POSITIVE SOLUTIONS TO A SEMILINEAR HIGHER-ORDER ODE ON THE HALF-LINE

MICHAEL I. GIL’

Abstract

We study a semilinear non-autonomous ordinary differential equation (ODE) of order n. Explicit conditions for the existence of n linearly independent and positive solutions on the positive half-line are obtained. Also we establish lower solution estimates.

1. Introduction and statement of main result

The problem of existence of positive of solutions to a higher order nonlinear nonautonomous ordinary differential equations (ODEs) continues to attract the attention of many specialists, despite its long history, cf. [1, 2, 3, 7, 8, 10, and references therein. It is still one of the most burning problems of theory of ODEs, because of the absence of its complete solution. Let $p_{k}(t)(t \geq 0 k=1, \ldots n)$ be real continuous scalar-valued functions defined and bounded on $[0, \infty)$ and $p_{0} \equiv 1$. Let $F:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. In the present paper we investigate the semilinear equation

$$
\begin{equation*}
\sum_{k=0}^{n} p_{k}(t) \frac{d^{n-k} x(t)}{d t^{n-k}}=F(t, x) \quad(t>0, x=x(t)) \tag{1.1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
x^{(j)}(0)=x_{j} \in \mathbb{R} \quad(j=0, \ldots, n-1) . \tag{1.2}
\end{equation*}
$$

A solution of problem $1.1,1.2$ is a function $x(\cdot)$ defined on $[0, \infty)$, having continuous derivatives up to the n-th order. In addition, $x(\cdot)$ satisfies (1.2) and 1.1) for all $t>0$. The existence of solutions is assumed.

As it is well-known, the existence of positive solutions on the half-line for such equations is proved mainly in the case when p_{k} are constants, cf. [7, 8, 4]. In [6] the positivity conditions were derived for a class of semilinear nonautonomous equations in the divergent form. In [9], the following remarkable result is established:

[^0]Solutions to the equation

$$
\begin{equation*}
\sum_{k=0}^{n} p_{k}(t) \frac{d^{n-k} v(t)}{d t^{n-k}}=0 \quad(t>0) \tag{1.3}
\end{equation*}
$$

do not oscillate, if the roots of the polynomial

$$
P(t, z)=\sum_{k=0}^{n} p_{n-k}(t) z^{k} \quad(z \in \mathbb{C}, t \geq 0)
$$

are real and not intersecting. In the present paper, under some "close" conditions we prove that the nonlinear equation (1.1) has n linearly independent positive solutions. Besides, we generalize the corresponding result from 6].

Let polynomial $P(z, t)$ have the purely real roots $\rho_{k}(t)(k=1, \ldots, n)$ with the property

$$
\begin{equation*}
\rho_{k}(t) \geq-\mu(t \geq 0 ; k=1, \ldots, n) \tag{1.4}
\end{equation*}
$$

for some $\mu>0$. Put

$$
\begin{equation*}
q_{m}(t)=\sum_{k=0}^{m} p_{k}(t) C_{n-k}^{m-k}(-1)^{k} \mu^{m-k} \quad(m=1, \ldots, n), q_{0} \equiv 1 \tag{1.5}
\end{equation*}
$$

and

$$
d_{0}=1, d_{2 k}=\sup _{k} q_{2 k}(t) \quad \text { and } \quad d_{2 k-1}=\inf _{k} q_{2 k-1}(t)(k=1, \ldots,[n / 2])
$$

where $[x]$ is the integer part of $x>0$ and $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.
Now we are in a position to formulate the main result of the paper.
Theorem 1.1. Let all the roots of the polynomial

$$
\begin{equation*}
\tilde{Q}(z):=\sum_{k=0}^{n}(-1)^{k} d_{k} z^{n-k} \tag{1.6}
\end{equation*}
$$

be real and nonnegative. In addition, let

$$
\begin{equation*}
F(y, t) \geq 0 \quad(y, t \geq 0) \tag{1.7}
\end{equation*}
$$

