Electronic Journal of Differential Equations, Vol. 2005(2005), No. 29, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

AN ORLICZ-SOBOLEV SPACE SETTING FOR QUASILINEAR ELLIPTIC PROBLEMS

NIKOLAOS HALIDIAS

ABSTRACT. In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.

1. INTRODUCTION

In this paper we consider the following elliptic problem with Neumann boundary conditions,

$$-\operatorname{div}(\alpha(|\nabla u(x)|)\nabla u(x)) = g(x, u) \quad \text{a.e. on } \Omega$$
$$\frac{\partial u}{\partial v} = 0, \text{ a.e. on } \partial\Omega.$$
(1.1)

We assume that Ω is a bounded domain with smooth boundary $\partial\Omega$. By $\frac{\partial}{\partial v}$ we denote the outward normal derivative. As in [2] we assume that the function α is such that $\phi : \mathbb{R} \to \mathbb{R}$ defined by $\phi(s) = \alpha(|s|)s$ if $s \neq 0$ and 0 otherwise, is an increasing homeomorphism from \mathbb{R} to \mathbb{R} .

In [2], the authors study a Dirichlet problem when the right-hand side is superlinear. They show the existence of a nontrivial solution and show that it is important to use an Orlicz-Sobolev space setting. Here, we consider a Neumann problem when the right-hand side is sublinear. Also we consider the superlinear case using the ideas in [4]. Assuming Landesman-Laser conditions for the sublinear case and using the interpolation inequality for the superlinear case, we prove the existence of a nontrivial solution.

Let us recall the Cerami (PS) condition [1]. Let X be a Banach space. We say that a functional $I: X \to \mathbb{R}$ satisfies the $(PS)_c$ condition if for any sequence such that $|I(u_n)| \leq M$ and $(1 + ||u_n||)\langle I'(u_n), \phi \rangle \to 0$ for all $\phi \in X$ we can show that there exists a convergent subsequence.

Let

$$\Phi(s) = \int_0^s \phi(t) dt, \quad \Phi^*(s) = \int_0^s \phi^{-1}(t) dt, \quad s \in \mathbb{R},$$

²⁰⁰⁰ Mathematics Subject Classification. 32J15, 34J89, 35J60.

 $Key \ words \ and \ phrases.$ Landesman-Laser conditions; critical point theory; nontrivial solution;

Cerami (PS) condition; Mountain-Pass Theorem; interpolation inequality.

 $[\]textcircled{C}2005$ Texas State University - San Marcos.

Submitted October 14, 2004. Published March 8, 2005.

it is well-known that Φ and Φ^* are complementary N functions which define the Orlicz spaces L_{Φ}, L_{Φ^*} respectively. We use the well-known Luxenburg norm,

$$||u||_{\Phi} = \inf\{k > 0 : \int_{\Omega} \Phi(\frac{|u(x)|}{k}) dx \le 1\}.$$

As in [2] we denote by $W^1 L_{\Phi}$ the corresponding Orlicz-Sobolev space with the norm $||u||_{1,\Phi} = ||u||_{\Phi} + ||\nabla u||_{\Phi}$.

Now we introduce the Orlicz-Sobolev conjugate Φ_* of Φ , defined as

$$\Phi_*^{-1}(t) = \int_0^t \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d\tau,$$

and as in [2], we suppose that

$$\lim_{t \to 0} \int_{t}^{1} \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d\tau < +\infty, \quad \lim_{t \to \infty} \int_{1}^{t} \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d\tau = +\infty.$$

To state our hypotheses on ϕ, g , we need the following three numbers,

$$p^{1} = \inf_{t>0} \frac{t\phi(t)}{\Phi(t)}, \quad p_{\Phi} = \liminf_{t\to\infty} \frac{t\phi(t)}{\Phi(t)}, \quad p^{0} = \sup_{t>0} \frac{t\phi(t)}{\Phi(t)}$$

- (H1) The function ϕ is such that
 - (i) For every $\varepsilon > 0$, there is $k_{\varepsilon} > 1$ such that $\Phi'((1 + \varepsilon)x) \ge k_{\varepsilon}\Phi'(x)$, $x \ge x_o(\varepsilon) \ge 0$ and that Φ is strictly convex.
 - (ii) Both Φ, Φ^* satisfy a Δ_2 condition, namely

$$1 < \liminf_{s \to \infty} \frac{s\phi(s)}{\Phi(s)} \le \limsup_{s \to \infty} \frac{s\phi(s)}{\Phi(s)} < +\infty.$$

Remark 1.1. Under hypotheses (H1), L_{Φ} is uniformly convex [8, p.288].

