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A NEW GREEN FUNCTION CONCEPT FOR FOURTH-ORDER
DIFFERENTIAL EQUATIONS

KAMIL ORUCOGLU

Abstract. A linear completely nonhomogeneous generally nonlocal multi-
point problem is investigated for a fourth-order differential equation with gen-

erally nonsmooth coefficients satisfying some general conditions such as p-

integrability and boundedness. A system of five integro-algebraic equations
called an adjoint system is introduced for this problem. A concept of a Green

functional is introduced as a special solution of the adjoint system. This new

type of Green function concept, which is more natural than the classical Green-
type function concept, and an integral form of the nonhomogeneous problems

can be found more naturally. Some applications are given for elastic bending
problems.

1. introduction

The Green functions of linear boundary-value problems for ordinary differential
equations with sufficiently smooth coefficients have been investigated in detail in
several studies [14, 17, 18, 19, 20]. In this work, a linear, generally nonlocal multi-
point problem is investigated for a differential equation of fourth-order. The coeffi-
cients of the equation are assumed to be generally nonsmooth functions satisfying
some general conditions such as p-integrability and boundedness. The operator of
this equation, in general, does not have a formal adjoint operator or any extension
of the traditional type on a space of distributions [11, 18]. In addition, the con-
sidered problem does not have a meaningful traditional type adjoint problem, even
for simple cases of a differential equation and nonlocal conditions. Due to these
facts, some serious difficulties arise in application of the classical methods for such
a problem. As it follows from [14, p. 87], similar difficulties arise even for classical
type boundary-value problems if the coefficients of the differential equation are,
for example, continuous nonsmooth functions. For this reason, a new approach is
introduced for the investigation of the considered problem and other similar prob-
lems. This approach is based on [1, 2, 3] and on methods of functional analysis.
The main idea of this approach is related to the use of a new concept of the ad-
joint problem named “adjoint system”. Such an adjoint system, in fact, includes
five “integro-algebraic” equations with an unknown elements (f4(ζ), f3, f2, f1, f0)
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in which f4(ζ) is a function, and fj , j = 0, 1, 2, 3 are real numbers. One of these
equations is an integral equation with respect to f4(ζ) and generally includes fj

as parameters. The other four can be considered a system of four algebraic equa-
tions with respect to (f0, f1f2, f3), and they may include some integral functionals
defined on f4(ζ). The form of our adjoint system depends on the operators of the
equation and the conditions. The role of our adjoint system is similar to that of
the adjoint operator equation in the general theory of the linear operator equations
in Banach spaces [7, 14, 13]. The integral representation of the solution is obtained
by a concept of the “Green functional” which is introduced as a special solution
f(x) = (f4(ζ, x), f3(x), f2(x), f1(x), f0(x)) of the corresponding adjoint system hav-
ing a special free term depending on x as a parameter. The superposition principle
for the equation is given by the first element f4(ζ, x) of the Green functional f(x);
the other four elements fj(x), (j = 0, 1, 2, 3) correspond to the unit effects of the
conditions. If the homogeneous problem has a nontrivial solution, then the Green
functional does not exist. The present approach for the Green functionals is con-
structive. In principle, this approach is different from the classical methods for
constructing Green type functions [19].

2. Statement of the problem

Let R be the set of the real numbers. Let G = (x0, x1) be a bounded open
interval in R, Let Lp(G), with 1 ≤ p <∞, be the space of p-integrable functions on
G. Let L∞(G) be the space of measurable and essentially bounded functions on G,
and W

(4)
p (G), 1 ≤ p ≤ ∞, be the space of all functions u = u(x) ∈ Lp(G) having

derivatives dku/dxk ∈ Lp(G), where k = 1, . . . , 4. The norm in the space W (4)
p (G)

is defined as

‖u‖
W

(4)
p (G)

=
4∑

k=0

‖d
ku

dxk
‖Lp(G) .

We consider the differential equation

(V4u)(x) ≡ u(iv)(x)+A0(x)u(x)+A1(x)u′(x)+A2(x)u′′(x)+A3(x)u′′′(x) = z4(x),
(2.1)

x ∈ G, subject to the following generally nonlocal multipoint-boundary conditions

V0u ≡ u(x0) = z0;

V1u ≡ u′(x0) = z1;

V2u ≡ α1u(β) + α2u
′′(x1) + α3u

′(x1) = z2;

V3u ≡ u(x1) = z3.

