Electronic Journal of Differential Equations, Vol. 2005(2005), No. 29, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

AN ORLICZ-SOBOLEV SPACE SETTING FOR QUASILINEAR ELLIPTIC PROBLEMS

NIKOLAOS HALIDIAS

Abstract

In this paper we give two existence theorems for a class of elliptic problems in an Orlicz-Sobolev space setting concerning both the sublinear and the superlinear case with Neumann boundary conditions. We use the classical critical point theory with the Cerami (PS)-condition.

1. Introduction

In this paper we consider the following elliptic problem with Neumann boundary conditions,

$$
\begin{gather*}
-\operatorname{div}(\alpha(|\nabla u(x)|) \nabla u(x))=g(x, u) \quad \text { a.e. on } \Omega \\
\frac{\partial u}{\partial v}=0, \text { a.e. on } \partial \Omega . \tag{1.1}
\end{gather*}
$$

We assume that Ω is a bounded domain with smooth boundary $\partial \Omega$. By $\frac{\partial}{\partial v}$ we denote the outward normal derivative. As in [2] we assume that the function α is such that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\phi(s)=\alpha(|s|) s$ if $s \neq 0$ and 0 otherwise, is an increasing homeomorphism from \mathbb{R} to \mathbb{R}.

In [2], the authors study a Dirichlet problem when the right-hand side is superlinear. They show the existence of a nontrivial solution and show that it is important to use an Orlicz-Sobolev space setting. Here, we consider a Neumann problem when the right-hand side is sublinear. Also we consider the superlinear case using the ideas in [4. Assuming Landesman-Laser conditions for the sublinear case and using the interpolation inequality for the superlinear case, we prove the existence of a nontrivial solution.

Let us recall the Cerami (PS) condition [1]. Let X be a Banach space. We say that a functional $I: X \rightarrow \mathbb{R}$ satisfies the $(P S)_{c}$ condition if for any sequence such that $\left|I\left(u_{n}\right)\right| \leq M$ and $\left(1+\left\|u_{n}\right\|\right)\left\langle I^{\prime}\left(u_{n}\right), \phi\right\rangle \rightarrow 0$ for all $\phi \in X$ we can show that there exists a convergent subsequence.

Let

$$
\Phi(s)=\int_{0}^{s} \phi(t) d t, \quad \Phi^{*}(s)=\int_{0}^{s} \phi^{-1}(t) d t, \quad s \in \mathbb{R},
$$

2000 Mathematics Subject Classification. 32J15, 34J89, 35J60.
Key words and phrases. Landesman-Laser conditions; critical point theory; nontrivial solution;

Cerami (PS) condition; Mountain-Pass Theorem; interpolation inequality.
© 2005 Texas State University - San Marcos.
Submitted October 14, 2004. Published March 8, 2005.
it is well-known that Φ and Φ^{*} are complementary N functions which define the Orlicz spaces $L_{\Phi}, L_{\Phi^{*}}$ respectively. We use the well-known Luxenburg norm,

$$
\|u\|_{\Phi}=\inf \left\{k>0: \int_{\Omega} \Phi\left(\frac{|u(x)|}{k}\right) d x \leq 1\right\}
$$

As in [2] we denote by $W^{1} L_{\Phi}$ the corresponding Orlicz-Sobolev space with the norm $\|u\|_{1, \Phi}=\|u\|_{\Phi}+\||\nabla u|\|_{\Phi}$.

Now we introduce the Orlicz-Sobolev conjugate Φ_{*} of Φ, defined as

$$
\Phi_{*}^{-1}(t)=\int_{0}^{t} \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d \tau
$$

and as in 2, we suppose that

$$
\lim _{t \rightarrow 0} \int_{t}^{1} \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d \tau<+\infty, \quad \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\Phi^{-1}(\tau)}{\tau^{\frac{N+1}{N}}}, d \tau=+\infty
$$

To state our hypotheses on ϕ, g, we need the following three numbers,

$$
p^{1}=\inf _{t>0} \frac{t \phi(t)}{\Phi(t)}, \quad p_{\Phi}=\liminf _{t \rightarrow \infty} \frac{t \phi(t)}{\Phi(t)}, \quad p^{0}=\sup _{t>0} \frac{t \phi(t)}{\Phi(t)} .
$$

