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EXISTENCE OF PERIODIC SOLUTIONS FOR SECOND-ORDER
NEUTRAL DIFFERENTIAL EQUATIONS

YONGJIN LI

Abstract. By means of variational structure and critical point theory, we
study the existence of periodic solutions for a second-order neutral differential
equation

(p(t)x′(t− τ))′ + f(t, x(t), x(t− τ), x(t− 2τ)) = g(t),

x(0) = x(2kτ), x′(0) = x′(2kτ).

where k is a given positive integer and τ is a positive number.

1. Results

In this paper we study the existence of periodic solutions of the second order
problem

(p(t)x′(t− τ))′ + f(t, x(t), x(t− τ), x(t− 2τ)) = g(t),

x(0) = x(2kτ), x′(0) = x′(2kτ).
(1.1)

where f ∈ C(R4, R), p, g ∈ C(R, R), k is a given positive integer and τ is a positive
number.

The existence of periodic solutions to (1.1) will be studied under the hypotheses:
(H1) f ∈ C(R4, R)
(H2) There exists a continuously differentiable functional F (t, u, v) in C1(R3, R)

with

F ′u(t, x(t− τ), x(t− 2τ)) + F ′v(t, x(t), x(t− τ)) = f(t, x(t), x(t− τ), x(t− 2τ))

(H3) F (t, u, v) is τ -periodic in t
(H4) p(t) is τ -periodic and 0 < m < p(t)
(H5) g(t) is τ -periodic and g = 1

2kτ

∫ 2kτ

0
|g(t)|2dt < m/2.

In recent years, by using the continuation theorem of coincidence degree theory,
the existence of periodic solutions to ordinary equation have been extensively stud-
ied. In articles [1, 2, 4, 5, 6], the following second-order scalar differential equations
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have been studied:

x′′(t) + ax′(t) + bx(t) + g(x(t− 1)) = p(t),

x′′(t) + m2x(t) + g(x(t− τ)) = p(t),

x′′(t) + f(t, x(t), x(t− τ0(t))x′(t) + β(t)g(x(t− τ1(t))) = p(t),

x′′(t) + cx′(t) + g(t− τ), x(t− τ), x′(t− τ)) = p(t).

However, the study of corresponding problem for second-order neutral differen-
tial system with variational structure and critical point theory, to the best of our
knowledge, appeared rarely; see [3]. In this paper, we study the existence of periodic
solutions to (1.1) by means of variational technique and critical point theory.,

For the reader’s convenience, we recall some basic definitions. Let E be a real
Banach space. A mapping I from E to R will be called a functional. A critical
point of I is a point where I ′(x0) = θ and a critical value of I is a number c such
that I(x0) = c. In applications to differential equations, critical points correspond
to weak solution of equations. Indeed this fact makes critical point theory an
important existence tool in studying differential equations.

A functional I is weakly lower semi-continuous at x ∈ C if

xn ⇀ x ⇒ lim
n→∞

inf I(xn) ≥ I(x).

A functional I is coercive on C means that

I(x) → +∞ as ‖x‖ → ∞.

We will make use of a theorem in [7] to obtain the critical point of I. This theorem
is crucial for arriving at our results.

Theorem 1.1 ([7]). Let E be a reflexive Banach space, C be weakly closed subset
of E, and I : C → R be weakly lower semi-continuous and coercive. Then I has a
minimum on C.

The main result of this paper is as follows.

Theorem 1.2. Under assumptions (H1)-(H5), problem (1.1) has at least one 2kτ -
periodic solution.

Proof. Let H1
0 (0, 2kτ) = {x(t) ∈ L2[0, 2kτ ] : x(0) = x(2kτ), x′(0) = x′(2kτ)}

denote the Hilbert space with norm and inner product

‖x‖ =
( ∫ 2kτ

0

|x′(t)|2dt
)1/2

, (x, y) =
∫ 2kτ

0

x′(t)y′(t)dt.

Since each x ∈ E can be extended periodically to the whole line, we may do not
distinguish x and its extension.

A variational method is used for the following functional defined on E,

I(x) =
∫ 2kτ

0

[
p(t)
2
|x′(t)|2 − F (t, x(t), x(t− τ)) + g(t)x(t)]dt .

For x, y ∈ E and α ∈ R, we denote by ϕ(α) the function I(x + αy); i.e.,

ϕ(α) =
∫ 2kτ

0

[p(t)
2

(|x′(t) + αy′(t)|2)

− F (t, x(t) + αy(t), x(t− τ) + αy(t− τ)) + g(t)[x(t) + αy(t)
]
dt .
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Thus

ϕ′(α)

=
∫ 2kτ

0

{
p(t)[x′(t)y′(t) + αy′(t)2]− [F ′u(t, x(t) + αy(t), x(t− τ) + αy(t− τ))y(t)

+ F ′v(t, x(t) + αy(t), x(t− τ) + αy(t− τ))y(t− τ)] + g(t)y(t)
}
dt

So that

ϕ′(0) =
∫ 2kτ

0

{p(t)x′(t)y′(t)− [F ′u(t, x(t), x(t− τ))y(t)

+ F ′v(t, x(t), x(t− τ))y(t− τ)]}dt +
∫ 2kτ

0

g(t)y(t)dt

=
∫ 2kτ

0

p(t)x′(t)dy(t)−
∫ 2kτ

0

[F ′u(t, x(t), x(t− τ))y(t)

