Electronic Journal of Differential Equations, Vol. 2005(2005), No. 16, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ESTIMATES FOR SOLUTIONS TO NONLINEAR BOUNDARY-VALUE PROBLEMS IN CONIC DOMAINS

TAHIR S. GADJIEV, SARDAR Y. ALIEV

Abstract

We obtain sharp estimates on the solution and its derivative near the conic points. In particular, we show that the solution satisfies $|u(x)| \leq$ $C|x|^{\lambda}$ where lambda is an eigenvalue of the Sturm-Liouville problem. Also we prove that the solution has square summable weighted second generalized derivatives.

1. Introduction and preliminaries

We consider mixed boundary-value problems in a bounded domain $\Omega \subset \mathbb{R}^{n}$, $n \geq 2$ for the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{d}{d x_{i}} a_{i}\left(x, u, u_{x}\right)+a\left(x, u, u_{x}\right)=0, \quad x \in \Omega \tag{1.1}
\end{equation*}
$$

This study includes equations such as $-\operatorname{div}\left(k+|\nabla u|^{p-2}\right)+\mu_{1}|u|^{\beta}+u^{2} \phi(x)$, where $p>1$ and $k \geq 0$.

The domain Ω is assumed to satisfy the isoperimetric inequalities defined in 8 . The boundary of the domain is decomposed as $\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$. Then Dirichlet conditions are given on Γ_{1}, and Neumann conditions on Γ_{2}.

Our aim is to obtain sharp estimates on the solution and its derivative near the conic points. Also to obtain estimates for $|u|$ and $|\nabla u(x)|$ which correspond to $\varepsilon=0$ in [2], but not obtained there. For the Dirichlet problem, these equations were considered in 5]. For the Dirichlet problem with linear equations, estimates on conical domains were considered in 6]. The mixed boundary-value problem for linear equations on conical domains was considered in [11. Here we study a non-linear case.

Let us set some notation. $B_{d}(0)$ is ball of radius d with the center at the point 0. $\Omega_{0}^{d}=\Omega \cap B_{d}(0)$ is cone in \mathbb{R}^{n}; i.e., for sufficiently small d

$$
\Omega_{0}^{d}=\left\{(r, \omega): 0<r<d, \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right) \in G\right\}
$$

where (r, ω) are spherical coordinates. G is a domain on a unit sphere S^{n-1} with infinitely differentiable boundary ∂G,

$$
\Gamma_{0}^{d}=\{(r, \omega): 0<r<d ;, \omega \in \partial G\}=\Gamma_{0,1}^{d} \cup \Gamma_{0,2}^{d} \subset \partial \Omega
$$

2000 Mathematics Subject Classification. 35J20, 35D10.
Key words and phrases. Nonlinear equation; behavior of solutions; nonsmooth domain. (C) 2005 Texas State University - San Marcos.

Submitted January 27, 2004. Published February 1, 2005.
is the lateral surface of the cone $\Omega_{0}^{d}, G_{\rho}=\Omega_{0}^{d} \cap\{|x|=\rho\}, 0<\rho<d$. $\quad d x=$ $r^{n-1} d r d \omega, d \Omega_{\rho}=\rho^{n-1} d \omega, d \omega$ is an element of area of the unit sphere, $|\nabla u|^{2}=$ $\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left|\nabla_{\omega} u\right|^{2}$, where $\left|\nabla_{\omega} u\right|$ is projection of vector ∇u on tangent plane to the sphere S^{n-1} at the point ω,

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{n-1}{n} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \Delta_{\omega} u .
$$

Here $\Delta_{\omega} u$ is the Laplace-Beltrami operator on a unit sphere.
Denote by $W_{\alpha, 0}^{m}(\Omega)$ the space of functions having generalized derivatives up to order m in Ω with norm

$$
\|u\|_{W_{\alpha, 0}^{m}(\Omega)}^{2}=\sum_{|k|^{m}=0} \int_{\Omega} r^{\alpha-2(m-k)}\left|\frac{\partial^{|k|} u}{\partial x_{1}^{k_{1}} \ldots \partial x_{n}^{k_{n}}}\right|^{2} d x
$$

The function that are continuously differentiable in $\bar{\Omega}$ and vanishing on Γ_{1} form a dense subset. In particular

$$
\|u\|_{W_{\alpha, 0}^{2}(\Omega)}^{2}=\in_{\Omega}\left(r^{\alpha} u_{x x}^{2}+r^{\alpha-2}|\nabla u|^{2}+r^{\alpha-4} u^{2}\right) d x
$$

By $W_{2,0}^{1}(\Omega)$ we denote the subset of the Sobolev space $W_{2}^{1}(\Omega)$ consisting of continuously differentiable functions in $\bar{\Omega}$ vanishing on Γ_{1}. (This is as dense subset of functions).