(H1) The function ϕ is such that
(i) For every $\varepsilon>0$, there is $k_{\varepsilon}>1$ such that $\Phi^{\prime}((1+\varepsilon) x) \geq k_{\varepsilon} \Phi^{\prime}(x)$, $x \geq x_{o}(\varepsilon) \geq 0$ and that Φ is strictly convex.
(ii) Both Φ, Φ^{*} satisfy a Δ_{2} condition, namely

$$
1<\liminf _{s \rightarrow \infty} \frac{s \phi(s)}{\Phi(s)} \leq \limsup _{s \rightarrow \infty} \frac{s \phi(s)}{\Phi(s)}<+\infty
$$

Remark 1.1. Under hypotheses (H1), L_{Φ} is uniformly convex [8, p.288].
We assume the following conditions on g.
(H2) The function $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and satisfies the following hypotheses:
(i) There exists nonnegative constants a_{1}, a_{2} such that $|g(x, s)| \leq a_{1}+$ $a_{2}|s|^{a-1}$, for all $(x, s) \in \Omega \times \mathbb{R}$, with $p^{0} \leq a<\frac{N p^{1}}{N-p^{1}}$.
(ii) For all $x \in \Omega$,

$$
\limsup _{u \rightarrow 0} \frac{G(x, u)}{\Phi(u)} \leq-\mu<0, \quad \lim _{u \rightarrow \infty} \frac{G(x, u)}{|u|^{p^{1}}}=0
$$

(iii) There is a function $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with the property $\lim \inf \frac{h\left(a_{n} b_{n}\right)}{h\left(b_{n}\right)}>0$, $h\left(b_{n}\right) \rightarrow \infty$ when $a_{n} \rightarrow a>0$ and $b_{n} \rightarrow+\infty$ such that

$$
\liminf _{|u| \rightarrow \infty} \frac{p^{1} G(x, u)-g(x, u) u}{h(|u|)} \geq k(x)>0
$$

with $k \in L^{1}(\Omega)$,
with $G(x, u)=\int_{0}^{u} g(x, r) d r$.
Remark 1.2. Using the definition of p^{1} we can prove that $\Phi(t) \geq c t^{p^{1}}$ for $t \geq 1$. From this we obtain that $W^{1} L_{\Phi} \hookrightarrow L^{\frac{N p^{1}}{N-p^{1}}}$ (see [2]).

Our energy functional $I: W^{1} L_{\Phi} \rightarrow \mathbb{R}$ is defined as

$$
I(u)=\int_{\Omega} \Phi(|\nabla u(x)|) d x-\int_{\Omega} G(x, u(x)) d x .
$$

From the arguments of [2, 5] we know that this functional is well defined and C^{1}.
Lemma 1.3. If (H1), (H2) hold, then the energy functional satisfies the $(P S)_{c}$ condition.

Proof. Let $X=W^{1} L_{\Phi}(\Omega)$. Suppose that there exists a sequence $\left\{u_{n}\right\} \subseteq X$ such that $\left|I\left(u_{n}\right)\right| \leq M$ and

$$
\begin{equation*}
\left|\left\langle I^{\prime}\left(u_{n}\right), \phi\right\rangle\right| \leq \varepsilon_{n} \frac{\|\phi\|_{1, \Phi}}{1+\left\|u_{n}\right\|_{1, \Phi}} \tag{1.2}
\end{equation*}
$$

Suppose that $\left\|u_{n}\right\|_{1, \Phi} \rightarrow \infty$. Let $y_{n}(x)=\frac{u_{n}(x)}{\left\|u_{n}\right\|_{1, \Phi}}$. It is easy to see that $y_{n} \rightarrow y$ weakly in X and $y_{n} \rightarrow y$ strongly in $L_{\Phi}(\Omega)$. From the first inequality we have

$$
\begin{equation*}
\left|\int_{\Omega} \Phi\left(\left|\nabla u_{n}(x)\right|\right) d x-\int_{\Omega} G\left(x, u_{n}(x)\right) d x\right| \leq M \tag{1.3}
\end{equation*}
$$