Then (1.1) has on $(0, \infty) n$ linearly independent positive solutions x_{1}, \ldots, x_{n}, satisfying the inequalities

$$
x_{j}(t) \geq \text { const } e^{\left(-\mu+\tilde{r}_{1}\right) t} \geq 0 \quad\left(j=1, \ldots, n ; \quad t \geq t_{0}>0\right)
$$

where $\tilde{r}_{1} \geq 0$ is the smallest root of $\tilde{Q}(z)$.
This theorem is proved in the next two sections.
Example. Consider the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+p_{1}(t) \frac{d x}{d t}+p_{2}(t) x=F(t, x) \quad(t>0) \tag{1.8}
\end{equation*}
$$

Assume that $p_{1}(t), p_{2}(t) \geq 0$ and $p_{1}^{2}(t)>4 p_{2}(t)(t \geq 0)$. Put

$$
p_{1}^{+}=\sup _{t \geq 0} p_{1}(t)
$$

Since $\rho_{1}(t)+\rho_{2}(t)=-p_{1}(t)$, we can take $\mu=p_{1}^{+}$. Hence,

$$
q_{1}(t)=2 p_{1}^{+}-p_{1}(t), q_{2}(t)=p_{1}^{+}\left(p_{1}^{+}-p_{1}(t)\right)+p_{2}(t)
$$

and

$$
d_{1}=\inf _{t} q_{1}(t)=p_{1}^{+}, \quad d_{2}=\sup _{t} q_{2}(t)
$$

If, in addition, $\left(p_{1}^{+}\right)^{2}>4 d_{2}$ and 1.7 holds, then due to Theorem 1.1, equation (1.8) has 2 positive linearly independent solutions satisfying inequalities 1.1 with $n=2$ and

$$
-\mu+\tilde{r}_{1}=-p_{1}^{+} / 2-\sqrt{\left(p_{1}^{+}\right)^{2} / 4-d_{2}} .
$$

2. Preliminaries

Let $a_{k}(t)(t \geq 0 ; k=1, \ldots, n)$ be continuous scalar-valued functions defined and bounded on $[0, \infty)$, and $a_{0} \equiv 1$. Consider the equation

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} a_{k}(t) \frac{d^{n-k} u(t)}{d t^{n-k}}=0 \quad(t>0) \tag{2.1}
\end{equation*}
$$

Put

$$
c_{2 k}:=\sup _{t \geq 0} a_{2 k}(t), \quad c_{2 k-1}:=\inf _{t \geq 0} a_{2 k-1}(t) \quad(k=1, \ldots,[n / 2]) .
$$

Lemma 2.1. Assume all the roots of the polynomial

$$
Q(z)=\sum_{k=0}^{n}(-1)^{k} c_{k} z^{n-k} \quad\left(c_{0}=1, z \in \mathbb{C}\right)
$$

be real and nonnegative. Then a solution u of 2.1. with the initial conditions

$$
\begin{equation*}
u^{(j)}(0)=0, j=0, \ldots, n-2 ; u^{(n-1)}(0)=1 \tag{2.2}
\end{equation*}
$$

satisfies the inequalities

$$
u^{(j)}(t) \geq e^{r_{1} t} \sum_{k=0}^{j} C_{k}^{j} \frac{r_{1}^{j-k} t^{n-1-k}}{(n-1-k)!} \geq 0 \quad(j=0, \ldots, n-1 ; t>0)
$$

where $r_{1} \geq 0$ is the smallest root of $Q(z)$.
Proof. We have

$$
b_{k}(t):=(-1)^{k}\left(c_{k}-a_{k}(t)\right) \geq 0 \quad(k=1, \ldots, n)
$$

Rewrite equation 2.1 in the form

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} c_{k} \frac{d^{n-k} u}{d t^{n-k}}=\sum_{1}^{n} b_{k}(t) \frac{d^{n-k} u}{d t^{n-k}} \tag{2.3}
\end{equation*}
$$

Denote

$$
G(t)=\frac{1}{2 i \pi} \int_{C} \frac{e^{z t} d z}{Q(z)}
$$

where C is a smooth contour surrounding all the zeros of $Q(z)$. That is, G is the Green functions for the autonomous equation

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} c_{k} \frac{d^{n-k} w(t)}{d t^{n-k}}=0 \tag{2.4}
\end{equation*}
$$

Put

$$
\begin{equation*}
y(t) \equiv \sum_{k=0}^{n} c_{k}(-1)^{k} \frac{d^{n-k} u(t)}{d t^{n-k}} \tag{2.5}
\end{equation*}
$$