We shall use Hardy inequalities and some of its implications. For any function $u \in W_{2,0}^{1}\left(\Omega_{0}^{d}\right)$, we have

$$
\begin{equation*}
\int_{\Omega_{0}^{d}} r^{\alpha-4} u^{2} d x \leq \frac{4}{(4-n-\alpha)^{2}} \int_{\Omega_{0}^{d}} r^{\alpha-2} u_{r}^{2} d x, \quad \alpha<4-n \tag{1.2}
\end{equation*}
$$

which follows by integration with respect to $\omega \in G$ the correspondent Hardy inequality [4].

Allowing isoperimetricity for the domain Ω, we consider the eigenvalue problem

$$
\begin{gather*}
\Delta_{\omega} u+\lambda(\lambda+n-2) u=0, \quad \omega \in G \\
\left.u\right|_{\gamma_{0}}=0,\left.\quad \frac{\partial u}{\partial u}\right|_{\gamma_{1}}=0 \tag{1.3}
\end{gather*}
$$

where $\partial G \in \gamma_{0} \cup \gamma_{1}$. In [1], it was shown that this problem has at least one positive eigenvalue $\lambda=\lambda(G)$. Then by the variational principle for all $u \in W_{2,0}^{1}(G)$,

$$
\begin{equation*}
\int_{G} u^{2} d \omega \leq \frac{1}{\lambda^{2}+\lambda(n-2)} \int_{G}\left|\nabla_{\omega} u\right|^{2} d \omega . \tag{1.4}
\end{equation*}
$$

Note that constants in inequalities $\sqrt{1.2}$) and (1.4) are the best possible.
When we multiply inequality (1.4) by $1 / r$ and integrate with respect to $r \in(0, d)$, we have that for any function

$$
\begin{gather*}
u \in V=\left\{v \in W_{2}^{1}(\Omega): v(x)=0, x \in \Gamma_{0,1}^{d}, \frac{\partial v}{\partial n}=0, x \in \Gamma_{0,2}^{d}\right\}, \\
\int_{\Omega_{0}^{d}} r^{-n} u^{2} d x \leq \frac{1}{\lambda^{2}+\lambda(n-2)} \int_{\Omega_{0}^{d}} r^{2-n}|\nabla u|^{2} d x \tag{1.5}
\end{gather*}
$$

For any function $u \in V$,

$$
\begin{equation*}
\int_{\Omega_{0}^{d}} r^{\alpha-4} u^{2} d x \leq\left[\left(2-\frac{n+\alpha}{2}\right)^{2}+\lambda(\lambda+n-2)\right]^{-1} \int_{\Omega_{0}^{d}} r^{\alpha-2}|\nabla u|^{2} d x \tag{1.6}
\end{equation*}
$$

whenever the integral in the right-hand side is finite. Here $\alpha \leq 4-n$. To obtain this inequality we multiply inequality 1.4 by $1 / r$ and integrate with respect to $r \in(0, d)$. Then

$$
\begin{equation*}
\int_{\Omega_{0}^{d}} r^{\alpha-4} u^{2} d x \leq \frac{1}{\lambda^{2}+\lambda(n-2)} \int_{\Omega_{0}^{d}} r^{\alpha-4}\left|\nabla_{\omega} u\right|^{2} d x \tag{1.7}
\end{equation*}
$$

If $\alpha<4-n$ inequality 1.6 is obtained by adding 1.2 and 1.7 . If $\alpha=4-n$ inequality (1.6) coincides with 1.5).

By a generalized solution of the mixed boundary-value problem for equation (1.1), we mean a function $u(x)$ in $W_{2,0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}\left[a_{i}\left(x, u, u_{x}\right) \eta_{x_{i}}+a\left(x, u, u_{x}\right) \eta(x)\right] d x=0, \quad \forall \eta(x) \in W_{2,0}^{1}(\Omega) \tag{1.8}
\end{equation*}
$$

In this paper, we use the repeated index convention; this is, the summation of terms with repeated indices.