We can prove that $\Phi(t) \geq \rho^{p^{1}} \Phi\left(\frac{t}{\rho}\right)$. Indeed, we have that $\Phi(t) p^{1} \leq t \phi(t)$ for $t>0$. Then we obtain

$$
\int_{t / \rho}^{t} \frac{p^{1}}{s} d s \leq \int_{t / \rho}^{t} \frac{\phi(s)}{\Phi(s)} d s
$$

for all $t>0$ and for $\rho>1$. Calculating the above integrals we arrive at the fact that $\Phi(t) \geq \rho^{p^{1}} \Phi\left(\frac{t}{\rho}\right)$ for all $t>0$ and all $\rho>1$. When we divide the above inequality by $\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}>1$, we obtain

$$
\int_{\Omega} \Phi\left(\left|\nabla y_{n}(x)\right| d x \leq \int_{\Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x\right.
$$

Next, we prove that $\int_{\Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x \rightarrow 0$. Indeed, from $(H 2)(i i)$ we have that for every $\varepsilon>0$ there exists some $M>0$ such that for $|u|>M$ we have $\frac{G(x, u)}{|u|^{p^{1}}} \leq \varepsilon$ for all $x \in \Omega$. Thus,

$$
\begin{aligned}
& \int_{\Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x \\
& \leq \int_{\left\{x \in \Omega:\left|u_{n}(x)\right| \leq M\right\}} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x+\int_{\left\{x \in \Omega:\left|u_{n}(x)\right| \geq M\right\}} \varepsilon\left|y_{n}(x)\right|^{p^{1}} d x
\end{aligned}
$$

Note that $p^{1} \leq p^{0} \leq a$ so we have that $W^{1} L_{\Phi} \hookrightarrow L^{p^{1}}$. From that we obtain

$$
\int_{\Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x \leq \int_{\left\{x \in \Omega:\left|u_{n}(x)\right| \leq M\right\}} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}} d x+\varepsilon c\left\|y_{n}\right\|_{1, \Phi}^{p^{1}}
$$

Finally, note that $\left\|y_{n}\right\|_{1, \Phi}=1$ so we have proved our claim.
Now $\int_{\Omega} \Phi\left(\left|\nabla y_{n}(x)\right| d x \rightarrow 0\right.$ thus, $\left\|\nabla y_{n}\right\|_{\Phi} \rightarrow 0$. Since

$$
\|\nabla y\|_{\Phi} \leq \liminf _{n \rightarrow \infty}\left\|\nabla y_{n}\right\|_{\Phi} \rightarrow 0
$$

so $\left\|\nabla y_{n}\right\|_{\Phi} \rightarrow\|\nabla y\|_{\Phi}$ and moreover $y_{n} \rightarrow y$ weakly in X, thus from the uniform convexity of X we deduce that $y_{n} \rightarrow y$ strongly in X. Note that $\left\|y_{n}\right\|_{1, \Phi}=1$ so,
$y \neq 0$ and from the fact that $\|\nabla y\|_{\Phi}=0$ we have that $y=c \in \mathbb{R}$ with $c \neq 0$. From this we obtain that $\left|u_{n}(x)\right| \rightarrow \infty$.

Choosing now $\phi=u_{n}$ in (1.2) and substituting with 1.3), we arrive at

$$
\begin{aligned}
& \int_{\Omega} p^{1} G\left(x, u_{n}(x)\right)-g\left(x, u_{n}(x)\right) u_{n}(x) d x+\int_{\Omega} \phi\left(\left|\nabla u_{n}\right|\right)\left|\nabla u_{n}\right|-p^{1} \Phi\left(\left|\nabla u_{n}\right|\right) d x \\
& \leq M+\varepsilon_{n} \frac{\left\|u_{n}\right\|_{1, \Phi}}{1+\left\|u_{n}\right\|_{1, \Phi}}
\end{aligned}
$$