(2.2)

Problem (2.1)-(2.2) is considered in the space Wp = W
(4)
p (G). Furthermore, it is

assumed that the following conditions are satisfied: Aj ∈ Lp(G) are given functions,
where j = 0, 1, 2, 3; αj are given numbers; β ∈ Ḡ is given point with x0 < β < x1;
z4 ∈ Lp(G) is given function, and zj are given numbers.

Problem (2.1)-(2.2) is a linear completely nonhomogeneous problem which can
be considered an operator equation:

V u = z, (2.3)

with the linear operator V = (V4, V3, V2, V1, V0) and z = (z4(x), z3, z2, z1, z0).
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The conditions given above show that V is bounded from Wp to the Banach
space Ep = Lp(G)× R× R× R× R consisting of element z = (z4(x), z3, z2, z1, z0)
with

‖z‖Ep
= ‖z4‖Lp(G) + |z3|+ |z2|+ |z1|+ |z0|, 1 ≤ p ≤ ∞.

If, for a given z ∈ Ep, problem (2.1)-(2.2) has a unique solution u ∈ Wp with
‖u‖Wp

≤ c0‖z‖Ep
, then this problem is called a well-posed problem, where c0 is a

constant independent of z. Problem (2.1)-(2.2) is well-posed if and only if V is a
(linear) homeomorphism between Wp and Ep.

3. Adjoint space of the solution space

Problem (2.1)-(2.2) is investigated by means of a new concept of the adjoint
problem. This concept is introduced following [2, 3] by the adjoint operator V ? of
V . Furthermore, some isomorphic decompositions of the space Wp of the solutions
and its adjoint space W ?

p will be employed.
It is well known that any function u ∈Wp can be represented as

u(x) =u(α) + u′(α)(x− α) + u′′(α)
(x− α)2

2

+ u′′′(α)
(x− α)3

6
+

∫ x

α

(x− ζ)3

6
u(iv)(ζ)dζ,

(3.1)

where α ∈ Ḡ is a given point. Furthermore, the trace or the value operators
D0u = u(γ), D1u = u′(γ), D2u = u′′(γ) and D3u = u′′′(γ) are bounded and
surjective from Wp onto R for a given γ ∈ Ḡ. In addition, the values u(α), u′(α),
u′′(α), u′′′(α) and u(iv)(x) are unrelated elements of the function u ∈ Wp in the
following sense: For arbitrary numbers νj and an arbitrary function ν4 ∈ Lp(G),
there exists one and only one u ∈Wp such that u(α) = ν0, u′(α) = ν1, u′′(α) = ν2,
u′′′(α) = ν3, and u(iv)(x) = ν4(x). These assertions show that there exists a linear
homeomorphism between Wp and Ep. That is, the space Wp has the isomorphic
decomposition Wp = Lp(G)× R× R× R× R.

Theorem 3.1. If 1 ≤ p < ∞, then any linear bounded functional F ∈ W ?
p can be

represented as

F (u) =
∫ x1

x0

u(iv)(x)ϕ4(x)dx+ u′′′(x0)ϕ3 + u′′(x0)ϕ2 + u′(x0)ϕ1 + u(x0)ϕ0 (3.2)

with a unique element ϕ = (ϕ4(x), ϕ3, ϕ2, ϕ1, ϕ0) ∈ Eq, where p + q = pq. Any
linear bounded functional F ∈W ?