On the coefficient we require the following conditions: The functions $a_{i}(x, u, p)$ are measurable at any $x \in \Omega, u \in \mathbb{R}, p \in \mathbb{R}^{n}$; differentiable with respect to p_{j} $(j=1, \ldots, n)$; and satisfy

$$
\begin{gather*}
v(|u|) \xi^{2} \leq \frac{\partial a_{i}(x, u, p)}{\partial p_{j}} \xi_{i} \xi_{j} \leq \mu(|u|) \xi^{2}, \quad \forall \xi \in \mathbb{R}^{n}, \tag{1.9}\\
\frac{\partial a_{i}(0,0, p)}{\partial p_{j}}=\delta_{i}^{j}, \quad i, j=\overline{1, n}, \tag{1.10}\\
{\left[\sum_{i=1}^{n} a_{i}^{2}(x, u, p)\right]^{1 / 2} \leq \mu_{1}(|u|)(|p|+g(x)), \quad 0 \leq g(x) \in L_{q}(\Omega),} \tag{1.11}
\end{gather*}
$$

where δ_{i}^{j} is the Kronecker symbol, $q>n, g(0)<\infty$.
The function $a(x, u, p)$ is measurable at $x \in \Omega, u \in \mathbb{R}, p \in \mathbb{R}^{n}$ satisfies

$$
\begin{equation*}
|a(x, u, p)| \leq \mu_{2}(|u|)\left(|p|^{2}+f(x)\right) \tag{1.12}
\end{equation*}
$$

where $0 \leq f(x), f \in L_{q / 2}(\Omega), q>n, v(t)\left[\mu(t), \mu_{1}(t), \mu_{2}(t)\right]$ is positive nondecreasing function (positive non-increasing) at $t \geq 0, \mu, v>0, \mu_{1}, \mu_{2} \geq 0$.

In [3] the boundedness and Hölder continuity of generalized solution of (1.8) was proved under the conditions $1.9 \mid-1.12$. Assuming that the vrai max M of $|u(x)|$ is known, there exists $\gamma>0, C_{0}>0$ dependent only on $M, n, q, \mu, \mu_{1}, \mu_{2}, v, \Omega$ such that

$$
|u(x)|=|u(x)-u(0)| \leq C_{0}|x|^{\gamma}, \quad|x|<d
$$

For continuous functions vrai max is the same as the max over the domain on which the function is defined.

2. Main Results

Theorem 2.1. Let $u(x)$ be a generalized solution of 1.8 . Assume $1.9-1.12$ and that for any $k>0$ there exists $d_{0}>0$ such that for $p \in \mathbb{R}^{n},|x|+|u|<d_{0}$, $0 \leq h(x) \in L_{q}$, and $q>n$ we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left[a_{i}(x, u, p)-a_{i}(0,0, p)\right]^{2}\right)^{1 / 2} \leq K|p|+h(x) \tag{2.1}
\end{equation*}
$$

Also assume that $g(x) \in W_{\alpha-2}^{0}(\Omega), h(x) \in W_{\alpha-2,0}^{0}(\Omega), f(x) \in W_{\alpha, 0}^{0}(\Omega), \alpha \leq 4-n$, and

$$
\begin{equation*}
\lambda>2-(n+\alpha) / 2 \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{\Omega} r^{\alpha-2}|\nabla u|^{2} d x \quad \leq C\left(1+\|g\|_{W_{\alpha-2}^{0}(\Omega)}+\|f\|_{q / 2, \Omega}+\|h\|_{W_{\alpha-2,0}^{0}(\Omega)}+\|f\|_{W_{\alpha, 0}^{0}(\Omega)}^{2}\right) \tag{2.3}
\end{equation*}
$$

where C is constant depending on $M, v, \mu_{1}, \mu_{2}, \mu, \alpha, n, \lambda, q$, meas Ω, meas G.
Proof. For any $\delta \in(0, d)$ if r is the radius vector of the point $x \in \bar{\Omega}$ then $r_{\delta}=$ $|r-\delta l| \neq 0$, for all $x \in \bar{\Omega}$, where for the fixed point $z \in S^{n-1} \backslash \bar{G}$ and unit radius vector $l=\overrightarrow{0 z}=\left(l_{1}, \ldots, l_{n}\right)$, the vector δl does not belong to Ω_{0}^{d}. Therefore, the function $\eta(x)=r_{\delta}^{\alpha-2} u(x)$ is admissible in identity 1.8. We obtain

$$
\begin{align*}
& \int_{\Omega} r_{\delta}^{\alpha-2} a_{i}\left(x, u, u_{x}\right) u_{x_{i}} d x+\int_{\Omega} r_{\delta}^{\alpha-2} u(x) a\left(x, u, u_{x}\right) d x \tag{2.4}\\
& \quad+\int_{\Omega}(\alpha-2) u(x) r_{\delta}^{\alpha-4} a_{i}\left(x, u, u_{x}\right)\left(x_{i}-\delta l_{i}\right) d x=0
\end{align*}
$$

