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POSITIVE SOLUTIONS TO A SEMILINEAR HIGHER-ORDER
ODE ON THE HALF-LINE

MICHAEL I. GIL’

Abstract. We study a semilinear non-autonomous ordinary differential equa-

tion (ODE) of order n. Explicit conditions for the existence of n linearly in-
dependent and positive solutions on the positive half-line are obtained. Also

we establish lower solution estimates.

1. Introduction and statement of main result

The problem of existence of positive of solutions to a higher order nonlinear
nonautonomous ordinary differential equations (ODEs) continues to attract the
attention of many specialists, despite its long history, cf. [1, 2, 3, 7, 8, 10] and
references therein. It is still one of the most burning problems of theory of ODEs,
because of the absence of its complete solution. Let pk(t) (t ≥ 0 k = 1, . . . n) be real
continuous scalar-valued functions defined and bounded on [0,∞) and p0 ≡ 1. Let
F : [0,∞)× R → R be a continuous function. In the present paper we investigate
the semilinear equation

n∑
k=0

pk(t)
dn−kx(t)

dtn−k
= F (t, x) (t > 0, x = x(t)) (1.1)

with the initial conditions

x(j)(0) = xj ∈ R (j = 0, . . . , n− 1). (1.2)

A solution of problem (1.1), (1.2) is a function x(·) defined on [0,∞), having con-
tinuous derivatives up to the n-th order. In addition, x(·) satisfies (1.2) and (1.1)
for all t > 0. The existence of solutions is assumed.

As it is well-known, the existence of positive solutions on the half-line for such
equations is proved mainly in the case when pk are constants, cf. [7, 8, 4]. In [6] the
positivity conditions were derived for a class of semilinear nonautonomous equa-
tions in the divergent form. In [9], the following remarkable result is established:
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Solutions to the equation
n∑

k=0

pk(t)
dn−kv(t)
dtn−k

= 0 (t > 0) (1.3)

do not oscillate, if the roots of the polynomial

P (t, z) =
n∑

k=0

pn−k(t)zk (z ∈ C, t ≥ 0)

are real and not intersecting. In the present paper, under some “close” conditions
we prove that the nonlinear equation (1.1) has n linearly independent positive
solutions. Besides, we generalize the corresponding result from [6].

Let polynomial P (z, t) have the purely real roots ρk(t) (k = 1, . . . , n) with the
property

ρk(t) ≥ −µ (t ≥ 0; k = 1, . . . , n) (1.4)
for some µ > 0. Put

qm(t) =
m∑

k=0

pk(t)Cm−k
n−k (−1)kµm−k (m = 1, . . . , n), q0 ≡ 1. (1.5)

and

d0 = 1, d2k = sup
k

q2k(t) and d2k−1 = inf
k

q2k−1(t) (k = 1, . . . , [n/2]),

where [x] is the integer part of x > 0 and Ck
n = n!

k!(n−k)! .
Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let all the roots of the polynomial

Q̃(z) :=
n∑

k=0

(−1)kdkzn−k (1.6)

be real and nonnegative. In addition, let

F (y, t) ≥ 0 (y, t ≥ 0). (1.7)

Then (1.1) has on (0,∞) n linearly independent positive solutions x1, . . . , xn, sat-
isfying the inequalities

xj(t) ≥ const e(−µ+r̃1)t ≥ 0 (j = 1, . . . , n; t ≥ t0 > 0),

where r̃1 ≥ 0 is the smallest root of Q̃(z).

This theorem is proved in the next two sections.

Example. Consider the equation

d2x

dt2
+ p1(t)

dx

dt
+ p2(t)x = F (t, x) (t > 0). (1.8)

Assume that p1(t), p2(t) ≥ 0 and p2
1(t) > 4p2(t) (t ≥ 0). Put

p+
1 = sup

t≥0
p1(t).

Since ρ1(t) + ρ2(t) = −p1(t), we can take µ = p+
1 . Hence,

q1(t) = 2p+
1 − p1(t), q2(t) = p+

1 (p+
1 − p1(t)) + p2(t)
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and
d1 = inf

t
q1(t) = p+

1 , d2 = sup
t

q2(t).

If, in addition, (p+
1 )2 > 4d2 and (1.7) holds, then due to Theorem 1.1, equation

(1.8) has 2 positive linearly independent solutions satisfying inequalities (1.1) with
n = 2 and

−µ + r̃1 = −p+
1 /2−

√
(p+

1 )2/4− d2 .