∞ can be represented as

F (u) =
∫ x1

x0

u(iv)(x)dϕ4 + u′′′(x0)ϕ3 + u′′(x0)ϕ2 + u′(x0)ϕ1 + u(x0)ϕ0 (3.3)

with a unique element ϕ = (ϕ4(e), ϕ3, ϕ2, ϕ1, ϕ0) ∈ Ê1 = (BA(Σ, µ))×R×R×R×R,
where µ is the Lebesque measure on R, Σ is σ-algebra of the µ-measurable subsets
e ⊂ G and BA(Σ, µ) is the space of bounded additive functions ϕ4(e) defined on Σ
with ϕ4(e) = 0 when µ(e) = 0 [13, p. 192]. The inverse is also valid, that is, if
ϕ ∈ Eq, then (3.2) is bounded on Wp, 1 ≤ p < ∞, and if ϕ ∈ Ê1, then (3.3) is
bounded on W∞.
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Proof. The operator N given by Nu = (u(iv)(x), u′′′(x0), u′′(x0), u′(x0), u(x0)) is
bounded from Wp onto Ep, and has a bounded inverse N−1 defined as

u(x) =(N−1g)(x)

≡
∫ x

x0

(x− ζ)3

6
g4(ζ)dζ + g3

(x− x0)3

6
+ g2

(x− x0)2

2
+ g1(x− x0) + g0,

g = (g4(x), g3, g2, g1, g0) ∈ Ep.

Clearly, the kernel of N is trivial and the image of N is equal to Ep. Therefore,
there exists a bounded adjoint operator N? : E?

p → W ?
p with kerN? = {0} and

ImN? = W ?
p . That is, for a given F ∈W ?

p there exists a unique ψ ∈ E?
p such that

F = N?ψ or F (u) = ψ(Nu), u ∈Wp. (3.4)

If 1 ≤ p < ∞, then E?
p = Eq (in the sense of a isomorphism (see [13, p. 191]).

Therefore, the functional ψ can be represented as

ψ(g) =
∫ x1

x0

ϕ4(x)g4(x)dx+ ϕ3g1 + ϕ2g2 + ϕ1g1 + ϕ0g0, g ∈ Ep, (3.5)

with a unique element ϕ = (ϕ4(x), ϕ3, ϕ2, ϕ1, ϕ0) ∈ Eq. Part 2 of (3.4) and (3.5)
show that any F ∈W ?

p is uniquely represented as (3.2). Clearly, for a given ϕ ∈ Eq,
the functional F given by (3.2) is bounded on Wp. Thus, (3.2) is a general form of
the functionals F ∈W ?

p . The case p = ∞ can be proven in a similar way. �

Theorem 3.1 shows that W ?
p = Eq for all 1 ≤ p < ∞, and W ?

∞ = E?
∞ = Ê1.

Furthermore, we can also consider the space E1 as a subspace of the space Ê1.

4. Adjoint operator and adjoint system of the integro-algebraic
equations

The question of finding an explicit form of the adjoint operator V ? is considered
in this section. For this reason, any element f = (f4(x), f3, f2, f1, f0) ∈ Eq is
considered as a linear bounded functional on Ep. Furthermore, it is also assumed
that

f(V u) =
∫ x1

x0

f4(x)(V4u)(x)dx+ f3(V3u) + f2(V2u) + f1(V1u) + f0(V0u), (4.1)

u ∈Wp. By substituting the expressions (2.1) and (2.2) of V4 and Vi, i = 0, 1, 2, 3,
and also the expression (3.1) (with α = x0) of u ∈Wp into (4.1), we obtain

f(V u) =
∫ x1

x0

f4(x){u(iv)(x) +A0(x){u(x0) + u′(x0)(x− x0)

+ u′′(x0)
(x− x0)2

2
+ u′′′(x0)

(x− x0)3

6
+

∫ x

x0

(x− ζ)3

6
u(iv)(ζ)dζ}

+A1(x){u′(x0) + u′′(x0)(x− x0) + u′′′(x0)
(x− x0)2

2

+
∫ x

x0

(x− ζ)2

2
)u(iv)(ζ)dζ}+A2(x){u′′(x0) + u′′′(x0)(x− x0)

+
∫ x

x0

(x− ζ)u(iv)(ζ)dζ}+A3(x){u′′′(x0) +
∫ x

x0

u(iv)(ζ)dζ}}dx
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+ f3{u(x0) + u′(x0)(x1 − x0) + u′′(x0)
(x1 − x0)2

2
+ u′′′(x0)

(x1 − x0)3

6

+
∫ x1

x0

(x1 − ζ)3

6
u(iv)(ζ)dζ}+ f2{α1[u(x0) + u′(x0)(β − x0)