Since $a_{i}(x, u, p)=p_{j} \int_{0}^{1} \frac{\partial a_{i}(x, u, \tau p)}{\partial\left(\tau p_{j}\right)} d \tau+a_{i}(x, u, 0)$, by 1.10 we have

$$
\begin{align*}
a_{i}(0,0, p) & =p_{i}+a_{i}^{0}, \quad a_{i}^{0} \equiv a_{i}(0,0,0), \quad i=\overline{1, n} \\
a_{i}(x, u, p) p_{i} & =|p|^{2}+a_{i}^{0} p_{i}+\left[a_{i}(x, u, p)-a_{i}(0,0, p)\right] p_{i} \tag{2.5}
\end{align*}
$$

Taking this into account, choosing some small number d and dividing the domain Ω into two subdomains Ω_{0}^{d} and $\Omega \backslash \Omega_{0}^{d}$ we estimate the obtained integrals in each of subdomains separately. Then we apply inequality (1.6), use estimates from [7] and the fact that $u(x)$ is Hölder continuous. Finally, using conditions of the theorem passing to the limit as $\delta \rightarrow+0$ we obtain the required estimate.

Remark. Let $n=2,0 \in \partial \Omega$ be a corner point, $G=\left(0, \omega_{0}\right), \omega_{0}$ is size of the angle in the neighbourhood of $0, \Omega_{0}^{d}=(0, d) \times\left(0, \omega_{0}\right)$. In this case eigenvalues problem (1.3) has the form

$$
\begin{gather*}
u^{\prime \prime}+\lambda^{2} u=0, \quad u=u(\omega), \quad \omega \in G \\
\left.u(\omega)\right|_{\omega=0}=0,\left.\quad \frac{\partial u}{\partial n}\right|_{\omega=\omega_{0}}=0 \tag{2.6}
\end{gather*}
$$

Here, the least positive eigenvalue of this problem is $\lambda=\pi /\left(2 \omega_{0}\right)$ and condition (2.2) takes the form

$$
\frac{\pi}{\omega_{0}}>2-\alpha, \quad \alpha \leq 2
$$

Before, estimating $|u(x)|$, we prove the following lemma.
Lemma 2.2. Let $u(x)$ be a generalized solution of (1.1) and let conditions (1.9) (1.12) be satisfied. Then for any function

$$
v(x) \in V=\left\{v \in W_{2}^{1}\left(\Omega_{0}^{\rho}\right): v(x)=0, x \in \Gamma_{0,1}^{\rho} ; \frac{\partial v}{\partial n}=0, x \in \Gamma_{0,2}^{\rho}\right\}
$$

and almost all $\rho \in(0, d)$ the following equality holds

$$
\begin{equation*}
\int_{\Omega_{0}^{\rho}}\left[a_{i}\left(x, u, u_{x}\right) v_{x_{i}}+a\left(x, u, u_{x}\right) v(x)\right] d x=\int_{G_{\rho}} a_{i}\left(x, u, u_{x}\right) v(x) \cos \left(r, x_{i}\right) d G_{\rho} \tag{2.7}
\end{equation*}
$$

To prove it we substitute $\eta(x)=v(x)\left(\chi_{\rho}\right)_{h}(x)$, for $v \in W_{2,0}^{1}(\Omega)$ into the integral identity (1.8), where $\chi_{\rho}(x)$ is characteristic function of the set Ω_{0}^{ρ} and $\left(\chi_{\rho}\right)_{h}$ is its Sobolev averaging. Such η is admissible by virtue of Theorem 2.1. Passing to the limit as $h \rightarrow 0$ we obtain 2.7 . Passage to the limit is justified by the use of properties of mean functions [9, theorem 3.10, p.113] and Theorem 2.1.