Then thanks to the variation of constants formula,

$$
u(t)=w(t)+\int_{0}^{t} G(t-s) y(s) d s
$$

where $w(t)$ is a solution of 2.3 . Since

$$
G^{(j)}(t)=\frac{1}{2 i \pi} \int_{C} \frac{z^{j} e^{z t} d z}{\left(z-r_{1}\right) \ldots\left(z-r_{n}\right)}
$$

where $r_{1} \leq \cdots \leq r_{n}$ are the roots of $Q(z)$ with their multiplicities, due to [5] Lemma 1.11.2], we get

$$
G^{(j)}(t)=\frac{1}{(n-1)!}\left[\frac{d^{n-1} z^{j} e^{z t}}{d z^{n-1}}\right]_{z=\theta}
$$

with $\theta \in\left[r_{1}, r_{n}\right]$. Hence,

$$
\begin{equation*}
G^{(j)}(t)=\sum_{k=0}^{j} \frac{j!e^{\theta t} \theta^{j-k} t^{n-1-k}}{(j-k)!(n-1-k)!k!} \geq \sum_{k=0}^{j} \frac{j!e^{r_{1} t} r_{1}^{j-k} t^{n-1-k}}{(j-k)!(n-1-k)!k!} \geq 0 \tag{2.6}
\end{equation*}
$$

According to the initial conditions 2.2, we can write $w(t)=G(t)$. So

$$
\begin{equation*}
u(t)=G(t)+\int_{0}^{t} G(t-s) y(s) d s \tag{2.7}
\end{equation*}
$$

For $j \leq n-2$ we have $G^{(j)}(0)=0$ and

$$
\begin{aligned}
\frac{d^{j}}{d t^{j}} \int_{0}^{t} G(t-s) y(s) d s & =\frac{d}{d t} \int_{0}^{t} G^{(j-1)}(t-s) y(s) d s \\
& =\int_{0}^{t} G^{(j)}(t-s) y(s) d s \quad(j=0, \ldots, n-1)
\end{aligned}
$$

Hence thanks to (2.3) and 2.5,

$$
\begin{align*}
y(t) & =\sum_{1}^{n} b_{k}(t)\left[G^{(n-k)}(t)+\int_{0}^{t} G^{(n-k)}(t-s) y(s) d s\right] \tag{2.8}\\
& =K(t, t)+\int_{0}^{t} K(t, t-s) y(s) d s
\end{align*}
$$

where

$$
K(t, \tau)=\sum_{1}^{n} b_{k}(t) G^{(n-k)}(\tau) \quad(t, \tau \geq 0)
$$

According to (2.6), $K(t, \tau) \geq 0(t, \tau \geq 0)$. Put $h(t)=K(t, t)$. Let V be the Volterra operator with the kernel $K(t, t-s)$. Then thanks to 2.8 and the Neumann series,

$$
y(t)=h(t)+\sum_{1}^{\infty}\left(V^{k} h\right)(t) \geq h(t) \geq 0
$$

Hence (2.7 yields,

$$
\begin{aligned}
u^{(j)}(t) & =G^{(j)}(t)+\int_{0}^{t} G^{(j)}(t-s) y(s) d s \\
& \geq G^{(j)}(t)+\int_{0}^{t} G^{(j)}(t-s) K(s, s) d s \\
& \geq G^{(j)}(t) \quad(j=0, \ldots, n-1)
\end{aligned}
$$

This inequality and 2.6 prove the lemma.
Recall that a scalar valued function $W(t, \tau)$ defined for $t \geq \tau \geq 0$ is the Green function to equation (2.1) if it satisfies that equation for $t>\tau$ and the initial conditions

$$
\begin{gathered}
\lim _{t \downarrow \tau} \frac{\partial^{k} W(t, \tau)}{\partial t^{k}}=0 \quad(k=0, \ldots, n-2) \\
\lim _{t \downarrow \tau} \frac{\partial^{n-1} W(t, \tau)}{\partial t^{n-1}}=1
\end{gathered}
$$