+ u′′(x0)
(β − x0)2

2
+ u′′′(x0)

(β − x0)3

6
+

∫ β

x0

(β − ζ)3

6
u(iv)(ζ)dζ]

+ α2[u′′(x0) + u′′′(x0)(x1 − x0) +
∫ x1

x0

(x1 − ζ)u(iv)(ζ)dζ]

+ α3[u′(x0) + u′′(x0)(x1 − x0) + u′′′(x0)
(x1 − x0)2

2

+
∫ x1

x0

(x1 − ζ)2

2
u(iv)(ζ)dζ] + f1u

′(x0) + f0u(x0).

After some calculations, the following identity is obtained

f(V u) ≡
∫ x1

x0

f4(x)(V4u)(x)dx+
3∑

i=0

fi(Viu) =
∫ x1

x0

(ω4f)(ζ)u(iv)(ζ)dζ

+ (ω3f)u′′′(x0) + (ω2f)u′′(x0) + (ω1f)u′(x0) + (ω0f)u(x0)

≡ (ωf)(u), ∀f ∈ Eq, ∀u ∈Wp, 1 ≤ p ≤ ∞,

(4.2)

where

(ω4f)(ζ) =f4(ζ) +
∫ x1

ζ

f4(s)[A0(s)
(s− ζ)3

6
+A1(s)

(s− ζ)2

2

+A2(s)(s− ζ) +A3(s)]ds+ f3
(x1 − ζ)3

6

+ f2[α1
(β − ζ)3

6
H(β − ζ) + α2(x1 − ζ) + α3

(x1 − ζ)2

2
];

ω3f =
∫ x1

x0

f4(s)[A0(s)
(s− x0)3

6
+A1(s)

(s− x0)2

2

+A2(s)(s− x0) +A3(s)]ds+ f3
(x1 − x0)3

6

+ f2[α1
(β − x0)3

6
+ α2(x1 − x0) + α3

(x1 − x0)2

2
];

ω2f =
∫ x1

x0

f4(s)[A0(s)
(s− x0)2

2
+A1(s)(s− x0) +A2(s)]ds

+ f3
(x1 − x0)2

2
+ f2[α1

(β − x0)2

2
+ α2 + α3(x1 − x0)];

(4.3)

ω1f =
∫ x1

x0

f4(s)[A0(s)(s− x0) +A1(s)]ds+ f3(x1 − x0)

+ f2[α1(β − x0) + α3] + f1;

ω0f =
∫ x1

x0

f4(s)A0(s)ds+ f3 + f2α1 + f0

and H(x) is the Heaviside function on R.
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The operators ω4, ω3, ω2, ω1, and ω0 are linear and bounded from the space
Eq consisting of the element (f4(x), f3, f2, f1, f0) into the spaces Lq(G), R, R, R
and R, respectively. Therefore, the operator ω = (ω4, ω3, ω2, ω1, ω0) given by ωf =
(ω4f, ω3f, ω2f, ω1, ω0) becomes linear and bounded from Eq into itself. The identity
(4.2) and Theorem 3.1 shows that when 1 ≤ p < ∞, the operator ω is an adjoint
operator for the operator V , that is, V ? = ω. When p = ∞ the operator ω is
bounded from E1 into E1; in this case, ω becomes the restriction of the adjoint
operator V ? : E?

∞ →W ?
∞ of V onto E1 ⊂ E?

∞.
Equation (2.3) can be reduced to the following equivalent equation:

V Sg = z (4.4)

with an unknown g = (g4, g3, g2, g1, g0) ∈ Ep by the transformation u = Sg, where
S = N−1. If u = Sg, then u(iv)(x) = g4(x), u′′′(x0) = g3, u′′(x0) = g2, u′(x0) = g1
and u(x0) = g0. Therefore, (4.2) can be rewritten as

f(V Sg) ≡
∫ x1

x0

f4(x)(V4Sg)(x)dx+
3∑

i=0

fi(ViSg) =
∫ x1

x0

(ω4f)(ζ)g4(ζ)dζ

+ (ω3f)g3 + (ω2f)g2 + (ω1f)g1 + (ω0f)g0 ≡ (ωf)(g),
∀f ∈ Eq, ∀g ∈ Ep, 1 ≤ p ≤ ∞.

