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AN ORLICZ-SOBOLEV SPACE SETTING FOR QUASILINEAR
ELLIPTIC PROBLEMS

NIKOLAOS HALIDIAS

Abstract. In this paper we give two existence theorems for a class of elliptic

problems in an Orlicz-Sobolev space setting concerning both the sublinear and

the superlinear case with Neumann boundary conditions. We use the classical
critical point theory with the Cerami (PS)-condition.

1. Introduction

In this paper we consider the following elliptic problem with Neumann boundary
conditions,

−div(α(|∇u(x)|)∇u(x)) = g(x, u) a.e. on Ω
∂u

∂v
= 0, a.e. on ∂Ω.

(1.1)

We assume that Ω is a bounded domain with smooth boundary ∂Ω. By ∂
∂v we

denote the outward normal derivative. As in [2] we assume that the function α is
such that φ : R → R defined by φ(s) = α(|s|)s if s 6= 0 and 0 otherwise, is an
increasing homeomorphism from R to R.

In [2], the authors study a Dirichlet problem when the right-hand side is su-
perlinear. They show the existence of a nontrivial solution and show that it is
important to use an Orlicz-Sobolev space setting. Here, we consider a Neumann
problem when the right-hand side is sublinear. Also we consider the superlinear
case using the ideas in [4]. Assuming Landesman-Laser conditions for the sublinear
case and using the interpolation inequality for the superlinear case, we prove the
existence of a nontrivial solution.

Let us recall the Cerami (PS) condition [1]. Let X be a Banach space. We say
that a functional I : X → R satisfies the (PS)c condition if for any sequence such
that |I(un)| ≤ M and (1 + ‖un‖)〈I ′(un), φ〉 → 0 for all φ ∈ X we can show that
there exists a convergent subsequence.

Let

Φ(s) =
∫ s

0

φ(t)dt, Φ∗(s) =
∫ s

0

φ−1(t)dt, s ∈ R,
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it is well-known that Φ and Φ∗ are complementary N functions which define the
Orlicz spaces LΦ, LΦ∗ respectively. We use the well-known Luxenburg norm,

‖u‖Φ = inf{k > 0 :
∫

Ω

Φ(
|u(x)|

k
)dx ≤ 1}.

As in [2] we denote by W 1LΦ the corresponding Orlicz-Sobolev space with the norm
‖u‖1,Φ = ‖u‖Φ + ‖|∇u|‖Φ.

Now we introduce the Orlicz-Sobolev conjugate Φ∗ of Φ, defined as

Φ−1
∗ (t) =

∫ t

0

Φ−1(τ)

τ
N+1

N

, dτ,

and as in [2], we suppose that

lim
t→0

∫ 1

t

Φ−1(τ)

τ
N+1

N

, dτ < +∞ , lim
t→∞

∫ t

1

Φ−1(τ)

τ
N+1

N

, dτ = +∞.

To state our hypotheses on φ, g, we need the following three numbers,

p1 = inf
t>0

tφ(t)
Φ(t)

, pΦ = lim inf
t→∞

tφ(t)
Φ(t)

, p0 = sup
t>0

tφ(t)
Φ(t)

.

(H1) The function φ is such that
(i) For every ε > 0, there is kε > 1 such that Φ′((1 + ε)x) ≥ kεΦ′(x),

x ≥ xo(ε) ≥ 0 and that Φ is strictly convex.
(ii) Both Φ,Φ∗ satisfy a ∆2 condition, namely

1 < lim inf
s→∞

sφ(s)
Φ(s)

≤ lim sup
s→∞

sφ(s)
Φ(s)

< +∞.

Remark 1.1. Under hypotheses (H1), LΦ is uniformly convex [8, p.288].

We assume the following conditions on g.

(H2) The function g : Ω × R → R is a continuous and satisfies the following
hypotheses:
(i) There exists nonnegative constants a1, a2 such that |g(x, s)| ≤ a1 +

a2|s|a−1, for all (x, s) ∈ Ω× R, with p0 ≤ a < Np1

N−p1 .
(ii) For all x ∈ Ω,

lim sup
u→0

G(x, u)
Φ(u)

≤ −µ < 0, lim
u→∞

G(x, u)
|u|p1 = 0 .

(iii) There is a function h : R+ → R+ with the property lim inf h(anbn)
h(bn) > 0,

h(bn) →∞ when an → a > 0 and bn → +∞ such that

lim inf
|u|→∞

p1G(x, u)− g(x, u)u
h(|u|)

≥ k(x) > 0,

with k ∈ L1(Ω),
with G(x, u) =

∫ u

0
g(x, r)dr.

