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DECAY AND SYMMETRY OF POSITIVE SOLUTIONS OF
ELLIPTIC SYSTEMS IN UNBOUNDED CYLINDERS

KUAN-JU CHEN

Abstract. In this paper, we study the asymptotic behavior of positive solu-
tions and apply the “improved moving plane” method to prove the symmetry
of positive solutions of semilinear elliptic systems in unbounded cylinders.

1. Introduction

In studying differential equations it is often of interest to know if the solutions
have symmetry, or perhaps monotonicity, in some direction. Questions of this kind
have been investigated by Gidas-Ni-Nirenberg [6, 7] by Nirenberg [1, 2]. These
articles are basically working on semilinear elliptic equations with Dirichlet or Neu-
mann boundary values.

In our previous paper [3], we established the existence of positive solutions for a
class of semilinear elliptic systems on unbounded domains. In this paper, we study
the asymptotic behavior of positive solutions and symmetry of positive solutions of
the elliptic systems of the form

−∆u+ u = g(v), u > 0 in A,

−∆v + v = f(u), v > 0 in A,

u = 0, v = 0 on ∂A,

lim
|t|→∞

u(x, t) = 0, lim
|t|→∞

v(x, t) = 0 uniformly in x ∈ Ω,

(1.1)

where N = m + n ≥ 2, n ≥ 1, (x, t) is the generic point of RN with x ∈ Rm

and t ∈ Rn, Ω ⊂ Rm is a smooth bounded C1,1 domain, and A = Ω × Rn is an
unbounded cylinder in RN . Our results form a further development of the work by
Figueiredo and Yang [5].

The method of “moving plane” was used in [5], as originally introduced by
Alexandroff (see Hopf [9, Chap. 7]), later used by Serrin [12], and extensively used
in recent times, after the work of [6] by Gidas-Ni-Nirenberg. Generally speaking, in
applying the “moving plane” device it is important to first obtain the asymptotic
behavior of solutions near ∞ in order to get the device started near ∞. In this
paper, we apply the “improved moving plane” method given Li [10] and by Li and
Ni [11], who make no assumption on the asymptotic behavior of positive solutions
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to prove that u(x, t), v(x, t) are radially symmetric in x and axially symmetric in
t. In section 2, we establish the asymptotic behavior of positive solutions of the
systems of semilinear elliptic equations (1.1).

2. Asymptotic behavior

Let λ1 be the first eigenvalue and φ1 the corresponding first positive eigenfunction
of the Dirichlet problem −∆φ1 = λ1φ1 in Ω, φ1 = 0 on ∂Ω.

The basic assumptions on the functions f and g are as follows:
(H1) f, g ∈ C1(R,R), with f(t) = g(t) = 0 for t ≤ 0, f(t) > 0 and g(t) > 0 for

t > 0.
(H2) f(t) = O(tp), g(t) = O(tq) as t→ 0 for some 1 < p, q < N+2

N−2 (1 < p, q <∞
if N = 2).

(H3) f ′(t), g′(t) are nondecreasing for t ≥ 0.

Proposition 2.1. Assume that f , g satisfy (H1)–(H3). Let u(x, t), v(x, t) be C2

positive solutions of the elliptic systems (1.1). Then for each ε > 0, there exist
constants Cε, Cε > 0 such that for (x, t) ∈ A,

Cεφ1(x)e−
√

1+λ1 |t||t|−
n−1

2 −ε ≤ u(x, t), v(x, t) ≤ Cεφ1(x)e−
√

1+λ1 |t||t|−
n−1

2 +ε.

Proof. We divide the proof into the following steps:
(1) We claim that for any 0 < δ < 1 + λ1, there exists α1 > 0 such that

u(x, t) + v(x, t) ≤ α1φ1(x)e−
√

1+λ1−δ |t|, for (x, t) ∈ A.