(4.5)

This shows that V ? = (V S)? = ω if 1 ≤ p < ∞, and ω? = V S if 1 < p ≤ ∞.
That is, at least one of the operators V S and ω becomes an adjoint operator for
the other one of them. Therefore, the equation

ωf = ϕ (4.6)

with an unknown function f = (f4(x), f3, f2, f1, f0) ∈ Eq and a given function
ϕ = (ϕ4(x), ϕ3, ϕ2, ϕ1, ϕ0) in Eq can be considered as an adjoint equation of (4.4)
(or of (2.3)) for all 1 ≤ p ≤ ∞. Equation (4.6) can be written in explicit form as
the system of equations

(ω2f)(ζ) = ϕ2(ζ), ζ ∈ X;
ω3f = ϕ3,

ω2f = ϕ2,

ω1f = ϕ1,

ω0f = ϕ0.

(4.7)

The expressions (4.3) show that the first equation in (4.7) is an integral equation
with respect to f4(ζ) and it includes f3 and f2 as parameters; furthermore, equa-
tions 2 and 3 in (4.7) and equations 4 and 5 in (4.7) become a system of four
algebraic equations with respect to (f3, f2, f1, f0) and these equations include some
integral functionals defined on f4(ζ). That is, (4.7) is a system of five integro-
algebraic equations. This system is introduced by the identity (4.3) which, in fact,
is an integration by parts formula in a nonclassical form. The traditional type ad-
joint problem is defined by the classical Green’s formula of the integration by parts
[19], and, therefore, has a sense only for some restricted classes of the problems.

5. Solvability conditions of completely nonhomogeneous problems

The operator is taken as Q = ω − Iq, where Iq is the identity operator on
Eq, i.e. Iqf = f for all f ∈ Eq. This operator can also be defined as Q =
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(Q4, Q3, Q2, Q1, Q0) with

(Q4f)(ζ) = (ω4f)(ζ)− f4(ζ), ζ ∈ G;
Qif = ωif − fi, i = 0, . . . 3.

(5.1)

The expressions (4.3) and the conditions imposed on Ai show that Q4 is a compact
operator from Eq into Lq(G), and also Qi are compact operators from Eq into R,
where 1 < p <∞. That is, Q : Eq → Eq is a compact operator, and, therefore, has
a compact adjoint operator Q? : Ep → Ep. Since ω = Q + Iq and V S = Q? + Ip,
where Ip = I?

q , we have that the equations (4.4) and (4.6) are canonical Fredholm
type equations; furthermore, S becomes a right regularizer of (2.3) (see [14, p. 52]).
Consequently, the following theorem is proven.

Theorem 5.1. Assume that 1 < p < ∞. Then V u = 0 has either only the trivial
solution or a finite number linearly independent solutions in Wp:
(i) If V u = 0 has only the trivial solution in Wp, then ωf = 0 also has only the
trivial solution in Eq. Then, the operators V : Wp → Ep and ω : Eq → Eq become
linear homeomorphisms.
(ii) If V u = 0 has m linearly independent solutions u1, . . . , um in Wp, then ωf = 0
has also m linearly independent solutions

f (1) = (f (1)
4 (x), f (1)

3 , f
(1)
2 f

(1)
1 , f

(1)
0 ), . . . , f (m) = (f (m)

4 (x), f (1)
3 , f

(1)
2 , f

(m)
1 , f

(m)
0 )

in Eq. In this case, the equations (2.3) and (4.6) have the solutions u ∈ Wp and
f ∈ Eq, for given z ∈ Ep and ϕ ∈ Eq, if and only if the conditions∫ x1

x0

f
(i)
4 (ζ)z4(ζ)dζ + f

(i)
3 z3 + f

(i)
2 z2 + f

(i)
1 z1 + f

(i)
0 z0 = 0, i = 1, . . . ,m, (5.2)

and∫ x1

x0

ϕ4(ζ)u
(iv)
i (ζ)dζ + ϕ3u

′′′
i (x0) + ϕ2u

′′
i (x0) + ϕ1u

′
i(x0) + ϕ0ui(x0) = 0, (5.3)

i = 1, . . . ,m, are satisfied, respectively.