Remark 1.2. Using the definition of p1 we can prove that Φ(t) ≥ ctp
1

for t ≥ 1.

From this we obtain that W 1LΦ ↪→ L
Np1

N−p1 (see [2]).
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Our energy functional I : W 1LΦ → R is defined as

I(u) =
∫

Ω

Φ(|∇u(x)|)dx−
∫

Ω

G(x, u(x))dx.

From the arguments of [2, 5] we know that this functional is well defined and C1.

Lemma 1.3. If (H1), (H2) hold, then the energy functional satisfies the (PS)c

condition.

Proof. Let X = W 1LΦ(Ω). Suppose that there exists a sequence {un} ⊆ X such
that |I(un)| ≤ M and

|〈I ′(un), φ〉| ≤ εn
‖φ‖1,Φ

1 + ‖un‖1,Φ
. (1.2)

Suppose that ‖un‖1,Φ → ∞. Let yn(x) = un(x)
‖un‖1,Φ

. It is easy to see that yn → y

weakly in X and yn → y strongly in LΦ(Ω). From the first inequality we have∣∣ ∫
Ω

Φ(|∇un(x)|)dx−
∫

Ω

G(x, un(x))dx
∣∣ ≤ M. (1.3)

We can prove that Φ(t) ≥ ρp1
Φ( t

ρ ). Indeed, we have that Φ(t)p1 ≤ tφ(t) for t > 0.
Then we obtain ∫ t

t/ρ

p1

s
ds ≤

∫ t

t/ρ

φ(s)
Φ(s)

ds,

for all t > 0 and for ρ > 1. Calculating the above integrals we arrive at the fact that
Φ(t) ≥ ρp1

Φ( t
ρ ) for all t > 0 and all ρ > 1. When we divide the above inequality

by ‖un‖p1

1,Φ > 1, we obtain∫
Ω

Φ(|∇yn(x)|dx ≤
∫

Ω

G(x, un(x))

‖un‖p1

1,Φ

dx .

Next, we prove that
∫
Ω

G(x,un(x))

‖un‖p1
1,Φ

dx → 0. Indeed, from (H2)(ii) we have that for

every ε > 0 there exists some M > 0 such that for |u| > M we have G(x,u)

|u|p1 ≤ ε for
all x ∈ Ω. Thus,∫

Ω

G(x, un(x))

‖un‖p1

1,Φ

dx

≤
∫
{x∈Ω:|un(x)|≤M}

G(x, un(x))

‖un‖p1

1,Φ

dx +
∫
{x∈Ω:|un(x)|≥M}

ε|yn(x)|p
1
dx.

Note that p1 ≤ p0 ≤ a so we have that W 1LΦ ↪→ Lp1
. From that we obtain∫

Ω

G(x, un(x))

‖un‖p1

1,Φ

dx ≤
∫
{x∈Ω:|un(x)|≤M}

G(x, un(x))

‖un‖p1

1,Φ

dx + εc‖yn‖p1

1,Φ.

Finally, note that ‖yn‖1,Φ = 1 so we have proved our claim.
Now

∫
Ω

Φ(|∇yn(x)|dx → 0 thus, ‖∇yn‖Φ → 0. Since

‖∇y‖Φ ≤ lim inf
n→∞

‖∇yn‖Φ → 0,

so ‖∇yn‖Φ → ‖∇y‖Φ and moreover yn → y weakly in X, thus from the uniform
convexity of X we deduce that yn → y strongly in X. Note that ‖yn‖1,Φ = 1 so,
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y 6= 0 and from the fact that ‖∇y‖Φ = 0 we have that y = c ∈ R with c 6= 0. From
this we obtain that |un(x)| → ∞.

Choosing now φ = un in (1.2) and substituting with (1.3), we arrive at∫
Ω

p1G(x, un(x))− g(x, un(x))un(x)dx +
∫

Ω

φ(|∇un|)|∇un| − p1Φ(|∇un|)dx

≤ M + εn
‖un‖1,Φ

1 + ‖un‖1,Φ
.

From the definition of p1 we have p1Φ(t) ≤ tφ(t). Using this fact and dividing the
last inequality with h(‖un‖1,Φ) we obtain∫

Ω

p1G(x, un(x))− g(x, un(x))un(x)
h(|un(x)|)

h(|yn(x)|‖un‖1,Φ)
h(‖un‖1,Φ)

dx

≤
M + εn

‖un‖1,Φ
1+‖un‖1,Φ

h(‖un‖1,Φ)
.