Without loss of generality, we assume δ < 1. Since lim|t|→∞ u(x, t) = 0 and
lim|t|→∞ v(x, t) = 0 uniformly in x ∈ Ω, we may choose R0 > 0 large enough
such that

f(u(x, t))
u(x, t)

≤ δ,
g(v(x, t))
v(x, t)

≤ δ, for (x, t) ∈ A, |t| ≥ R0. (2.1)

Let (zx, zt) ∈ ∂A, and B be a small ball in A such that (zx, zt) ∈ ∂B. Since
φ1(x) > 0 for x ∈ Ω, φ1(zx) = 0, u(x, t) > 0, v(x, t) > 0 for (x, t) ∈ B, u(zx, zt) = 0,
and v(zx, zt) = 0, by the Hopf boundary point lemma (see Gilbarg and Trudinger
[8]), ∂φ1

∂x (zx) < 0, ∂u
∂ν (zx, zt) < 0, and ∂v

∂ν (zx, zt) < 0, where ν is the outward unit
normal vector at (zx, zt). Thus

lim
(x,t)→(zx,zt)

u(x, t) + v(x, t)
φ1(x)

=
∂u
∂ν (zx, zt) + ∂v

∂ν (zx, zt)
∂φ1
∂x (zx)

> 0 ,

where (x, t) ∈ A and (x, t) → (zx, zt) normally. Note that (u(x, t)+v(x, t))φ−1
1 (x) >

0 for (x, t) ∈ A, thus

(u(x, t) + v(x, t))φ−1
1 (x) > 0 for (x, t) ∈ A.

Since φ1(x)e−
√

1+λ1−δ |t|, u(x, t), and v(x, t) are C1(A), if we set

α1 = sup
(x,t)∈A, |t|≤R0

{
(u(x, t) + v(x, t))φ−1

1 (x)e
√

1+λ1−δ |t|},
then α1 > 0 and

α1φ1(x)e−
√

1+λ1−δ |t| ≥ u(x, t) + v(x, t), for (x, t) ∈ A, |t| ≤ R0. (2.2)
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Let Φ1(x, t) = α1φ1(x)e−
√

1+λ1−δ |t| for (x, t) ∈ A. Then for (x, t) ∈ A, |t| ≥ R0,
from (2.1), we have

∆(Φ1 − u− v)(x, t)− (Φ1 − u− v)(x, t)

= [−δ −
√

1 + λ1 − δ(n− 1)
|t|

]Φ1(x, t) + g(v) + f(u)

≤ −δΦ1 + δ(u+ v)

= −δ(Φ1 − u− v).

Hence ∆(Φ1 − u − v)(x, t) − (1 − δ)(Φ1 − u − v)(x, t) ≤ 0 for (x, t) ∈ A, |t| ≥ R0.
Then by the strong maximum principle, we obtain

u(x, t) + v(x, t) ≤ Φ1(x, t), for (x, t) ∈ A, |t| ≥ R0. (2.3)

Hence from (2.2) and (2.3), we get the claim.
(2) We claim that for any ε > 0, there exists Cε > 0 such that

u(x, t) + v(x, t) ≤ Cεφ1(x)e−
√

1+λ1 |t||t|−
n−1

2 +ε, for(x, t) ∈ A.

Without loss of generality, we assume that 0 < ε < n−1
2 . Now, given ε > 0 and

fixed δ > 0 as in part (1). By part (1), there exists α1 > 0 such that

u(x, t) + v(x, t) ≤ α1φ1(x)e−
√

1+λ1−δ |t|, for (x, t) ∈ A.

From (2.1),

f(u) + g(v) ≤ δα1φ1(x)e−
√

1+λ1−δ |t|, for (x, t) ∈ A, |t| ≥ R0. (2.4)

Let mε = n−1
2 − ε and

h(t) = −2ε
√

1 + λ1|t|−mε−1 +mε(mε − n+ 2)|t|−mε−2.

We can choose R1 > R0 such that for |t| ≥ R1,

e−
√

1+λ1 |t|h(t) + δα1e
−
√

1+λ1−δ |t| ≤ 0. (2.5)

As in part (1), if we set

α2 = sup
(x,t)∈A, |t|≤R1

{
(u(x, t) + v(x, t))φ−1

1 (x)e
√

1+λ1 |t||t|mε
}

+ 1,

then α2 > 1. Let Φ2(x, t) = α2φ1(x)e−
√

1+λ1 |t||t|−mε for (x, t) ∈ A, then

u(x, t) + v(x, t) ≤ Φ2(x, t), for (x, t) ∈ A, |t| ≤ R1. (2.6)

For (x, t) ∈ A, |t| ≥ R1, from (2.4) and (2.5), we have

∆(Φ2 − u− v)(x, t)− (Φ2 − u− v)(x, t)

= h(t)|t|mεΦ2(x, t) + g(v) + f(u)

≤ α2φ1(x)e−
√

1+λ1 |t|h(t) + δα1φ1(x)e−
√

1+λ1−δ |t|

≤ φ1(x)(e−
√

1+λ1 |t|h(t) + δα1e
−
√

1+λ1−δ |t|) ≤ 0 .