Theorem 2.3. Let $u(x)$ be a generalized solution of 1.1). Assume conditions (1.9)-1.12 and that

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left[a_{i}(x, u, p)-a_{i}(0,0, p)\right]^{2}\right)^{1 / 2} \leq \delta(|x|)|p|+h(x) \tag{2.8}
\end{equation*}
$$

for any $x \in \Omega_{0}^{d}, u \in R, p \in \mathbb{R}^{n}$, where $\delta(r)$ is a nondecreasing positive function satisfying the Diny condition $\int_{0}^{d} \frac{\delta(r)}{r} d r<\infty$. In addition we assume that

$$
\begin{gather*}
a_{i}(x, u, p) p_{i} \geq v_{0}|p|^{2}-\mu_{3}|u|^{\beta}-u^{2} \varphi(x) \\
a(x, u, p) u \leq \mu_{0}|p|^{2}+\mu_{3}|u|^{\beta}+u^{2} \varphi(x) \tag{2.9}
\end{gather*}
$$

where $2 n /(n-2)>\beta>2,0 \leq \varphi(x) \in L_{q / 2}(\Omega), q>n, v_{0}>0, \mu_{0}, \mu_{3} \geq 0$; $g(x) \in W_{2-n}^{0}(\Omega), h(x) \in W_{2-n, 0}^{0}(\Omega), f(x) \in W_{4-n, 0}^{0}(\Omega)$, and

$$
\rho^{2} \int_{G} g^{2}(\rho, \omega) d \omega+\rho^{2} \int_{G} h^{2}(\rho, \omega) d \omega+\int_{\Omega_{0}^{\rho}} r^{4-n} f^{2}(x) d x \leq k \rho^{s}
$$

with $s>2 \lambda(G), 0<\rho<d$. Then

$$
\begin{equation*}
|u(x)| \leq C|x|^{\lambda(G)} \tag{2.10}
\end{equation*}
$$

where $\lambda(G)$ is the least positive eigenvalue of (1.3) and the constant C depends only on the known quantities of the problem.
Proof. Substitute $v(x)=r^{2-n} u(x)$ in identity 2.7). Such a function is admissible by virtue of 1.5 and Theorem 2.1. Taking into account 2.5 and estimating integrals with multipliers a_{i}^{0} and expression $u u_{x_{0}}$ we obtain

$$
\begin{aligned}
\int_{\Omega_{0}^{\rho}} & r^{2-n}|\nabla u|^{2} d x \\
\leq & \frac{n-2}{2} \int_{G} u^{2} d \omega \\
& +\int_{\Omega_{0}^{\rho}}\left[a_{i}\left(x, u, u_{x}\right)-a_{i}\left(0,0, u_{x}\right)\right] \mid\left[r^{2-n}\left|u_{x_{i}}\right|+(2-n) r^{-n}\left|x_{i}\right||u(x)|\right] d x \\
& +\int_{\Omega_{0}^{\rho}} r^{2-n}|u|\left|a\left(x, u, u_{x}\right)\right| d x \\
& +\rho \int_{G}|u(x)|\left[a_{i}\left(x, u, u_{x}\right)-a_{i}\left(0,0, u_{x}\right)\right]\left|\cos \left(r, x_{i}\right)\right| r=\rho d \omega \\
& +C_{9} \rho^{-\varepsilon}\|g\|_{W_{2-n}^{0}(\Omega)}+\rho^{2-\varepsilon} \int_{G} g^{2}(\rho, \omega) d \omega+\rho \int_{G} u u_{\rho} d \omega
\end{aligned}
$$

Denoting $v(\rho)=\int_{0}^{\rho} d r \int_{G}\left(r u_{r}^{2}+\frac{1}{r}\left|\nabla_{\omega} u\right|^{2}\right) d \omega$ and estimating integrals in the righthand side by means of inequalities (1.4), 1.5, Cauchy inequality with $\varepsilon>0$, and Hölder property of $u(x)$, we obtain

$$
\begin{equation*}
v(\rho) \leq c \rho^{2 \lambda}, \quad 0<\rho<d \tag{2.11}
\end{equation*}
$$

where constant C depends on $M, d, v, \mu_{1}, \mu_{2}, \mu, n, \lambda, q$, meas G, meas $\Omega,\|g\|_{q, \Omega}$,

$$
\|h\|_{W_{2-n, 0}^{0}(\Omega)},\|g\|_{W_{2-n}^{0}(\Omega)},\|f\|_{W_{4-n, 0}^{0}(\Omega)},\|f\|_{q / 2, \Omega}, \int_{0}^{d} \frac{\delta(r)}{r} d r, k, s
$$