2. Preliminaries

Let ak(t) (t ≥ 0; k = 1, . . . , n) be continuous scalar-valued functions defined and
bounded on [0,∞), and a0 ≡ 1. Consider the equation

n∑
k=0

(−1)kak(t)
dn−ku(t)

dtn−k
= 0 (t > 0). (2.1)

Put
c2k := sup

t≥0
a2k(t), c2k−1 := inf

t≥0
a2k−1(t) (k = 1, . . . , [n/2]).

Lemma 2.1. Assume all the roots of the polynomial

Q(z) =
n∑

k=0

(−1)kckzn−k (c0 = 1, z ∈ C)

be real and nonnegative. Then a solution u of (2.1) with the initial conditions

u(j)(0) = 0, j = 0, . . . , n− 2; u(n−1)(0) = 1 (2.2)

satisfies the inequalities

u(j)(t) ≥ er1t

j∑
k=0

Cj
k

rj−k
1 tn−1−k

(n− 1− k)!
≥ 0 (j = 0, . . . , n− 1; t > 0),

where r1 ≥ 0 is the smallest root of Q(z).

Proof. We have

bk(t) := (−1)k(ck − ak(t)) ≥ 0 (k = 1, . . . , n).

Rewrite equation (2.1) in the form
n∑

k=0

(−1)kck
dn−ku

dtn−k
=

n∑
1

bk(t)
dn−ku

dtn−k
. (2.3)

Denote

G(t) =
1

2iπ

∫
C

eztdz

Q(z)
,

where C is a smooth contour surrounding all the zeros of Q(z). That is, G is the
Green functions for the autonomous equation

n∑
k=0

(−1)kck
dn−kw(t)

dtn−k
= 0. (2.4)

Put

y(t) ≡
n∑

k=0

ck(−1)k dn−ku(t)
dtn−k

. (2.5)
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Then thanks to the variation of constants formula,

u(t) = w(t) +
∫ t

0

G(t− s)y(s)ds,

where w(t) is a solution of (2.3). Since

G(j)(t) =
1

2iπ

∫
C

zjeztdz

(z − r1) . . . (z − rn)
,

where r1 ≤ · · · ≤ rn are the roots of Q(z) with their multiplicities, due to [5, Lemma
1.11.2 ], we get

G(j)(t) =
1

(n− 1)!
[dn−1zjezt

dzn−1

]
z=θ

with θ ∈ [r1, rn]. Hence,

G(j)(t) =
j∑

k=0

j!eθtθj−ktn−1−k

(j − k)!(n− 1− k)!k!
≥

j∑
k=0

j!er1trj−k
1 tn−1−k

(j − k)!(n− 1− k)!k!
≥ 0 . (2.6)

According to the initial conditions (2.2), we can write w(t) = G(t). So

u(t) = G(t) +
∫ t

0

G(t− s)y(s) ds . (2.7)

For j ≤ n− 2 we have G(j)(0) = 0 and

dj

dtj

∫ t

0

G(t− s)y(s)ds =
d

dt

∫ t

0

G(j−1)(t− s)y(s)ds

=
∫ t

0

G(j)(t− s)y(s)ds (j = 0, . . . , n− 1) .

Hence thanks to (2.3) and (2.5),

y(t) =
n∑
1

bk(t)[G(n−k)(t) +
∫ t

0

G(n−k)(t− s)y(s)ds]

= K(t, t) +
∫ t

0

K(t, t− s)y(s) ds ,

(2.8)

where

K(t, τ) =
n∑
1

bk(t)G(n−k)(τ) (t, τ ≥ 0).

According to (2.6), K(t, τ) ≥ 0 (t, τ ≥ 0). Put h(t) = K(t, t). Let V be the Volterra
operator with the kernel K(t, t− s). Then thanks to (2.8) and the Neumann series,

y(t) = h(t) +
∞∑
1

(V kh)(t) ≥ h(t) ≥ 0.

Hence (2.7) yields,

u(j)(t) = G(j)(t) +
∫ t

0

G(j)(t− s)y(s)ds

≥ G(j)(t) +
∫ t

0

G(j)(t− s)K(s, s)ds

≥ G(j)(t) (j = 0, . . . , n− 1).
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This inequality and (2.6) prove the lemma. �

Recall that a scalar valued function W (t, τ) defined for t ≥ τ ≥ 0 is the Green
function to equation (2.1) if it satisfies that equation for t > τ and the initial
conditions

lim
t↓τ

∂kW (t, τ)
∂tk

= 0 (k = 0, . . . , n− 2)

lim
t↓τ

∂n−1W (t, τ)
∂tn−1

= 1 .