From this we can see that

lim inf
n→∞

∫
Ω

p1G(x, un(x))− g(x, un(x))un(x)
h(|un(x)|)

h(|yn(x)|‖un‖1,Φ)
h(‖un‖1,Φ)

dx ≤ 0.

Using Fatou’s lemma and (H2)(iii) we obtain the contradiction. That is un is
bounded. So, we can say, at least for a subsequence, that un → u weakly in X and
un → u strongly in La(Ω).

To show the strong convergence we going back to (1.2) and choose φ = un − u.
Thus, we obtain∣∣ ∫

Ω

(
α(|∇un|)∇un − α(|∇u|)∇u

)(
∇un −∇u

)
dx

∣∣
≤

∫
Ω

g(x, un)(un − u)dx + εn‖un − u‖1,Φ −
∫

Ω

α(|∇u|)∇u(∇un −∇u)dx.

Using the compact imbedding X ↪→ La(Ω) and the fact that un → u weakly in
X we arrive at

∫
Ω

(
a(|∇un|)∇un − a(|∇u|)∇u

)(
∇un − ∇u

)
dx → 0 and using [6,

Theorem 4] we obtain the strong convergence of un. �

Lemma 1.4. If hypotheses (H1)(ii), (H2) holds, then there exists some e ∈ X with
I(e) ≤ 0.

Proof. We will show that there exists some a ∈ R such that I(a) ≤ 0. Suppose
that this is not the case. Then there exists a sequence an ∈ R with an → ∞ and
I(an) ≥ c > 0. We can easily see that

(−G(x, u)
up1 )′ =

p1G(x, u)− g(x, u)u
up1+1

=
p1G(x, u)− g(x, u)u

h(|u|)
h(|u|)
up1+1

≥ (k(x)− ε)
1

up1+1
=

k(x)− ε

p1
(− 1

up1 )′,

for a large enough u ∈ R. We can say then∫ s

t

(
− G(x, u)

up1

)′
du ≥

∫ s

t

k(x)− ε

p1

(
− 1

up1

)′
du.



EJDE-2005/29 AN ORLICZ-SOBOLEV SPACE SETTING 5

Take now s →∞ and using (H2)(iii), we obtain

G(x, t) ≥ k(x)
p1

,

for large enough t ∈ R. From this we obtain

lim sup
an→∞

I(an) ≥ lim inf
an→∞

I(an) ≥ 0

implies

lim sup
an→∞

∫
Ω

−G(x, an)dx ≥ 0

which implies
∫
Ω
−k(x)

p1 dx ≥ 0. Then using (H2)(iii) we obtain the contradiction. �

Lemma 1.5. If (H1)(ii) and (H2) hold, then there exists some ρ > 0 such that for
all u ∈ X with ‖u‖Φ = ρ we have that I(u) > η > 0.

Proof. ¿From (H2)(ii) we have that for every ε > 0 there exists some u∗ ≤ 1 such
that for every |u| ≤ u∗ we have G(x, u) ≤ (−µ + ε)Φ(|u|) ≤ k(−µ + ε)|u|p0

with

k > 0. On the other hand there exists c1, c2 > 0 such that |G(x, u)| ≤ c1|u|
Np1

N−p1 +c2

for every u ∈ R. Recall that p0 < Np1

N−p1 so we can find some γ > 0 such that

G(x, u) ≤ k(−µ + ε)|u|p0
+ γ|u|

Np1

N−p1 . Indeed, we can choose

γ ≥ c1 +
c2

|u∗|
Np1

N−p1

+ k(µ− ε)
|u∗|p0

|u∗|
Np1

N−p1

.

Take now a sequence {un} ∈ X such that ‖un‖1,Φ → 0. Thus, we can see that

I(un) ≥
∫

Ω

Φ(|∇un|)dx + k(µ− ε)‖un‖p0

p0 − γ‖un‖
Np1

N−p1

Np1

N−p1

implies

I(un) ≥ c‖|∇un|‖p0

Φ + k(µ− ε)‖un‖p0

Φ − γ‖un‖
Np1

N−p1

Np1

N−p1

which implies

I(un) ≥ C‖un‖p0

1,Φ − γ‖un‖
Np1

N−p1

1,Φ .