Consider the function

$$
\begin{equation*}
z\left(x^{\prime}\right)=\rho^{-\lambda(G)} u\left(\rho x^{\prime}\right), \quad 0<\rho<d \tag{2.12}
\end{equation*}
$$

in layer $Q^{\prime}=\left\{x^{\prime}: 1 / 2<\left|x^{\prime}\right|<1\right\}, u \equiv 0$ out of Ω, and use inequalities from [7, ch.2, inequality (2.22)]. Taking into account estimate 2.11), we obtain

$$
\begin{equation*}
\int_{\rho / 2<|x|<\rho}|u|^{q} d x \leq C \rho^{n+q \lambda}, \quad 2 \leq q \leq 2 n /(n-2), n>2 \tag{2.13}
\end{equation*}
$$

Then taking into consideration results from [7] ch.4, theorem 7.6], by the assumption of this theorem, we obtain

$$
\begin{equation*}
|u(x)| \leq M_{2} \rho^{\lambda(G)} \tag{2.14}
\end{equation*}
$$

where $x \in \Omega_{0}^{d} \cap\{\rho / 2<|x|<\rho<d\}$ and M_{2} is a constant depending on the known quantities. Taking that $|x|=2 \rho / 3$ we obtain the required estimate 2.10) and the proof is complete.
Theorem 2.4. Let $u(x)$ be a generalized solution of 1.1 and assumptions of theorem 2.1 be satisfied. Assume that for $x \in \bar{\Omega}$ and $u, p \in \mathbb{R}^{n}$ the functions $a_{i}(x, u, p), i=\overline{1, n}$ and $a(x, u, p)$ be differentiable with respect to their arguments and the following inequalities hold:

$$
\begin{gather*}
a_{i}(x, u, p) p_{i} \geq v_{0}|p|^{2}-\varphi_{0}(x) \\
{\left[\sum_{i=1}^{n}\left(\left|\frac{\partial a_{i}}{\partial u}\right|^{2}+\left|\frac{\partial a}{\partial x_{i}}\right|^{2}\right)\right]^{1 / 2}+\left(\sum_{i, j=1}^{n}\left|\frac{\partial a_{i}}{\partial x_{j}}\right|^{2}\right)^{1 / 2} \leq \mu_{4}(|u|)\left(|p|+\varphi_{1}(x)\right)} \tag{2.15}\\
\left(\left|\frac{\partial a}{\partial u}\right|^{2}+\sum_{i=1}^{n}\left|\frac{\partial a}{\partial x_{i}}\right|^{2}\right)^{1 / 2} \leq \mu_{5}(|u|)\left(|p|^{2}+\varphi_{2}(x)\right)
\end{gather*}
$$

where $\varphi_{i}(x), i=0,1,2$ are nonnegative functions. Also assume that $\varphi_{0}(x), \varphi_{2}(x) \in$ $L_{q / 2}(\Omega), \varphi_{1}(x) \in L_{q}(\Omega), q>n$. Then $u(x) \in W_{\alpha, 0}^{2}(\Omega)$ and

$$
\begin{aligned}
& \|u\|_{W_{\alpha, 0}^{2}(\Omega)}^{2} \\
& \leq c_{1}\left(1+\|f\|_{q, \Omega}+\|f\|_{q / 2, \Omega}+\left\|\varphi_{0}\right\|_{q / 2, \Omega}+\left\|\varphi_{2}\right\|_{q / 2, \Omega}+\left\|\varphi_{1}\right\|_{q, \Omega}\right. \\
& \quad+\|h\|_{W_{\alpha-2,0}^{2}(\Omega)}^{2}+\|g\|_{W_{\alpha-2}^{0}(\Omega)}^{2}+\|f\|_{W_{\alpha, 0}^{0}(\Omega)}^{2} \\
& \quad+c_{2}\left\{\int_{\Omega} r^{(\alpha+h) q / 4-n}\left[\varphi_{0}^{q / 2}(x)+\varphi_{1}^{q}(x)+\varphi_{2}^{q / 2}(x)+f^{q / 2}(x)+g^{q}(x)\right]\right\}^{4 / q},
\end{aligned}
$$

where $\alpha \leq 4-n$. Provided that the last integral is finite, the constat $c_{1}, c_{2}>0$ depends on the known parameters.