Then by the strong maximum principle,

u(x, t) + v(x, t) ≤ Φ2(x, t), for (x, t) ∈ A, |t| ≥ R1. (2.7)
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Hence from (2.6) and (2.7), and since u(x, t), v(x, t) are positive solutions, it is
straightforward that for any ε > 0, there exists Cε > 0 such that

u(x, t), v(x, t) ≤ Cεφ1(x)e−
√

1+λ1 |t||t|−
n−1

2 +ε, for (x, t) ∈ A.

(3) For a given ε > 0, let mε = n−1
2 + ε and

k(t) = 2ε
√

1 + λ1|t|−1 +mε(mε − n+ 2)|t|−2.

We can choose R2 > 0 such that k(t) ≥ 0 for |t| ≥ R2. As in part (1), if we set

β = inf
(x,t)∈A, |t|≤R2

{
u(x, t)φ−1

1 (x)e
√

1+λ1 |t||t|mε
}
,

then β > 0 and

βφ1(x)e−
√

1+λ1 |t||t|−mε ≤ u(x, t), for (x, t) ∈ A, |t| ≤ R2. (2.8)

Let Ψ(x, t) = βφ1(x)e−
√

1+λ1 |t||t|−mε for (x, t) ∈ A. Then for (x, t) ∈ A, |t| ≥ R2,
we have

∆(Ψ− u)(x, t)− (Ψ− u)(x, t) = k(t)Ψ(x, t) + g(v) ≥ 0.

Then by the strong maximum principle,

u(x, t) ≥ Ψ(x, t), for (x, t) ∈ A, |t| ≥ R2. (2.9)

Hence from (2.8) and (2.9), for each ε > 0, there exists Cε > 0 such that

u(x, t) ≥ Cεφ1(x)e−
√

1+λ1 |t||t|−
n−1

2 −ε, for (x, t) ∈ A.

For the positive solution v(x, t) in the elliptic systems (1.1), we can get the same
results as for u(x, t). �

3. Symmetry of Positive Solutions

Let

S = {(x, t) ∈ BN−1(0;R)× R : x = (x1, . . . , xN−1) ∈ BN−1(0;R), t ∈ R},

where BN−1(0;R) is a ball with center at the origin and of radius R in RN−1. Now
we consider the systems of semilinear elliptic equations

−∆u+ u = g(v), u > 0 in S,

−∆v + v = f(u), v > 0 in S,

u = 0, v = 0 on ∂S,

lim
|t|→∞

u(x, t) = 0, lim
|t|→∞

v(x, t) = 0 uniformly in x ∈ BN−1(0;R).

(3.1)

The purpose of this section is to apply the “improved moving plane” method to
prove the symmetry of positive solutions of the elliptic systems (3.1) which makes
no assumption on the asymptotic behavior of positive solution.

Theorem 3.1. Assume that f , g satisfy (H1)–(H3). Let u(x, t), v(x, t) be C2

positive solutions of the elliptic systems (3.1). Then u(x, t), v(x, t) are radially
symmetric in x and axially symmetric in t; that is to say, u(x, t−σ) = u(|x|, |t−σ|),
v(x, t− σ) = v(|x|, |t− σ|) for some σ.
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Part I. u(x, t), v(x, t) are radially symmetric in x ∈ BN−1(0;R).
Notation:

• Tλ = {(x, t) = (x1, x2, . . . , xN−1, t) ∈ S : x1 = λ}
• Σλ = {(x, t) ∈ S : x1 < λ}
• For (x, t) = (x1, x2, . . . , xN−1, t) ∈ S, set (xλ, t) = (2λ−x1, x2, . . . , xN−1, t);

that is to say, (xλ, t) is the reflection of (x, t) with respect to Tλ

• Let Λ be the collection of all λ ∈ (−R, 0) such that

u(x, t) < u(xλ, t), v(x, t) < v(xλ, t) for all (x, t) ∈ Σλ,

ux1(x, t) > 0, vx1(x, t) > 0 on S ∩ Tλ.