Lemma 2.2. Assume all the roots of polynomial $Q(z)$ are real and nonnegative. Then the Green function to equation (2.1) and its derivatives up to $(n-1)$ order are nonnegative. Moreover,

$$
\frac{\partial^{j} W(t, \tau)}{\partial t^{j}} \geq e^{r_{1}(t-\tau)} \sum_{k=0}^{j} C_{j}^{k} \frac{r_{1}^{j-k}(t-\tau)^{n-1-k}}{(n-1-k)!} \geq 0 \quad(j=0, \ldots, n-1 ; t>\tau \geq 0)
$$

Proof. For a $\tau>0$, take the initial conditions

$$
u^{(j)}(\tau)=0, \quad j=0, \ldots, n-2 ; \quad u^{(n-1)}(\tau)=1
$$

Then the corresponding solution $u(t)$ to 2.1 is equal to $W(t, \tau)$. Repeating the argument in the proof of Lemma 2.1, we have

$$
\frac{\partial^{j} W(t, \tau)}{\partial t^{j}} \geq G^{(j)}(t-\tau)+\int_{\tau}^{t} G^{(j)}(t-\tau-s) K(s, s-\tau) d s \geq G^{(j)}(t-\tau)
$$

According to (2.6) this proves the lemma.

3. Proof of Theorem 1.1

In (1.3) put $v(t)=e^{-\mu t} u(t)$. Then

$$
0=e^{\mu t} \sum_{k=0}^{n} p_{k}(t) \frac{d^{n-k} e^{-\mu t} u}{d t^{n-k}}=\sum_{k=0}^{n} p_{k}(t)\left(\frac{d}{d t}-\mu\right)^{n-k} u
$$

That is, 1.3 is reduced to the equation

$$
\begin{equation*}
P\left(t, \frac{d}{d t}-\mu\right) u \equiv \sum_{k=0}^{n} p_{k}(t)\left(\frac{d}{d t}-\mu\right)^{n-k} u=0 \tag{3.1}
\end{equation*}
$$

However,

$$
\begin{aligned}
P(t, z-\mu) & =\sum_{k=0}^{n} p_{k}(t)(z-\mu)^{n-k} \\
& =\sum_{k=0}^{n} p_{k}(t) \sum_{j=0}^{n-k} C_{n-k}^{j}(-\mu)^{j} z^{n-k-j} \\
& =\sum_{k=0}^{n} p_{k}(t) \sum_{m=k}^{n} C_{n-k}^{m-k}(-\mu)^{m-k} z^{n-m} \\
& =\sum_{m=0}^{n} z^{n-m} \sum_{k=0}^{m} p_{k}(t) C_{n-k}^{m-k}(-\mu)^{k-m} .
\end{aligned}
$$

So

$$
P(t, z-\mu)=\sum_{m=0}^{n}(-1)^{m} q_{m}(t) z^{n-m},
$$

where $q_{m}(t)$ are defined by 1.5). Take into account that

$$
P(t, z-\mu)=\prod_{k=1}^{n}\left(z-\rho_{k}(t)-\mu\right)=\prod_{k=1}^{n}\left(z-\tilde{\rho}_{k}(t)\right),
$$

where according to (1.4), $\tilde{\rho}_{k}(t) \equiv \rho_{k}(t)+\mu \geq 0$. Hence it follows that $q_{m}(t)$ are nonnegative and we can apply Lemma 2.1 to (3.1). Due to Lemma 2.1 and the substitution $v(t)=e^{-\mu t} u(t)$, we have the following statement.

Lemma 3.1. Assume condition (1.4) and that all the roots of the polynomial $\tilde{Q}(z)$ defined by $\sqrt{1.6}$ are real and nonnegative. Then the Green function $\tilde{W}(t, \tau)$ for equation 1.3 is positive and

$$
\frac{\partial^{j} e^{\mu(t-\tau)} \tilde{W}(t, \tau)}{\partial t^{j}} \geq e^{\tilde{r}_{1}(t-\tau)} \sum_{k=0}^{j} C_{j}^{k} \frac{\tilde{r}_{1}^{j-k}(t-\tau)^{n-1-k}}{(n-1-k)!} \geq 0
$$

for $j=0, \ldots, n-1 ; t>\tau \geq 0$. In particular,

$$
\begin{equation*}
\tilde{W}(t, \tau) \geq e^{\left(-\mu+\tilde{r}_{1}\right)(t-\tau)} \frac{(t-\tau)^{n-1}}{(n-1)!} \quad(t>\tau \geq 0) . \tag{3.2}
\end{equation*}
$$

Lemma 3.2. Assume the hypothesis of Theorem 1.1. Let $v(t)$ be a positive solution of the linear non-autonomous problem $(1.2)-(1.3)$. Then a solution $x(t)$ of problem (1.1)-(1.2) is also positive. Moreover, $x(t) \geq v(t), t \geq 0$.