To proof this theorem we considered a sequence of domains $\Omega_{k, \rho}$, which are intersections of Ω_{0}^{d} and some layers. Making some transformations and using an estimate from [7] and summing all the obtained inequalities over $k=1,2, \ldots$ Using Theorem 2.1 we obtain the following corollary.

Corollary 2.5. Let the conditions of Theorem 2.4. except for 2.2 , be fulfilled. Then generalized solution $u(x)$ of problem 1.1) is in $W^{2}(\Omega)$, for the following cases:
(1) $n \geq 4$;
(2) $n=2$ and $0<\omega_{0}<\frac{\pi}{2}$;
(3) $n=3$ and $G \subset G_{0}=\left\{\omega=(\theta ; \varphi): 0<|\theta|<\omega_{0}<\pi, 0<\varphi<2 \pi\right\}$, where ω_{0} is solution of equation $p_{1 / 2}\left(\cos \omega_{0}\right)=0$ for Legendre functions.

Proof. (1) According to theorem $2.4 u(x) \in W_{4-n, 0}^{2}(\Omega)$. Condition 2.2 is trivial if $\alpha=4-n$ because $\lambda=\lambda(G)>0$. Now the statement follows from inequality

$$
\int_{\Omega_{0}^{d}} u_{x x}^{2} d x \leq d^{n-4} \int_{\Omega_{0}^{d}} r^{4-n} u_{x x}^{2} d x \leq \text { const. }
$$

(2) Suppose $\alpha=0$ in Theorem 2.4 then condition 2.1) is trivial. If $n=2$ the statement follows from the remark.
(3) Condition (2.2) becomes $\lambda(G)>1 / 2$. Let $\Omega_{0} \subset S^{2}$ be a domain in which the eigenvalue problem 1.3 is solvable for $\lambda(G)=1 / 2$ and $\partial \Omega_{0}=\partial^{1} \Omega_{0} \cup \partial^{2} \Omega_{0}$:

$$
\begin{array}{r}
\Delta_{\omega} u+(1 / 2)(1+1 / 2) u=0, \quad \omega \in \Omega_{0} \\
\left.u\right|_{\partial^{1} \Omega_{0}}=0,\left.\quad \frac{\partial u}{\partial u}\right|_{\partial^{2} \Omega_{0}}=0 \tag{2.16}
\end{array}
$$

The condition $\lambda>1 / 2$ implies $\Omega \subset \Omega_{0}$; see [3]. We are seeking of solution problem 2.16) of the form $u=v(\theta)$. Then for $v(\theta)$ we obtain

$$
\begin{gather*}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d v}{d \theta}\right)+\frac{1}{2}\left(1+\frac{1}{2}\right) v=0, \quad 0<|\theta|<\omega_{0} \tag{2.17}\\
v\left(-\omega_{0}\right)=0 \quad \frac{\partial v}{\partial n}\left(\omega_{0}\right)=0 .
\end{gather*}
$$

The solution to this equation is a Legendre function of the first genus $v(\theta)=$ $p_{1 / 2}(\cos \theta)$, which has exactly one zero in the interval $0<\theta<\pi$ which we denote by ω_{0} (see [7]). Therefore, the corollary is proved.

Theorem 2.6. Let $u(x)$ be a generalized solution of (1.1). Let functions $a_{i}(x, u, p)$, $a(x, u, p)$ be differentiable with respect to their arguments and conditions 1.9) (1.12), 2.15 with $q=\infty$ be satisfied. Under the assumptions in Theorem 2.3,

$$
\begin{equation*}
|\nabla u(x)| \leq c|x|^{\lambda(G)-1} \tag{2.18}
\end{equation*}
$$

where $\lambda(G)$ is the least positive eigenvalue of (1.3), and constant c depends only on the known quantities.

Proof. As in the proof of Theorem 2.3 consider function $z\left(x^{\prime}\right)=\rho^{-\lambda(G)} u\left(\rho x^{\prime}\right)$, $0<\rho<d$ in the layer $Q^{\prime}=\left\{x^{\prime}: 1 / 2<\left|x^{\prime}\right|<1\right\}$ assuming that $u \equiv 0$ outside of Ω. Under our conditions, the theorem from [4] on boundedness of modulus of gradient of solution inside of domain and near smooth pieces of boundary is valid:

$$
\begin{equation*}
\text { vrai } \max _{Q^{\prime}}\left|\nabla^{\prime} z\right| \leq M_{3} \tag{2.19}
\end{equation*}
$$

where $M_{3}>0$ depends on $v, v_{0}, \mu, \mu_{1}, \mu_{2}{\text { vrai } \max _{Q^{\prime}}}\left|z\left(x^{\prime}\right)\right|$. Then for the function $u(x)$ we obtain

$$
\begin{equation*}
|\nabla u(x)| \leq M_{1} \rho^{\lambda(G)-1}, \quad x \in \Omega_{0}^{d} \cap\{\rho: 2<|x|<\rho<d\} . \tag{2.20}
\end{equation*}
$$

Taking $|x|=2 \rho / 3$, we obtain the required estimate.