In the sequel, we take λ ≤ 0. On the set Σλ we define the functions

Uλ(x, t) = u(x, t)− u(xλ, t) and V λ(x, t) = v(x, t)− v(xλ, t).

Then

−∆Uλ(x, t) + Uλ(x, t) = g(v(x, t))− g(v(xλ, t)),

−∆V λ(x, t) + V λ(x, t) = f(u(x, t))− f(u(xλ, t)).

By the mean value theorem,

g(v(x, t))− g(v(xλ, t)) = g′(ψλ(x, t))V λ(x, t),

f(u(x, t))− f(u(xλ, t)) = f ′(ϕλ(x, t))Uλ(x, t),

where ψλ(x, t) is a real number between v(x, t) and v(xλ, t), ϕλ(x, t) is some value
between u(x, t) and u(xλ, t), respectively. Let us denote g′(ψλ(x, t)) = cλ(x, t) and
f ′(ϕλ(x, t)) = dλ(x, t). So

−∆Uλ(x, t) + Uλ(x, t) = cλ(x, t)V λ(x, t) in Σλ,

−∆V λ(x, t) + V λ(x, t) = dλ(x, t)Uλ(x, t) in Σλ.
(3.2)

To prove Part I, we need the following lemmas.

Lemma 3.2. For some 0 < δ < R, (−R,−R+ δ) ⊂ Λ.

Proof. Note that by (H2), limt→0+ g′(t) = 0 and limt→0+ f ′(t) = 0. Take t0 > 0
such that if 0 < t ≤ t0, then g′(t) < 1 and f ′(t) < 1. Since lim|x|→R u(x, t) = 0
and lim|x|→R v(x, t) = 0 uniformly in t, we can choose δ, R > δ > 0 such that if
R− δ < |x| < R, u(x, t) ≤ t0 and v(x, t) ≤ t0 uniformly in t.

We claim that if −R < λ < −R + δ, then Uλ(x, t) ≤ 0 and V λ(x, t) ≤ 0
in Σλ. On the contrary, suppose there exists λ such that −R < λ < −R + δ,
Uλ(x, t) > 0 for some (x, t) ∈ Σλ, or V λ(x, t) > 0 for some (x, t) ∈ Σλ. Since
lim|t|→∞ Uλ(x, t) = 0 and lim|t|→∞ V λ(x, t) = 0 uniformly in x ∈ BN−1(0;R),
Uλ(x, t) achieves its maximum at (x0, t0) ∈ Σλ and V λ(x, t) achieves its maximum
at (x1, t1) ∈ Σλ. Then

∇Uλ(x0, t0) = 0, {Uλ
ij(x0, t0)} ≤ 0,

∇V λ(x1, t1) = 0, {V λ
ij (x1, t1)} ≤ 0.

Since ∆Uλ(x0, t0) ≤ 0 and ∆V λ(x1, t1) ≤ 0, from the elliptic systems (3.2) it
follows that

cλ(x0, t0)V λ(x0, t0) ≥ Uλ(x0, t0) > 0,

dλ(x1, t1)Uλ(x1, t1) ≥ V λ(x1, t1) > 0.



6 K.-J. CHEN EJDE-2005/22

From (H1)–(H3) it follows that cλ(x0, t0) ≥ 0 and dλ(x1, t1) ≥ 0. Then we obtain
that V λ(x0, t0) > 0 and Uλ(x1, t1) > 0. Moreover, if −R < λ < −R + δ, since
V λ(x0, t0) > 0, Uλ(x1, t1) > 0, then from (H3), cλ(x0, t0) < 1, dλ(x1, t1) < 1, and
get

V λ(x0, t0) > cλ(x0, t0)V λ(x0, t0) ≥ Uλ(x0, t0),

Uλ(x1, t1) > dλ(x1, t1)Uλ(x1, t1) ≥ V λ(x1, t1).
(3.3)