We assume the following conditions on q.

- (H2) The function $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous and satisfies the following hypotheses:
 - (i) There exists nonnegative constants a_1, a_2 such that $|g(x,s)| \leq a_1 + a_2|s|^{a-1}$, for all $(x,s) \in \Omega \times \mathbb{R}$, with $p^0 \leq a < \frac{Np^1}{N-p^1}$.
 - (ii) For all $x \in \Omega$,

$$\limsup_{u \to 0} \frac{G(x,u)}{\Phi(u)} \le -\mu < 0, \quad \lim_{u \to \infty} \frac{G(x,u)}{|u|^{p^1}} = 0.$$

(iii) There is a function $h : \mathbb{R}^+ \to \mathbb{R}^+$ with the property $\liminf \frac{h(a_n b_n)}{h(b_n)} > 0$, $h(b_n) \to \infty$ when $a_n \to a > 0$ and $b_n \to +\infty$ such that

$$\liminf_{|u|\to\infty}\frac{p^1G(x,u)-g(x,u)u}{h(|u|)}\ge k(x)>0,$$

with $k \in L^1(\Omega)$, with $G(x, u) = \int_0^u g(x, r) dr$.

Remark 1.2. Using the definition of p^1 we can prove that $\Phi(t) \ge ct^{p^1}$ for $t \ge 1$. From this we obtain that $W^1L_{\Phi} \hookrightarrow L^{\frac{Np^1}{N-p^1}}$ (see [2]). EJDE-2005/29

Our energy functional $I: W^1L_{\Phi} \to \mathbb{R}$ is defined as

$$I(u) = \int_{\Omega} \Phi(|\nabla u(x)|) dx - \int_{\Omega} G(x, u(x)) dx.$$

From the arguments of [2, 5] we know that this functional is well defined and C^1 .

Lemma 1.3. If (H1), (H2) hold, then the energy functional satisfies the $(PS)_c$ condition.

Proof. Let $X = W^1 L_{\Phi}(\Omega)$. Suppose that there exists a sequence $\{u_n\} \subseteq X$ such that $|I(u_n)| \leq M$ and

$$|\langle I'(u_n), \phi \rangle| \le \varepsilon_n \frac{\|\phi\|_{1,\Phi}}{1 + \|u_n\|_{1,\Phi}}.$$
(1.2)

Suppose that $||u_n||_{1,\Phi} \to \infty$. Let $y_n(x) = \frac{u_n(x)}{||u_n||_{1,\Phi}}$. It is easy to see that $y_n \to y$ weakly in X and $y_n \to y$ strongly in $L_{\Phi}(\Omega)$. From the first inequality we have

$$\left|\int_{\Omega} \Phi(|\nabla u_n(x)|) dx - \int_{\Omega} G(x, u_n(x)) dx\right| \le M.$$
(1.3)

We can prove that $\Phi(t) \ge \rho^{p^1} \Phi(\frac{t}{\rho})$. Indeed, we have that $\Phi(t)p^1 \le t\phi(t)$ for t > 0. Then we obtain

$$\int_{t/\rho}^{t} \frac{p^{1}}{s} ds \leq \int_{t/\rho}^{t} \frac{\phi(s)}{\Phi(s)} ds,$$

for all t > 0 and for $\rho > 1$. Calculating the above integrals we arrive at the fact that $\Phi(t) \ge \rho^{p^1} \Phi(\frac{t}{\rho})$ for all t > 0 and all $\rho > 1$. When we divide the above inequality by $\|u_n\|_{1,\Phi}^{p^1} > 1$, we obtain

$$\int_{\Omega} \Phi(|\nabla y_n(x)| dx \leq \int_{\Omega} \frac{G(x, u_n(x))}{\|u_n\|_{1, \Phi}^{p^1}} dx \,.$$