6. Green Functional

The following equation given in the form of the functional identity is considered

(ωf)(u) = u(x), ∀u ∈Wp (6.1)
in which f = (f4(ζ), f3, f2, f1, f0) ∈ Eq is an unknown element and x ∈ Ḡ is a
parameter.
Definition Assume that f(x) = (f4(ζ, x), f3(x), f2(x), f1(x), f0(x)) ∈ Eq is an
element with the parameter x ∈ Ḡ. If f = f(x) is the solution of (6.1) for a given
x ∈ Ḡ, then f(x) is called as a Green functional of V (or of (2.3)).

The operator IWp,C of the imbedding ofWp into the space C(Ḡ) of the continuous
functions on Ḡ is bounded. Then, the linear functional θ(x) given by θ(x)(u) = u(x)
is bounded on Wp for a given x ∈ Ḡ. This and (ωf)(u) = (V ?f)(u) show that the
equation (6.1) can also be written as (see [3, 4])

V ?f = θ(x).

That is, the equation (6.1) can be considered as a special case of the adjoint equation
V ?f = ψ when ψ = θ(x).
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Now, by employing (3.1) with x = x0 and (4.3), the equation (6.1) is written as∫ x1

x0

(ω4f)(ζ)u(iv)(ζ)dζ + (ω3f)u′′′(x0) + (ω2f)u′′(x0)

+ (ω1f)u′(x0) + (ω0f)u(x0)

=
∫ x

x0

(x− ζ)3

6
u(iv)(ζ)dζ + u′′′(x0)

(x− x0)3

6

+ u′′(x0)
(x− x0)2

2
+ u′(x0)(x− x0) + u(x0), ∀u ∈Wp.

(6.2)

The elements u(iv)(ζ) ∈ Lp(G), u′′′(x0), u′′(x0), u′(x0) ∈ R and u(x0) ∈ R of the
functions u ∈Wp are unrelated. Then,

(ω4f)(ζ) =
(x− ζ)3

6
H(x− ζ), ζ ∈ G;

ω3f =
(x− x0)3

6
;

ω2f =
(x− x0)2

2
;

ω1f = (x− x0);
ω0f = 1.

(6.3)

This shows that the equation (6.1) is equivalent to the system (6.3) which is a
special case of the adjoint system (4.7) when

ϕ4(ζ) =
(x− ζ)3

6
H(x− ζ), ϕ3 =

(x− x0)3

6
,

ϕ2 =
(x− x0)2

2
, ϕ1 = (x− x0), ϕ0 = 1 .

Therefore, f(x) is the Green functional if and only if it is a solution of the integro-
algebraic equations (6.3) for an arbitrary x ∈ Ḡ. For a solution u of (2.3) and a
Green functional f(x), the identity (4.2) can be written as∫ x1

x0

f4(ζ, x)z4(ζ)dζ + f3(x)z3 + f2(x)z2 + f1(x)z1 + f0(x)z0

=
∫ x1

x0

(x− ζ)3

6
H(x− ζ)u(iv)(ζ)dζ + u′′′(x0)

(x− x0)3

6

+ u′′(x0)
(x− x0)2

2
+ u′(x0)(x− x0) + u(x0).

(6.4)

The right-hand side of (6.4) is equal to u(x). Therefore, the following theorem
holds.

Theorem 6.1. If (2.3) has at least one Green functional f(x), then an arbitrary
solution u ∈Wp of (2.3) can be represented as

u(x) =
∫ x1

x0

f4(ζ, x)z4(ζ)dζ + f3(x)z3 + f2z2 + f1(x)z1 + f0(x)z0. (6.5)

Furthermore, V u = 0 has only one trivial solution.
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If at least one of the operators V : Wp → Ep or ω : Eq → Eq is a homeomorphism,
then the other one is also a homeomorphism; furthermore, there exists a unique
Green functional, where 1 ≤ p ≤ ∞. The Green functional exists and is unique.
The necessary and sufficient conditions for the existence of a Green functional are
given by the following theorem for the case 1 < p <∞.