+ F ′v(t, x(t), x(t− τ))y(t− τ)]dt +
∫ 2kτ

0

g(t)y(t)dt

=p(t)x′(t)y(t)|2kτ
0 −

∫ 2kτ

0

[p(t)x′(t)]′y(t)dt

−
∫ 2kτ

0

[F ′u(t, x(t), x(t− τ))y(t)

+ F ′v(t, x(t), x(t− τ))y(t− τ)]dt +
∫ 2kτ

0

g(t)y(t)dt

=−
∫ 2kτ

0

[p(t)x′(t)]′y(t)dt−
∫ 2kτ

0

F ′u(t, x(t), x(t− τ))y(t)dt

−
∫ (2k−1)τ

−τ

F ′v(t, x(t), x(t− τ))y(t− τ)dt +
∫ 2kτ

0

g(t)y(t)dt

=−
∫ 2kτ

0

[p(t)x′(t)]′y(t)dt−
∫ 2kτ

0

F ′u(t, x(t), x(t− τ))y(t)dt

−
∫ 2kτ

0

F ′v(t + τ, x(t + τ), x(t))y(t)dt +
∫ 2kτ

0

g(t)y(t)dt

=−
∫ 2kτ

0

{[(p(t)x′(t))′ + F ′u(t, x(t), x(t− τ))

+ F ′v(t, x(t + τ), x(t))− g(t)]y(t)}dt

Therefore, the Euler equation corresponding to the functional I(x) is

(p(t)x′(t))′ + F ′u(t, x(t), x(t− τ)) + F ′v(t, x(t + τ), x(t))− g(t) = 0 (1.2)

It is easy to see that this equation is is equivalent to (1.1), and that any critical
point x of the functional I is a 2kτ -periodic solution of (1.1).
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Since F (t, u, v) ∈ C1(R3, R), we have
∫ 2kτ

0
F (t, x(t), x(t− τ))dt ≤ c; thus

I(x) =
∫ 2kτ

0

[
p(t)
2
|x′(t)|2 − F (t, x(t), x(t− τ)) + g(t)x(t)]dt

=
∫ 2kτ

0

p(t)
2
|x′(t)|2dt−

∫ 2kτ

0

F (t, x(t), x(t− τ))dt +
∫ 2kτ

0

g(t)x(t)dt

≥
∫ 2kτ

0

p(t)
2
|x′(t)|2dt−

∫ 2kτ

0

F (t, x(t), x(t− τ))dt−
∫ 2kτ

0

|g(t)x(t)|dt

≥ m

2
‖x‖2 − c− (

∫ 2kτ

0

|g(t)|2dt)(
∫ 2kτ

0

|x(t)|2dt)

=
m

2
‖x‖2 − c− (2kτ)g(

∫ 2kτ

0

|x(t)|2dt)

≥ m

2
‖x‖2 − c− g(

∫ 2kτ

0

|x′(t)|2dt)

≥ m− 2g

2
‖x‖2 − c.

It is easy to see the functional I is coercive. If xn weakly converges to x, then by
the compact embedding of H1

0 (0, 2kτ) into C([0, 2kτ ]), we know the convergence is
uniform in [0, 2kτ ]. From the trivial inequality

0 ≤
∫ 2kτ

0

p(t)[x′n(t)− x′(t)]2dt,

we have ∫ 2kτ

0

p(t)x′2n (t)dt ≥ 2
∫ 2kτ

0

p(t)x′n(t)x′(t)dt−
∫ 2kτ

0

p(t)x′2(t)dt

Thus

I(xn) =
∫ 2kτ

0

[
p(t)
2
|x′n(t)|2 − F (t, xn(t), xn(t− τ)) + g(t)xn(t)]dt

≥
∫ 2kτ

0

p(t)x′n(t)x′(t)dt− 1
2

∫ 2kτ

0

p(t)x′2(t)dt

−
∫ 2kτ

0

F (t, xn(t), xn(t− τ))dt +
∫ 2kτ

0

g(t)xn(t)dt ,

and hence

lim
n→∞

inf I(xn) ≥ I(x) .

This implies that I is weakly lower semi-continuous on H1
0 (0, 2kτ), and the existence

of a minimum for I follows from Theorem 1.1. Thus (1.1) has at least one periodic
solution. �
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Example. Let

f(t, x(t), x(t− τ), x(t− 2τ))

= −4(8 + sin2 2πt

τ
)
{
[

1
1 + x2(t− τ)

+
1

1 + x2(t− 2τ)
]

x(t− τ)
[1 + x2(t− τ)]2

+ [
1

1 + x2(t)
+

1
1 + x2(t− τ)

]
x(t)

[1 + x2(t)]2
}
,

p(t) = 16 + cos2 πt
τ , and g(t) = 1 + sin2 2πt

τ . Then F can be chosen as

F (t, u, v) = (8 + sin2 2πt

τ
)(

1
1 + u2

+
1

1 + v2
)2 .

It is easy to see that F (t, u, v) is τ -periodic in t, p(t) is τ -periodic with 0 < 15 < p(t),
g(t) is τ -periodic and

g =
1

2kτ

∫ 2kτ

0

|g(t)|2dt ≤ 1
2kτ

∫ 2kτ

0

4dt <
15
2

,

Since all the assumptions in Theorem 1.2 are satisfied, (1.1) has at least one periodic
solution.
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