Since V λ(x1, t1) ≥ V λ(x0, t0), from (3.3) it follows that Uλ(x1, t1) > Uλ(x0, t0), we
come to a contradiction. So for −R < λ < −R + δ, Uλ(x, t) ≤ 0 and V λ(x, t) ≤ 0
in Σλ. Applying the maximum principle and the Hopf boundary point lemma, for
−R < λ < −R + δ, we get Uλ(x, t) < 0 in Σλ, Uλ

x1
(x, t) > 0 for (x, t) ∈ S ∩ Tλ,

V λ(x, t) < 0 in Σλ, and V λ
x1

(x, t) > 0 for (x, t) ∈ S ∩ Tλ. Hence ux1(x, t) > 0 and
vx1(x, t) > 0 for (x, t) ∈ S ∩ Tλ. Then (−R,−R+ δ) ⊂ Λ. �

Lemma 3.3. If (−R, λ] ⊂ Λ, then there exists τ > 0 such that [λ, λ+ τ) ⊂ Λ.

Proof. Suppose not. Then there exist a decreasing sequence λk → λ and a sequence
{(xk0, tk0)} of points in Σλk

such that Uλk(xk0, tk0) = u(xk0, tk0)−u(xλk

k0 , tk0) > 0,
or a sequence {(xk1, tk1)} of points in Σλk

such that V λk(xk1, tk1) = v(xk1, tk1) −
v(xλk

k1 , tk1) > 0. There exists a subsequence {(xk0, tk0)} such that xk0 → x0 ∈
BN−1(0;R) or a subsequence {(xk1, tk1)} such that xk1 → x1 ∈ BN−1(0;R). There
may arise two possibilities: Cases 1 and 2 below.
Case 1. |tk0| → ∞. As shown in Lemma 3.2, we assume that

Uλk(xk0, tk0) = max
(x,t)∈Σλk

Uλk(x, t),

∇Uλk(xk0, tk0) = 0, {Uλk
ij (xk0, tk0)} ≤ 0.

From lim|tk0|→∞ u(xk0, tk0) = 0, as in Lemma 3.2, we obtain a contradiction. The
same argument applies to V λk(xk1, tk1).
Case 2. tk0 → t̄0. We have (xk0, tk0) → (x0, t̄0) ∈ Σλ. Thus Uλ(x0, t̄0) ≥ 0. Clearly
(x0, t̄0) /∈ Σλ since Uλ(x, t) < 0 in Σλ. If (x0, t̄0) ∈ Tλ, then ux1(x0, t̄0) < 0, which
contradicts to λ ∈ Λ. Moreover, (x̄0, t̄0) /∈ ∂S ∩ Σλ since if (x̄0, t̄0) ∈ ∂S ∩ Σλ then
0 = u(x̄0, t̄0) ≥ u(x̄λ

0 , t̄0) > 0, a contraction. We conclude that Case 2 is impossible.
The same argument applies to V λk(xk1, tk1). �

Proof of Part I. Let µ = sup{λ ∈ (−R, 0) : (−R, λ) ⊂ Λ}. Then µ /∈ Λ. If not,
by Lemma 3.3 we would have [µ, µ + τ) ⊂ Λ, which contradicts to the definition
of µ. We claim that µ = 0. Suppose not, µ ∈ (−R, 0). By continuity we have
u(x, t) ≤ u(xµ, t) and v(x, t) ≤ v(xµ, t) for all (x, t) ∈ Σµ, then by the maximum
principle we have u(x, t) ≡ u(xµ, t) and v(x, t) ≡ v(xµ, t) for all (x, t) ∈ Σµ, which
is impossible. Thus µ = 0. By reversing the x1 axis, we conclude that u(x, t)
and v(x, t) are symmetric with respect to the hyperplane T0, ux1(x, t) < 0 and
vx1(x, t) < 0 for x1 > 0. Since the x1 direction can be chosen arbitrarily, we
conclude that u(x, t) and v(x, t) are radially symmetric in x ∈ BN−1(0;R). �

Part II. u(x, t), v(x, t) are axially symmetric with respect to some hyperplane
t = σ.
Notation:

• Sθ = {(x, t) ∈ S : x ∈ BN−1(0;R), t = θ}
• Γθ = {(x, t) ∈ S : x ∈ BN−1(0;R), t < θ}



EJDE-2005/22 DECAY AND SYMMETRY OF POSITIVE SOLUTIONS 7

• For any (x, t) ∈ S, set (x, tθ) = (x, 2θ − t) that is to say, (x, tθ) is the
reflection of (x, t) with respect to Sθ

• Let Θ be the collection of all θ ∈ R such that

u(x, t) < u(x, tθ), v(x, t) < v(x, tθ) for all (x, t) ∈ Γθ,

ut(x, t) > 0, vt(x, t) > 0 on S ∩ Sθ.