Lemma 2.2. Assume all the roots of polynomial Q(z) are real and nonnegative.
Then the Green function to equation (2.1) and its derivatives up to (n − 1) order
are nonnegative. Moreover,

∂jW (t, τ)
∂tj

≥ er1(t−τ)

j∑
k=0

Ck
j

rj−k
1 (t− τ)n−1−k

(n− 1− k)!
≥ 0 (j = 0, . . . , n− 1; t > τ ≥ 0),

Proof. For a τ > 0, take the initial conditions

u(j)(τ) = 0, j = 0, . . . , n− 2; u(n−1)(τ) = 1.

Then the corresponding solution u(t) to (2.1) is equal to W (t, τ). Repeating the
argument in the proof of Lemma 2.1, we have

∂jW (t, τ)
∂tj

≥ G(j)(t− τ) +
∫ t

τ

G(j)(t− τ − s)K(s, s− τ)ds ≥ G(j)(t− τ).

According to (2.6) this proves the lemma. �

3. Proof of Theorem 1.1

In (1.3) put v(t) = e−µtu(t). Then

0 = eµt
n∑

k=0

pk(t)
dn−ke−µtu

dtn−k
=

n∑
k=0

pk(t)(
d

dt
− µ)n−ku.

That is, (1.3) is reduced to the equation

P (t,
d

dt
− µ)u ≡

n∑
k=0

pk(t)(
d

dt
− µ)n−ku = 0 . (3.1)

However,

P (t, z − µ) =
n∑

k=0

pk(t)(z − µ)n−k

=
n∑

k=0

pk(t)
n−k∑
j=0

Cj
n−k(−µ)jzn−k−j

=
n∑

k=0

pk(t)
n∑

m=k

Cm−k
n−k (−µ)m−kzn−m

=
n∑

m=0

zn−m
m∑

k=0

pk(t)Cm−k
n−k (−µ)k−m .
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So

P (t, z − µ) =
n∑

m=0

(−1)mqm(t)zn−m,

where qm(t) are defined by (1.5). Take into account that

P (t, z − µ) =
n∏

k=1

(z − ρk(t)− µ) =
n∏

k=1

(z − ρ̃k(t)),

where according to (1.4), ρ̃k(t) ≡ ρk(t) + µ ≥ 0. Hence it follows that qm(t) are
nonnegative and we can apply Lemma 2.1 to (3.1). Due to Lemma 2.1 and the
substitution v(t) = e−µtu(t), we have the following statement.

Lemma 3.1. Assume condition (1.4) and that all the roots of the polynomial Q̃(z)
defined by (1.6) are real and nonnegative. Then the Green function W̃ (t, τ) for
equation (1.3) is positive and

∂jeµ(t−τ)W̃ (t, τ)
∂tj

≥ er̃1(t−τ)

j∑
k=0

Ck
j

r̃j−k
1 (t− τ)n−1−k

(n− 1− k)!
≥ 0

for j = 0, . . . , n− 1; t > τ ≥ 0. In particular,

W̃ (t, τ) ≥ e(−µ+r̃1)(t−τ) (t− τ)n−1

(n− 1)!
(t > τ ≥ 0). (3.2)

Lemma 3.2. Assume the hypothesis of Theorem 1.1. Let v(t) be a positive solution
of the linear non-autonomous problem (1.2)–(1.3). Then a solution x(t) of problem
(1.1)–(1.2) is also positive. Moreover, x(t) ≥ v(t), t ≥ 0.

Proof. Thanks to the Variation of Constants Formula, (1.1) can be rewritten as

x(t) = v(t) +
∫ t

0

W̃ (t, s)F (s, x(s))ds.

Since W̃ (t, s) is positive due to the previous lemma, there is a sufficiently small
t0 ≥ 0, such that x(t) ≥ 0, t ≤ t0. Hence, x(t) ≥ v(t), t ≤ t0. Extending this
inequality to all t ≥ 0, we prove the lemma. �

Proof of Theorem 1.1. Take n solutions xk(t) (k = 1, . . . , n) of (1.1) satisfying the
conditions

x
(j)
k (εk) = 0, (j = 0, . . . , n− 2), x

(n−1)
k (εk) = 1

with an arbitrary ε > 0. It can be directly checked that these solutions are linearly
independent.

Now take n solutions vk(t) (k = 1, . . . , n) of (1.3) satisfying the same conditions

v
(j)
k (εk) = 0, (j = 0, . . . , n− 2), v

(n−1)
k (εk) = 1.

Then due to Lemma 3.1,

vk(t) ≡ W̃ (t, εk) ≥ 0 (t ≥ εk).

Now the required result is due to Lemma 3.2. �
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