Theorem 6.2. If there exists a Green functional, then it is unique. There exists a
Green functional if and only if V u = 0 has only the trivial solution.

Proof. If there exists a Green functional, then V u = 0 has the unique solution u = 0
(Theorem 6.1). In this case ω : Eq → Eq becomes a homeomorphism (Theorem
5.1). Therefore, the Green functional, as a solution of (6.3), is unique. The second
part of the theorem follows from Theorem 5.1. �

Remark.Assume that V u = 0 has a nontrivial solution. Then (2.3) does not have
a Green functional (Theorem 6.1). In this case, V u = z usually has no solution
unless the right-hand side z is a particular type. For example, V u = z has no
solution if ∫ x1

x0

f4(z)z4(x)dx+ f3z3 + f2z2 + f1z1 + f0z0 = 0 (6.6)

is not true at least for one solution f = (f4(ζ), f3, f2, f1, f0) of the homogenous
adjoint equation ωf = 0. In this case, the representation of the existing solution of
V u = z is obtained by a concept of the generalized Green functional [3].

7. Comparison with the classical Green type function

Consider the following problem which is a special case of (2.3):

(V4u)(x) ≡ u(iv)(x) +A(x)u = z4(x), x ∈ G;

V0u ≡ u(x0) = z0,

V1u ≡ u′(x0) = z1,

V1u ≡ u′′(x0) = z2,

V0u ≡ u(x1) = z3.

(7.1)

In this case, system (6.3) can be written as

(ω4f)(ζ) ≡ f4(ζ) +
∫ x1

ζ

f4(s)A(s)
(s− ζ)3

6
ds+ f3

(x1 − ζ)3

6
+ f2(x1 − ζ)

=
(x− ζ)3

6
H(x− ζ), ζ ∈ G;

ω3f ≡
∫ x1

x0

f4(s)A(s)
(s− x0)3

6
ds+ f3

(x1 − x0)3

6
+ f2(x1 − x0) =

(x− x0)3

6
;

ω2f ≡
∫ x1

x0

f4(s)A(s)
(s− x0)2

2
ds+ f3

(x1 − x0)2

2
+ f2 =

(x− x0)2

2
; (7.2)

ω1f ≡
∫ x1

x0

f4(s)A(s)(s− x0)ds+ f3(x1 − x0) + f1 = (x− x0);

ω0f ≡
∫ x1

x0

f4(s)A(s)ds+ f3(x1 − x0) + f0 = 1.
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From parts 2 and 3 of (7.2) and parts 4 and 5 of (7.2) it is obtained that

f3 =
3∆(x− x0)2 − (x− x0)3

2∆3
+

∫ x1

x0

f4(s)A(s){ (s− x0)3)− 3∆(s− x0)2

2∆3
}ds;

f2 =
(x− x0)3 −∆(x− x0)2

4∆
+

∫ x1

x0

f4(s)A(s){∆(s− x0)2 − (s− x0)3

4∆
}ds;

f1 = (x− x0)− f3∆−
∫ x1

x0

f4(s)A(s)(s− x0)ds;

f0 = 1− f3 −
∫ x1

x0

f4(s)A(s)ds, ∆ = x1 − x0.

(7.3)
Substituting parts 1 and 2 of (7.3) into part 1 of (7.2),

f4(ζ) +
∫ x1

ζ

f4(s)A(s)
(s− ζ)3

6
ds

+
(x1 − ζ)3

6

∫ x1

x0

f4(s)A(s){ (s− x0)3 − 3∆(s− x0)2

2∆3
}ds

+ (x1 − ζ)
∫ x1

x0

f4(s)A(s){∆(s− x0)2 − (s− x0)3

4∆
}ds

=
(x− ζ)

6
H(x− ζ)− (x1 − ζ)3

6
(
3∆(x− x0)2 − (x− x0)3

2∆3
)

− (x1 − ζ)(
(x− x0)3 −∆(x− x0)2

4∆
), ζ ∈ G.