On Γθ, we define the functions

Mθ(x, t) = u(x, t)− u(x, tθ) and Nθ(x, t) = v(x, t)− v(x, tθ).

Then

−∆Mθ(x, t) +Mθ(x, t) = g(v(x, t))− g(v(x, tθ)),

−∆Nθ(x, t) +Nθ(x, t) = f(u(x, t))− f(u(x, tθ)).

By the mean value theorem,

g(v(x, t))− g(v(x, tθ)) = g′(ξθ(x, t))Nθ(x, t),

f(u(x, t))− f(u(x, tθ)) = f ′(ζθ(x, t))Mθ(x, t),

where ξθ(x, t) is a real number between v(x, t) and v(x, tθ), ζθ(x, t) is some value
between u(x, t) and u(x, tθ), respectively. Let us denote g′(ξθ(x, t)) = eθ(x, t) and
f ′(ζθ(x, t)) = fθ(x, t). So

−∆Mθ(x, t) +Mθ(x, t) = eθ(x, t)Nθ(x, t) in Γθ,

−∆Nθ(x, t) +Nθ(x, t) = fθ(x, t)Mθ(x, t) in Γθ.
(3.4)

To prove Part II, we need the following lemmas.

Lemma 3.4. There exists θ0 > 0, such that either (−∞,−θ0] ⊂ Θ or u(x, t) ≡
u(x, t−θ0) and v(x, t) ≡ v(x, t−θ0) in Γ−θ0 .

Proof. Note that by (H2), limt→0+ g′(t) = 0 and limt→0+ f ′(t) = 0. Take t0 > 0
such that if 0 < t ≤ t0, then g′(t) < 1 and f ′(t) < 1. Since lim|t|→∞ u(x, t) = 0 and
lim|t|→∞ v(x, t) = 0 uniformly in x ∈ BN−1(0;R), we can choose θ0 > 0 such that
if t ≤ −θ0, u(x, t) ≤ t0 and v(x, t) ≤ t0 uniformly in x ∈ BN−1(0;R).

We claim that if θ ≤ −θ0, then Mθ(x, t) ≤ 0 and Nθ(x, t) ≤ 0 in Γθ.
On the contrary, suppose that there exists θ such that θ ≤ −θ0, Mθ(x, t) > 0 for

some (x, t) ∈ Γθ, or Nθ(x, t) > 0 for some (x, t) ∈ Γθ. Since limt→−∞Mθ(x, t) = 0
and limt→−∞Nθ(x, t) = 0 uniformly in x ∈ BN−1(0;R), Mθ(x, t) achieves its
maximum at (x2, t2) ∈ Γθ and Nθ(x, t) achieves its maximum at (x3, t3) ∈ Γθ.
Then

∇Mθ(x2, t2) = 0, {Mθ
ij(x2, t2)} ≤ 0,

∇Nθ(x3, t3) = 0, {Nθ
ij(x3, t3)} ≤ 0.

Since ∆Mθ(x2, t2) ≤ 0 and ∆Nθ(x3, t3) ≤ 0, from elliptic systems (3.4) it follows
that

eθ(x2, t2)Nθ(x2, t2) ≥Mθ(x2, t2) > 0,

fθ(x3, t3)Mθ(x3, t3) ≥ Nθ(x3, t3) > 0.
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From (H1)–(H3) it follows that eθ(x2, t2) ≥ 0 and fθ(x3, t3) ≥ 0. Then we obtain
that Nθ(x2, t2) > 0 and Mθ(x3, t3) > 0. Moreover, if θ ≤ −θ0, since Nθ(x2, t2) > 0,
Mθ(x3, t3) > 0, then from (H3), eθ(x2, t2) < 1, fθ(x3, t3) < 1, and get