Proof. Thanks to the Variation of Constants Formula, (1.1) can be rewritten as

$$
x(t)=v(t)+\int_{0}^{t} \tilde{W}(t, s) F(s, x(s)) d s .
$$

Since $\tilde{W}(t, s)$ is positive due to the previous lemma, there is a sufficiently small $t_{0} \geq 0$, such that $x(t) \geq 0, t \leq t_{0}$. Hence, $x(t) \geq v(t), t \leq t_{0}$. Extending this inequality to all $t \geq 0$, we prove the lemma.

Proof of Theorem 1.1. Take n solutions $x_{k}(t)(k=1, \ldots, n)$ of (1.1) satisfying the conditions

$$
x_{k}^{(j)}(\epsilon k)=0, \quad(j=0, \ldots, n-2), \quad x_{k}^{(n-1)}(\epsilon k)=1
$$

with an arbitrary $\epsilon>0$. It can be directly checked that these solutions are linearly independent.

Now take n solutions $v_{k}(t)(k=1, \ldots, n)$ of (1.3) satisfying the same conditions

$$
v_{k}^{(j)}(\epsilon k)=0, \quad(j=0, \ldots, n-2), \quad v_{k}^{(n-1)}(\epsilon k)=1 .
$$

Then due to Lemma 3.1

$$
v_{k}(t) \equiv \tilde{W}(t, \epsilon k) \geq 0 \quad(t \geq \epsilon k) .
$$

Now the required result is due to Lemma 3.2 .

References

1] Agarwal, R., O'Regan, D. and Wong, P. J. Y.; Positive solutions of differential, difference and integral equations. Kluwer Academic Publishers, Dordrecht (1999).
[2] Agarwal, R. P.; positive solutions of nonlinear problems. A tribute to the academician M. A. Krasnosel'skij, Comput. Appl. Math. 88 (1998), No.1, 238 p.
[3] Eloe, P.W. and J. Henderson; Positive solutions for higher order ordinary differential equations. Electron. J. Differ. Equ. 1995 (1995) No. 03, 1-?.
[4] Gil', M. I.; On one class of absolutely stable systems, Soviet Physics Doklady 280 (1983), No. 4, 811-815.
[5] Gil', M. I.; Operator Functions and Localization of Spectra, Lectures Notes in Mathematics, Vol. 1830, Springer Verlag, Berlin (2003).
[6] Gil', M. I.; Differential equations with bounded positive Green's functions and generalized Aizerman's hypothesis, Nonlinear Differential Equations, 11 (2004), 137-150
[7] Krasnosel'skii, M. A., Burd, Sh., and Yu. Kolesov; Nonlinear Almost Periodic Oscillations, Nauka, Moscow. (In Russian) (1970).
[8] M. A. Krasnosel'skii, M. A. , Lifshits, J. and A. Sobolev: Positive Linear Systems. The Method of Positive Operators, Heldermann Verlag, Berlin (1989).
[9] Levin, A. Yu.; Non-oscillations of solutions of the equation $x^{(n)}(t)+p_{1}(t) x^{(n-1)}(t)+\cdots+$ $p_{n}(t) x(t)=0$. Russian Mathematical Surveys, 24 (1969), No. 2, 43-96.
[10] Swanson, C. A.; Comparison and Oscillation Theory of Linear Differential Equations, Ac Press, New York and London (1968).

Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva 84105, Israel

E-mail address: gilmi@cs.bgu.ac.il

[^0]: 2000 Mathematics Subject Classification. 34C10, 34C11.
 Key words and phrases. Ordinary differential equations; nonlinear equations; positive solutions on the half-line.
 © 2005 Texas State University - San Marcos.
 Submitted September 28, 2004. Published March 6, 2005.
 Supported by the Kamea fund of the Israel.