(7.4)

That is, the first element f4(ζ, x) of the Green functional

f(x) = (f4(ζ, x), f3(x), f2(x)f1(x), f0(x))

of problem (7.1) becomes the solution of the independent integral equation (7.4);
the latter four elements f3(x), f2(x), f1(x) and f0(x) of f(x) can be obtained by
(7.3). The equation (7.4) has a unique solution f4(ζ, x) ∈ Lq(G) (for given x ∈ Ḡ)
if and only if V u = 0 has only the trivial solution (Theorem 6.2). If V u = 0 has a
nontrivial solution, then the Green functional does not exist.

In order to compare the Green functional with the classical type Green function,
equation (7.4) is considered. Assume that A(x) is absolutely continuous on Ḡ. If a
function f4(ζ) = f4(ζ, x) ∈ Lq(G) is the solution of (7.4), then f4(ζ, x) is absolutely
continuous on Ḡ with respect to ζ (for a given x ∈ Ḡ). Therefore, by differentiating
(7.4) with respect to ζ, it is obtained that f ′′′4 (ζ) becomes absolutely continuous on
[x0, x] and [x, x1] with respect to ζ. Therefore,

(V ?
4 f4)(ζ) ≡

d4f4(ζ)
dζ4

+A(ζ)f4(ζ) = 0, ζ ∈ (x0, x) ∪ (x, x1). (7.5)

The boundary conditions of (7.5) can be obtained from (7.4) as

f4(x0) = f4(x1) = 0,

f4(x+ 0) = f4(x− 0),

f ′4(x+ 0) = f ′4(x− 0),

f ′′4 (x+ 0) = f ′′4 (x− 0),

f ′′′4 (ζ)|ζ=x+0 = f ′′′4 (ζ)|ζ=x−0 + 1.

(7.6)



EJDE-2005/28 A NEW GREEN FUNCTION CONCEPT 11

That is, the solution of (7.4) is equivalent to the solution of problem (7.5)-(7.6).
In other words, f4(ζ) is the solution of problem (7.5)-(7.6). Therefore, f4(ζ, x)
as a function of ζ is the classical Green function for the corresponding traditional
adjoint problem given by (V ?

4 f4)(ζ) = ψ4(ζ), ζ ∈ G, and f4(x0) = f ′4(x0) =
f ′′4 (x1) = f4(x1) = 0, where ψ4 ∈ L1(G) is a given function. It can be easily proven
that the function f4(ζ, x) as a function of x is the classical Green function for the
equation (7.1)1 with u(x0) = u′(x0) = u′′(x1) = u(x1) = 0 (see [19, p.200]).

Let us considered some simple cases. Let Aj = 0, j = 0, 1, 2, 3 and x0 = 0,
x1 = l in the equations (6.3). If it is taken β = 0, α2 = 1 and |α1| is sufficiently
small, then the system of equations (6.3) has unique solution. Some simple results
are given below.
(i) If α1 = 0, α2 = 1 and α3 = c = µ/EIx are taken in the equation (6.3)1, then
the Green function of an elastic beam having two ends which are fixed support and
elastic support is obtained as

f4(x, ζ) =
(x− ζ)3

6
H(x− ζ)− (l − ζ)3

6
[
x2

l2
− 2(1 + cl)(x3 − x2l)

l2(4l + cl2)
]

− (l − ζ +
c(l − ζ)2

2
){ (x3 − 4x2l)

(4l + cl2)
},

(7.7)

where µ, Ix, E are elastic material constants [12].
(ii) α1 = α2 = 0 and α3 = 1 are taken in part 1 of (6.3), then the Green function
of an elastic beam having both ends fixed is obtained as

f4(x, ζ) =
(x− ζ)3

6
H(x− ζ)− (l − ζ)3

6
x2

l2
(3− 2x

l
)− x2

l2
(x− l)

(l − ζ)2

2
. (7.8)

Note that (7.4) is a Fredholm’s equation of the second kind for a given x ∈ Ḡ.
Therefore, it can be solved approximately by a known method [5, 8]. Thus, (6.3) can
also be used for the approximate calculations of the Green functional and solution.
The present Green function concept can also be used to investigate some classes of
nonlinear equations associated with linear non-local conditions [9, 15, 16]. Thus,
the nonlinear problem can be reduced to equivalent nonlinear integral equations.
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