Nθ(x2, t2) > eθ(x2, t2)Nθ(x2, t2) ≥Mθ(x2, t2),

Mθ(x3, t3) > fθ(x3, t3)Mθ(x3, t3) ≥ Nθ(x3, t3).
(3.5)

Since Nθ(x3, t3) ≥ Nθ(x2, t2), from (3.5) it follows that Mθ(x3, t3) > Mθ(x2, t2).
We come to a contradiction. So for θ ≤ −θ0, Mθ(x, t) ≤ 0 and Nθ(x, t) ≤ 0 in
Γθ. As a consequence of the maximum principle and the Hopf boundary point
lemma, either M−θ0(x, t) ≡ 0, N−θ0(x, t) ≡ 0 in Γ−θ0 or for θ ≤ −θ0, Mθ(x, t) < 0
in Γθ, Mθ

t (x, t) > 0 for (x, t) ∈ S ∩ Sθ, Nθ(x, t) < 0 in Γθ, and Nθ
t (x, t) > 0

for (x, t) ∈ S ∩ Sθ. Hence either (−∞,−θ0] ⊂ Θ or u(x, t) ≡ u(x, t−θ0) and
v(x, t) ≡ v(x, t−θ0) in Γ−θ0 . �

Lemma 3.5. If (−∞, θ] ⊂ Θ, then there exists ε > 0 such that [θ, θ + ε) ⊂ Θ.

Proof. Suppose not. Then there exist a decreasing sequence θk → θ and a sequence
{(xk2, tk2)} of points in Γθk

such that Mθk(xk2, tk2) = u(xk2, tk2)−u(xk2, t
θk

k2) > 0,
or a sequence {(xk3, tk3)} of points in Γθk

such that Nθk(xk3, tk3) = v(xk3, tk3) −
v(xk3, t

θk

k3) > 0. There exists a subsequence {(xk2, tk2)} such that xk2 → x̄2 ∈
BN−1(0;R) or a subsequence {(xk3, tk3)} such that xk3 → x3 ∈ BN−1(0;R). There
may arise two possibilities: Cases 1 and 2 below.
Case 1. tk2 → −∞. As shown in Lemma 3.4, we assume

Mθk(xk2, tk2) = max
(x,t)∈Γθk

Mθk(x, t),

∇Mθk(xk2, tk2) = 0, {Mθk
ij (xk2, tk2)} ≤ 0.

(3.6)

From limtk2→−∞ u(xk2, tk2) = 0, as in Lemma 3.4, we obtain a contradiction. The
same argument applies to Nθk(xk3, tk3).
Case 2. tk2 → t̄2. We have (xk2, tk2) → (x̄2, t̄2) ∈ Γθ. Thus Mθ(x̄2, t̄2) ≥ 0.
Clearly (x̄2, t̄2) /∈ Γθ since Mθ(x, t) < 0 in Γθ. If (x̄2, t̄2) ∈ Sθ, then ut(x̄2, t̄2) <
0, which contradicts θ ∈ Θ. Moreover, (x̄2, t̄2) /∈ ∂S ∩ Γθ. Note that Mθ(x, t)
satisfies the elliptic systems (3.4), and by the Hopf boundary point lemma, we
obtain ∂

∂νM
θ(x̄2, t̄2) < 0. On the other hand, taking the limit in (3.6), we obtain

∇Mθ(x̄2, t̄2) = 0, a contradiction. We conclude that Case 2 is impossible. The
same argument applies to Nθk(xk3, tk3). �

Proof of Part II. Let σ = sup{θ ∈ R : (−∞, θ) ⊂ Θ}. Then σ /∈ Θ. If not, by
Lemma 3.5 we would have [σ, σ + ε) ⊂ Θ, which contradicts to the definition of σ.
By continuity we have u(x, t) ≤ u(x, tσ) and v(x, t) ≤ v(x, tσ) for all (x, t) ∈ Γσ,
then by the maximum principle we have u(x, t) ≡ u(x, tσ) and v(x, t) ≡ v(x, tσ) for
all (x, t) ∈ Γσ. This proves u(x, t) and v(x, t) are symmetric with respect to the
hyperplane t = σ for all (x, t) ∈ S. �
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