Next, we prove that $\int_{\Omega} \frac{G(x,u_n(x))}{\|u_n\|_{1,\Phi}^{p^1}} dx \to 0$. Indeed, from (H2)(ii) we have that for every $\varepsilon > 0$ there exists some M > 0 such that for |u| > M we have $\frac{G(x,u)}{|u|^{p^1}} \leq \varepsilon$ for all $x \in \Omega$. Thus,

$$\begin{split} &\int_{\Omega} \frac{G(x, u_n(x))}{\|u_n\|_{1, \Phi}^{p^1}} dx \\ &\leq \int_{\{x \in \Omega: |u_n(x)| \leq M\}} \frac{G(x, u_n(x))}{\|u_n\|_{1, \Phi}^{p^1}} dx + \int_{\{x \in \Omega: |u_n(x)| \geq M\}} \varepsilon |y_n(x)|^{p^1} dx. \end{split}$$

Note that $p^1 \leq p^0 \leq a$ so we have that $W^1 L_{\Phi} \hookrightarrow L^{p^1}$. From that we obtain

$$\int_{\Omega} \frac{G(x, u_n(x))}{\|u_n\|_{1, \Phi}^{p^1}} dx \le \int_{\{x \in \Omega: |u_n(x)| \le M\}} \frac{G(x, u_n(x))}{\|u_n\|_{1, \Phi}^{p^1}} dx + \varepsilon c \|y_n\|_{1, \Phi}^{p^1}$$

Finally, note that $||y_n||_{1,\Phi} = 1$ so we have proved our claim.

Now $\int_{\Omega} \Phi(|\nabla y_n(x)| dx \to 0$ thus, $\|\nabla y_n\|_{\Phi} \to 0$. Since

$$\|\nabla y\|_{\Phi} \le \liminf_{n \to \infty} \|\nabla y_n\|_{\Phi} \to 0,$$

so $\|\nabla y_n\|_{\Phi} \to \|\nabla y\|_{\Phi}$ and moreover $y_n \to y$ weakly in X, thus from the uniform convexity of X we deduce that $y_n \to y$ strongly in X. Note that $\|y_n\|_{1,\Phi} = 1$ so,

 $y \neq 0$ and from the fact that $\|\nabla y\|_{\Phi} = 0$ we have that $y = c \in \mathbb{R}$ with $c \neq 0$. From this we obtain that $|u_n(x)| \to \infty$.

Choosing now $\phi = u_n$ in (1.2) and substituting with (1.3), we arrive at

$$\begin{split} &\int_{\Omega} p^1 G(x, u_n(x)) - g(x, u_n(x)) u_n(x) dx + \int_{\Omega} \phi(|\nabla u_n|) |\nabla u_n| - p^1 \Phi(|\nabla u_n|) dx \\ &\leq M + \varepsilon_n \frac{\|u_n\|_{1,\Phi}}{1 + \|u_n\|_{1,\Phi}}. \end{split}$$

From the definition of p^1 we have $p^1\Phi(t) \leq t\phi(t)$. Using this fact and dividing the last inequality with $h(||u_n||_{1,\Phi})$ we obtain

$$\int_{\Omega} \frac{p^1 G(x, u_n(x)) - g(x, u_n(x)) u_n(x)}{h(|u_n(x)|)} \frac{h(|y_n(x)| ||u_n||_{1,\Phi})}{h(||u_n||_{1,\Phi})} dx$$

$$\leq \frac{M + \varepsilon_n \frac{||u_n||_{1,\Phi}}{1 + ||u_n||_{1,\Phi}}}{h(||u_n||_{1,\Phi})}.$$

From this we can see that

$$\liminf_{n \to \infty} \int_{\Omega} \frac{p^1 G(x, u_n(x)) - g(x, u_n(x)) u_n(x)}{h(|u_n(x)|)} \frac{h(|y_n(x)| ||u_n||_{1,\Phi})}{h(||u_n||_{1,\Phi})} dx \le 0.$$

Using Fatou's lemma and (H2)(iii) we obtain the contradiction. That is u_n is bounded. So, we can say, at least for a subsequence, that $u_n \to u$ weakly in X and $u_n \to u$ strongly in $L_a(\Omega)$.