References

[1] A. F. Filippov; Smoothness of generalized solutions near the vertex of a polyhedral angle (Rusian). Differentsial'nye Uravnenija 9 (1973), 1889-1903, 1927.
[2] T. S. Gadjiev; Some sharp estimates of solutions of mixed boundary problems for nonlinear equations in nonsmooth domains. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 14 (2001), 42-47, 207.
[3] T. S. Gadjiev; Mathematical physics and nonlinear mechanics (Rusian), Kiev, publisher (Naukovo Dumka), 1986, v. 5 (39).
[4] G. H. Hardy, J. E. Littlewood; Inequalities (Russian). Gosudarstv. Izdat. Inostr. Lit., Moscow, 1948.
[5] V. A. Kondrat'ev, M. V. Borsuk; The behavior of the solution of the Dirichlet problem for a second-order quasilinear elliptic equation near a corner point. (Russian) Differentsial'nye Uravneniya 24 (1988), no. 10, 1778-1784, 1838; translation in Differential Equations 24 (1988), no. 10, 1185-1190 (1989)
[6] V. A. Kondrat'ev; On the boundary problem for elliptic equation on nonsmooth domains, Proceeding Moscow Mathematical Society, 1967, v. 16.
[7] O. A. Ladyzhenskaya, N. N. Uraltseva; Linear and quasilinear equations of elliptic type (Rusina), Second edition, revised. Izdat. "Nauka", Moscow, 1973.
[8] V. G. Maz'ya; Sobolev spaces (Russian) Leningrad. Univ., Leningrad, 1985.
[9] S. L. Sobolev; Introduction to the theory of cubature formulae (Rusina), Izdat. "Nauka", Moscow, 1974
[10] P. Tolksdorf; On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Differential Equations 8 (1983), no. 7, 773-817.
[11] N. M. Wigley; Mixed boundary value problems in plane domains with corners. Math. Z. 115 1970 33-52.
[12] E. T. Whittaker, G. N. Watson; A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Reprint of the fourth (1927) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996.

March 18, 2005. Addendum

In response to the editor's request, we want to add a reference that should have been included in the original bibliography.
[13] Borsuk, M. V.; Behavior of generalized solutions of the Dirichlet problem for second-order quasilinear elliptic equations of divergence type near a conical point. (Russian) Sibirsk. Mat. Zh. 31 (1990), no. 6, 25-38; translation in Siberian Math. J. 31 (1990), no. 6, 891-904 (1991)
Also we want to compare this reference with our article. The two articles have the same structure and visual appearance. Both articles follow the ideas presented by Condratyev [6], and have the same components: Weight inequalities, investigation of a corresponding spectral problem, and study of Holder continuity of solutions.

However, these two articles are different: [13] studies a Dirichlet boundary problem, while our article studies a mixed boundary problem.

1. The weight inequalities (1.4-1.7) require isoperimetric conditions on the domain, which are not needed for the Dirichlet problem.
2. The study of the spectrum for problem (1.3) in our article follows the method in [1]. In the Dirichlet case, the study follows the work by Mikhlen (see [13]). The mixed boundary problem has smallest eigenvalue $\lambda /\left(2 \omega_{0}\right)$ and critical point $\pi /\left(2 \omega_{0}\right)$, while the Dirichlet problem has smallest eigenvalue λ / ω_{0} and critical point π / ω_{0}.
3. The study of Holder continuity of solutions for the mixed problem follows ideas in [3]. Meanwhile for the Dirichlet problem, the study follows ideas in [7].

Tahir S. Gadjiev
Institute of Mathematics \& Mechanics of NAS Azerbaijan, Department of Nonlinear Analysis, 9, F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: tgadjiev@mail.az
Sardar Y. Aliev
Baku State University, Department of Mathematics, 23 Z. Khalilov str., AZ1148, Baku, Azerbaijan

E-mail address: ibvag@yahoo.com