Here we have used the fact that Lp0
(Ω) imbeds continuously in LΦ(Ω) and the fact

that LNp1/(N−p1) imbeds continuously in W 1LΦ. Finally we have C = min{c, k(µ−
ε)}. Thus, for big enough n ∈ N and noting that p0 < Np1

N−p1 we deduce that there
exists some ρ > 0 such that for all u ∈ X with ‖u‖Φ = ρ we have that I(u) > η > 0.
The Lemma is proved. �

The existence theorem follows from the Mountain-Pass theorem. Note that we
also extend the recently results of Tang [10] for Neumann problems because the
author there needs h(u) = u.
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2. Superlinear Case

In this section we consider problem (1.1) with a superlinear right hand side. We
assume the following conditions on g,

(H3) The funciton g : Ω×R → R is a continuous function satisfying the following
hypotheses:
(i) There exists nonnegative constants a1, a2 such that |g(x, s)| ≤ a1 +

a2|s|a−1, for all (x, s) ∈ Ω× R, with p0 ≤ a < Np1

N−p1 , .
(ii) There exists some q > 0 such that for all x ∈ Ω,

lim sup
u→0

G(x, u)
Φ(|u|)

< −k < 0 lim
u→∞

G(x, u)
|u|q

= 0, 0 < β ≤ lim inf
|s|→∞

G(x, s)
Φ(s)

(iii) There exists µ > N/p1(q − p1) such that

lim inf
|u|→∞

g(x, u)u− p1G(x, u)
|u|µ

≥ m > 0.

with G(x, u) =
∫ u

0
g(x, r)dr.

Theorem 2.1. If hypotheses (H1)(ii) and (H3) hold, then problem (1.1) has a
nontrivial solution u ∈ X.

Proof. Let us denote first by N(u) =
∫
Ω

G(x, u)dx. Suppose that there exists a
sequence {un} ⊆ X such that I(un) → c and | < I ′(un), y > | ≤ εn

‖y‖1,Φ
1+‖un‖1,Φ

for all
y ∈ X. We are going to show that ‖un‖1,Φ is bounded in X. Suppose not. Then
there exists a subsequence such that ‖un‖1,Φ →∞.

Using the definition of p1 it is easy to see that |〈I ′(u), u〉−p1I(u)| ≥ |〈N ′(u), u〉−
p1N(u)| and using (H3)(iii), we arrive at ‖un‖µ

µ ≤ C.
Next, we use the interpolation inequality, namely

‖u‖q ≤ ‖u‖1−t
µ ‖u‖t

Np1

N−p1
,

where 0 < µ ≤ q ≤ Np1

N−p1 , t ∈ [0, 1]. Using the fact that X imbeds continuously in

L
Np1

N−p1 we have ∫
Ω

Φ(|∇un|)dx = I(un) + N(un)

≤ c1‖un‖q
q + c2

≤ ‖un‖(1−t)q
µ ‖un‖qt

Np1

N−p1

≤ c1‖un‖qt
1,Φ + c2,

(2.1)

here we have used the second assertion of (H3)(ii). From the relation |I(un)| ≤ M
we obtain ∫

Ω

G(x, un)dx ≤
∫

Ω

Φ(|∇un|)dx + M

and

β

∫
Ω

Φ(un)dx ≤
∫

Ω

Φ(|∇un|)dx + M .
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We have used here the third assertion of (H3)(ii). Adding β
∫
Ω

Φ(|∇un|)dx to the
last inequality, we obtain

β(
∫

Ω

Φ(un)dx +
∫

Ω

Φ(|∇un|)dx) ≤ C

∫
Ω

Φ(|∇un|)dx + M. (2.2)

We can prove that Φ(t) ≥ ρp1
Φ(t/ρ) for ρ ≥ 1 and combining (2.1) and (2.2), we

arrive at
c1‖un‖p1

1,Φ − c2 ≤
∫

Ω

Φ(|∇un|)dx ≤ c1‖un‖qt
1,Φ + c2.

for some c1, c2 > 0. Choosing qt < p1 (or equivalently µ > N/p1(q− p1)) we obtain
a contradiction. Thus, {un} ⊆ X is bounded and using the same arguments as in
Lemma 1.3 we can prove that in fact {un} has a strongly convergent subsequence
in X.

Next we prove that there exists some e ∈ X such that I(e) ≤ 0. Indeed, take a
sequence tn →∞, then

I(tn) = −
∫

Ω

G(x, tn)dx ≤ −β

∫
Ω

Φ(tn)dx + C.

It is clear now that for big enough n ∈ N we have I(tn) ≤ 0. Using Lemma 1.5 and
the Mountain-Pass theorem, we obtain a nontrivial solution. �

As an example of functions that satisfy the above hypotheses, we have Φ(u) =
log(1 + |u|)|u|2 and G(u) = log(1 + |u|)Φ(u).
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