To show the strong convergence we going back to (1.2) and choose $\phi = u_n - u$. Thus, we obtain

$$\begin{split} & \left| \int_{\Omega} \left(\alpha(|\nabla u_n|) \nabla u_n - \alpha(|\nabla u|) \nabla u \right) \left(\nabla u_n - \nabla u \right) dx \right| \\ & \leq \int_{\Omega} g(x, u_n) (u_n - u) dx + \varepsilon_n \|u_n - u\|_{1, \Phi} - \int_{\Omega} \alpha(|\nabla u|) \nabla u (\nabla u_n - \nabla u) dx. \end{split}$$

Using the compact imbedding $X \hookrightarrow L^a(\Omega)$ and the fact that $u_n \to u$ weakly in X we arrive at $\int_{\Omega} (a(|\nabla u_n|)\nabla u_n - a(|\nabla u|)\nabla u)(\nabla u_n - \nabla u)dx \to 0$ and using [6, Theorem 4] we obtain the strong convergence of u_n .

Lemma 1.4. If hypotheses (H1)(ii), (H2) holds, then there exists some $e \in X$ with $I(e) \leq 0$.

Proof. We will show that there exists some $a \in \mathbb{R}$ such that $I(a) \leq 0$. Suppose that this is not the case. Then there exists a sequence $a_n \in \mathbb{R}$ with $a_n \to \infty$ and $I(a_n) \geq c > 0$. We can easily see that

$$(-\frac{G(x,u)}{u^{p^{1}}})' = \frac{p^{1}G(x,u) - g(x,u)u}{u^{p^{1}+1}}$$
$$= \frac{p^{1}G(x,u) - g(x,u)u}{h(|u|)} \frac{h(|u|)}{u^{p^{1}+1}}$$
$$\ge (k(x) - \varepsilon) \frac{1}{u^{p^{1}+1}} = \frac{k(x) - \varepsilon}{p^{1}} (-\frac{1}{u^{p^{1}}})',$$

for a large enough $u \in \mathbb{R}$. We can say then

$$\int_{t}^{s} \left(-\frac{G(x,u)}{u^{p^{1}}} \right)' du \ge \int_{t}^{s} \frac{k(x) - \varepsilon}{p^{1}} \left(-\frac{1}{u^{p^{1}}} \right)' du.$$

EJDE-2005/29

Take now $s \to \infty$ and using (H2)(iii), we obtain

$$G(x,t) \ge \frac{k(x)}{p^1},$$

for large enough $t \in \mathbb{R}$. From this we obtain

$$\limsup_{a_n \to \infty} I(a_n) \ge \liminf_{a_n \to \infty} I(a_n) \ge 0$$

implies

$$\limsup_{a_n \to \infty} \int_{\Omega} -G(x, a_n) dx \ge 0$$

which implies $\int_{\Omega} \frac{-k(x)}{p^1} dx \ge 0$. Then using (H2)(iii) we obtain the contradiction. \Box

Lemma 1.5. If (H1)(ii) and (H2) hold, then there exists some $\rho > 0$ such that for all $u \in X$ with $||u||_{\Phi} = \rho$ we have that $I(u) > \eta > 0$.

Proof. ;From (H2)(ii) we have that for every $\varepsilon > 0$ there exists some $u^* \leq 1$ such that for every $|u| \leq u^*$ we have $G(x, u) \leq (-\mu + \varepsilon)\Phi(|u|) \leq k(-\mu + \varepsilon)|u|^{p^0}$ with k > 0. On the other hand there exists $c_1, c_2 > 0$ such that $|G(x, u)| \leq c_1 |u|^{\frac{Np^1}{N-p^1}} + c_2$ for every $u \in \mathbb{R}$. Recall that $p^0 < \frac{Np^1}{N-p^1}$ so we can find some $\gamma > 0$ such that $G(x, u) \leq k(-\mu + \varepsilon)|u|^{p^0} + \gamma |u|^{\frac{Np^1}{N-p^1}}$. Indeed, we can choose

$$\gamma \ge c_1 + \frac{c_2}{|u^*|^{\frac{Np^1}{N-p^1}}} + k(\mu - \varepsilon) \frac{|u^*|^{p^0}}{|u^*|^{\frac{Np^1}{N-p^1}}}$$

