ∼ ρ0 + R4 > 0 since B11(σ12) ∼ B11(σ21) ∼ 1/2 and B11(σji) ∼ 0, j = 3, 4,
i = 1, 2.

Let τ ∈ (−T, τ∗1 ). Then R∗ > R3 > R4. Using the first equality ( 2.52) again,
we rewrite formula (5.17) in the form

a =ρ0

(1
2

+B11(σ21)
)

+R∗

2∑
i=1

(
B11(σi3)−B11(σi4)

)
+R4

(
B11(σ12) +

2∑
i=1

B11(σi4)−
1
2
)

+ ρ2

(
1−

2∑
i=1

B11(σi3)
)
− E2

(
1− 2B11(σ21)

)
.

The location (5.20) of the phases φi implies the inequalities B11(σi3) > B11(σi4)
and B11(σ12) > 1/2. Thus,

a >
1
2
ρ0 + ρ2

(
1− 2B11(σ13)

)
− E2

(
1− 2B11(σ21)

)
.

Since ρ2 > E2(τ) > 0 uniformly in τ , the last estimate can be transformed to the
following form:

a >
1
2
ρ0 + 2E2

(
B11(σ21)−B11(σ13)

)
.

Now we use the remained arbitrariness in the choice of E2 and ζ1. Accordingly to
(5.11), ζ2(τ∗1 ) will be an arbitrarily small number if ζ1(τ∗1 ) � 1. Therefore, we can
choose E2 and ζ1(τ∗1 ) such that the inequality

E2

∣∣B11(σ21)−B11(σ13)
∣∣∣∣∣

τ=τ∗
1

6
1
8
ρ0 (5.22)
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holds. The trajectories φ1 and φ2 of the shock waves go to the right and have
different velocities, whereas the characteristic φ3 goes to the left. So the distances
φ1−φ2 and φ3−φ1 increase with time when τ decreases from τ∗1 to −T . Therefore,
the convolutions B11(σ21) and B11(σ13) vanish. The function E2 increases for such
τ . However, we can specify ζ1(τ) such that the rate of increasing of E2 will be
smaller as the rate of decreasing of B11(σ21) and B11(σ13). Obviously, the estimate
similar to (5.22) holds for any τ ∈ (−T, τ∗1 ) under this choice. Consequently, we
obtain the desired estimate a > const > 0. Evidently, a > ρ0/2 for τ 6 −T and
sufficiently large T . It remains to specify W1 by the condition W1 → 0 as τ → −∞.
This completes the proof of Lemma 5.2 and Theorem 2.1. �

Conclusion. Let us indicate a way of generalization of the presented above con-
struction for strictly hyperbolic systems of conservation laws. Let, for simplicity,
the initial data be a superposition of two stable shock waves with constant ampli-
tudes. Obviously, to construct a uniform in time asymptotic solution we need to
involve into anzatz regularizations of all possible shock waves, contact discontinu-
ities and centered rarefaction. More or less simple algebra allows to represent the
nonlinearity again as a linear combination of these regularizations (see, for exam-
ple, Subsection 2.2). Therefore, to determine parameters of the anzatz we derive a
dynamical system with scattering–type initial data. The proof of the existence of a
special solution of this problem is the main obstacle to the construction. For exam-
ple, the direct substitution of the anzatz (2.3) into the gas dynamics equations does
not allow to understand for problem (1.1), (1.2) almost anything. Many simplifica-
tions based on the statement of Lemma 2.3 allow to transform the corresponding
dynamical system to more reasonable form. However, the resulting system remains
very complicated. Another example is the interaction of shock waves with opposite
directions of motion [7]. We can prove there the solvability of the corresponding
scattering–type problem for a special case of initial amplitudes, whereas it remains
unclear till now, how to prove the same in the general case. It is clear that the
similar problem for general systems of conservation laws will be an insuperable
obstacle. So the approach proposed in the present paper can be the main tool to
avoid this difficulty. Indeed, changing the desired solution of the dynamical system
to appropriate approximation, we pass to a simpler existence problem for small
corrections. We guess that this problem can be solved in the general case similarly
to the example considered above.

As specifically for rarefaction wave in the problem (1.1), (1.2), we observe a
soliton–type deformation of the trajectories close to the interaction point as the
most unexpected result. This phenomenon shows that the mechanism of the rar-
efaction wave appearance is realized via formation of a regularization of a step–
type function with negative amplitude a little bit before the shock waves pasting
together.
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[7] Garćıa-Alvarado, M. G., Flores E. R., and Omel’yanov, G. A., Interaction of shock waves in

gas dynamics. Uniform in time asymptotics, Int. J. of Math. and Math. Sc., 19, (2005), pp.
3111-3126.

[8] Kulagin, D. A. and Omel’yanov, G. A., Asymptotics of kink-kink interaction for sine-Gordon

type equations, Math. Notes, Vol.75, 2004, No.4.
[9] Le Floch, Philippe G, Hyperbolic Systems of Conservation Laws: The Theory of Classical

and Non Classical Shock Waves, Birkhauser, Basel-Boston-Berlin, 2002.
[10] Rozhdestvenskii, B. L. and Yanenko, N. N., Systems of Quasi linear Equations and their

Applications to Gas Dynamics, Nauka, Moscow, 1978. English translation, Amer. Math.

Soc., Providence, R. I., 1983.
[11] Whitham, G. B., Linear and Nonlinear Waves, Wiley, N.Y.-London-Toronto, 1974.

Ruben Flores Espinoza

Departamento de Matematicas, Universidad de Sonora, Hermosillo, 83000, Mexico

E-mail address: rflorese@gauss.mat.uson.mx

Georgii A. Omel’yanov

Departamento de Matematicas, Universidad de Sonora, Hermosillo, 83000, Mexico
E-mail address: omel@hades.mat.uson.mx


	1. Introduction
	2. Construction of the asymptotic solution
	2.1. Definitions and statement of the main result
	2.2. Preliminary calculations

	3. Analysis of the shock wave dynamics
	4. Analysis of the centered rarefaction
	5. Completion of the construction
	Conclusion

	References