Take now a sequence $\{u_n\} \in X$ such that $||u_n||_{1,\Phi} \to 0$. Thus, we can see that

$$I(u_n) \ge \int_{\Omega} \Phi(|\nabla u_n|) dx + k(\mu - \varepsilon) \|u_n\|_{p^0}^{p^0} - \gamma \|u_n\|_{\frac{Np^1}{N-p^1}}^{\frac{Np^1}{N-p^1}}$$

implies

$$I(u_n) \ge c \||\nabla u_n|\|_{\Phi}^{p^0} + k(\mu - \varepsilon) \|u_n\|_{\Phi}^{p^0} - \gamma \|u_n\|_{\frac{Np^1}{N-p^1}}^{\frac{Np^1}{N-p^1}}$$

which implies

$$I(u_n) \ge C \|u_n\|_{1,\Phi}^{p^0} - \gamma \|u_n\|_{1,\Phi}^{\frac{Np^1}{N-p^1}}.$$

Here we have used the fact that $L^{p^0}(\Omega)$ imbeds continuously in $L_{\Phi}(\Omega)$ and the fact that $L^{Np^1/(N-p^1)}$ imbeds continuously in W^1L_{Φ} . Finally we have $C = \min\{c, k(\mu - \varepsilon)\}$. Thus, for big enough $n \in \mathbb{N}$ and noting that $p^0 < \frac{Np^1}{N-p^1}$ we deduce that there exists some $\rho > 0$ such that for all $u \in X$ with $||u||_{\Phi} = \rho$ we have that $I(u) > \eta > 0$. The Lemma is proved.

The existence theorem follows from the Mountain-Pass theorem. Note that we also extend the recently results of Tang [10] for Neumann problems because the author there needs h(u) = u.

2. Superlinear Case

In this section we consider problem (1.1) with a superlinear right hand side. We assume the following conditions on g,

- (H3) The function $g: \Omega \times \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying the following hypotheses:
 - (i) There exists nonnegative constants a_1, a_2 such that $|g(x, s)| \leq a_1 + a_2$
 - $a_2|s|^{a-1}$, for all $(x,s) \in \Omega \times \mathbb{R}$, with $p^0 \le a < \frac{Np^1}{N-p^1}$,.
 - (ii) There exists some q > 0 such that for all $x \in \Omega$,

$$\limsup_{u \to 0} \frac{G(x,u)}{\Phi(|u|)} < -k < 0 \qquad \lim_{u \to \infty} \frac{G(x,u)}{|u|^q} = 0, \quad 0 < \beta \le \liminf_{|s| \to \infty} \frac{G(x,s)}{\Phi(s)}$$

(iii) There exists $\mu > N/p^1(q-p^1)$ such that

$$\liminf_{|u|\to\infty}\frac{g(x,u)u-p^1G(x,u)}{|u|^\mu}\geq m>0.$$

with $G(x, u) = \int_0^u g(x, r) dr$.

 \sim

Theorem 2.1. If hypotheses (H1)(ii) and (H3) hold, then problem (1.1) has a nontrivial solution $u \in X$.

Proof. Let us denote first by $N(u) = \int_{\Omega} G(x, u) dx$. Suppose that there exists a sequence $\{u_n\} \subseteq X$ such that $I(u_n) \to c$ and $| < I'(u_n), y > | \le \varepsilon_n \frac{\|y\|_{1,\Phi}}{1+\|u_n\|_{1,\Phi}}$ for all $y \in X$. We are going to show that $||u_n||_{1,\Phi}$ is bounded in X. Suppose not. Then there exists a subsequence such that $||u_n||_{1,\Phi} \to \infty$.

Using the definition of p^1 it is easy to see that $|\langle I'(u), u \rangle - p^1 I(u)| \ge |\langle N'(u), u \rangle - p^1 I(u)| \ge |\langle$ $p^1 N(u)$ and using (H3)(iii), we arrive at $||u_n||^{\mu}_{\mu} \leq C$.

Next, we use the interpolation inequality, namely

$$\|u\|_q \le \|u\|_{\mu}^{1-t} \|u\|_{\frac{Np^1}{N-p^1}}^t$$

where $0 < \mu \leq q \leq \frac{Np^1}{N-p^1}$, $t \in [0,1]$. Using the fact that X imbeds continuously in $L^{\frac{Np^1}{N-p^1}}$ we have

$$\int_{\Omega} \Phi(|\nabla u_n|) dx = I(u_n) + N(u_n)$$

$$\leq c_1 ||u_n||_q^q + c_2$$

$$\leq ||u_n||_{\mu}^{(1-t)q} ||u_n||_{\frac{Np^1}{N-p^1}}^{qt}$$

$$\leq c_1 ||u_n||_{1,\Phi}^{qt} + c_2,$$
(2.1)

here we have used the second assertion of (H3)(ii). From the relation $|I(u_n)| \leq M$ we obtain

$$\int_{\Omega} G(x, u_n) dx \le \int_{\Omega} \Phi(|\nabla u_n|) dx + M$$

and

$$\beta \int_{\Omega} \Phi(u_n) dx \leq \int_{\Omega} \Phi(|\nabla u_n|) dx + M$$
.

EJDE-2005/29

$$\beta(\int_{\Omega} \Phi(u_n) dx + \int_{\Omega} \Phi(|\nabla u_n|) dx) \le C \int_{\Omega} \Phi(|\nabla u_n|) dx + M.$$
(2.2)

We can prove that $\Phi(t) \ge \rho^{p^1} \Phi(t/\rho)$ for $\rho \ge 1$ and combining (2.1) and (2.2), we arrive at

$$c_1 \|u_n\|_{1,\Phi}^{p^1} - c_2 \le \int_{\Omega} \Phi(|\nabla u_n|) dx \le c_1 \|u_n\|_{1,\Phi}^{qt} + c_2.$$

for some $c_1, c_2 > 0$. Choosing $qt < p^1$ (or equivalently $\mu > N/p^1(q-p^1)$) we obtain a contradiction. Thus, $\{u_n\} \subseteq X$ is bounded and using the same arguments as in Lemma 1.3 we can prove that in fact $\{u_n\}$ has a strongly convergent subsequence in X.

Next we prove that there exists some $e \in X$ such that $I(e) \leq 0$. Indeed, take a sequence $t_n \to \infty$, then

$$I(t_n) = -\int_{\Omega} G(x, t_n) dx \le -\beta \int_{\Omega} \Phi(t_n) dx + C.$$

It is clear now that for big enough $n \in \mathbb{N}$ we have $I(t_n) \leq 0$. Using Lemma 1.5 and the Mountain-Pass theorem, we obtain a nontrivial solution.

As an example of functions that satisfy the above hypotheses, we have $\Phi(u) = \log(1+|u|)|u|^2$ and $G(u) = \log(1+|u|)\Phi(u)$.

Acknowledgement. The author wishes to thank Professor Vy Khoi Le for his helpful suggestions and remarks.

References

- P. Bartolo P, V. Benci, D. Fortunato; Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonl. Anal. 7 (1983), 981-1012.
- [2] Ph. Clement, M. Garcia-Huidobro, R. Manasevich, K.Schmitt; Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. 11, 33-62 (2000).
- [3] Ph. Clement, M. Garcia-Huidobro, R. Manasevich; Mountain pass type solutions for quasilinear elliptic inclusions, Comm. Contem. Math. 2002, pp. 607-637.
- [4] D. Costa, C. A. Magalhaes; Existence results for perturbations of the p-Laplacian, Nonl. Anal. TMA Vol. 24, No. 3, pp. 409-418, 1995.
- [5] M. Garcia-Huidobro, V. K. Le, R. Manasevich, K. Schmitt; On principal eigenvalues for quasilinear differential operators: an Orlicz-Sobolev space setting, Nonl. differ. equ. appl. (1999) 207-225.
- [6] V. K. Le; A global bifurcation result for quasilinear elliptic equations in Orlicz-Sobolev spaces, Top. Meth. Non. Anal. Vol. 15, 2000, 301-327.
- [7] V. K. Le; Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts, Diff. Integ. Equat. Vol. 15, 2002, 839-862.
- [8] M. M. Rao, Z. D. Ren; Theory of Orlicz Spaces, Marcel Dekker, Inc., Neq York, 1991.
- [9] M. Struwe; Variational Methods, Springer Verlag, Berlin (1990).
- [10] C. Tang; Solvability of Neumann Problem for Elliptic Equations at Resonance, Nonl. Anal. 44 (2001) 323-335.

NIKOLAOS HALIDIAS

UNIVERSITY OF THE AEGEAN, DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE, KARLOVASSI, 83200, SAMOS, GREECE

E-mail address: nick@aegean.gr