From the definition of p^{1} we have $p^{1} \Phi(t) \leq t \phi(t)$. Using this fact and dividing the last inequality with $h\left(\left\|u_{n}\right\|_{1, \Phi}\right)$ we obtain

$$
\begin{aligned}
& \int_{\Omega} \frac{p^{1} G\left(x, u_{n}(x)\right)-g\left(x, u_{n}(x)\right) u_{n}(x)}{h\left(\left|u_{n}(x)\right|\right)} \frac{h\left(\left|y_{n}(x)\right|\left\|u_{n}\right\|_{1, \Phi}\right)}{h\left(\left\|u_{n}\right\|_{1, \Phi}\right)} d x \\
& \leq \frac{M+\varepsilon_{n} \frac{\left\|u_{n}\right\|_{1, \Phi}}{1+\left\|u_{n}\right\|_{1, \Phi}}}{h\left(\left\|u_{n}\right\|_{1, \Phi}\right)}
\end{aligned}
$$

From this we can see that

$$
\liminf _{n \rightarrow \infty} \int_{\Omega} \frac{p^{1} G\left(x, u_{n}(x)\right)-g\left(x, u_{n}(x)\right) u_{n}(x)}{h\left(\left|u_{n}(x)\right|\right)} \frac{h\left(\left|y_{n}(x)\right|\left\|u_{n}\right\|_{1, \Phi}\right)}{h\left(\left\|u_{n}\right\|_{1, \Phi}\right)} d x \leq 0 .
$$

Using Fatou's lemma and $(H 2)(i i i)$ we obtain the contradiction. That is u_{n} is bounded. So, we can say, at least for a subsequence, that $u_{n} \rightarrow u$ weakly in X and $u_{n} \rightarrow u$ strongly in $L_{a}(\Omega)$.

To show the strong convergence we going back to 1.2 and choose $\phi=u_{n}-u$. Thus, we obtain

$$
\begin{aligned}
& \left|\int_{\Omega}\left(\alpha\left(\left|\nabla u_{n}\right|\right) \nabla u_{n}-\alpha(|\nabla u|) \nabla u\right)\left(\nabla u_{n}-\nabla u\right) d x\right| \\
& \leq \int_{\Omega} g\left(x, u_{n}\right)\left(u_{n}-u\right) d x+\varepsilon_{n}\left\|u_{n}-u\right\|_{1, \Phi}-\int_{\Omega} \alpha(|\nabla u|) \nabla u\left(\nabla u_{n}-\nabla u\right) d x .
\end{aligned}
$$

Using the compact imbedding $X \hookrightarrow L^{a}(\Omega)$ and the fact that $u_{n} \rightarrow u$ weakly in X we arrive at $\int_{\Omega}\left(a\left(\left|\nabla u_{n}\right|\right) \nabla u_{n}-a(|\nabla u|) \nabla u\right)\left(\nabla u_{n}-\nabla u\right) d x \rightarrow 0$ and using [6, Theorem 4] we obtain the strong convergence of u_{n}.

Lemma 1.4. If hypotheses $(H 1)(i i),(H 2)$ holds, then there exists some $e \in X$ with $I(e) \leq 0$.

Proof. We will show that there exists some $a \in \mathbb{R}$ such that $I(a) \leq 0$. Suppose that this is not the case. Then there exists a sequence $a_{n} \in \mathbb{R}$ with $a_{n} \rightarrow \infty$ and $I\left(a_{n}\right) \geq c>0$. We can easily see that

$$
\begin{aligned}
\left(-\frac{G(x, u)}{u^{p^{1}}}\right)^{\prime} & =\frac{p^{1} G(x, u)-g(x, u) u}{u^{p^{1}+1}} \\
& =\frac{p^{1} G(x, u)-g(x, u) u}{h(|u|)} \frac{h(|u|)}{u^{p^{1}+1}} \\
& \geq(k(x)-\varepsilon) \frac{1}{u^{p^{1}+1}}=\frac{k(x)-\varepsilon}{p^{1}}\left(-\frac{1}{u^{p^{1}}}\right)^{\prime},
\end{aligned}
$$

for a large enough $u \in \mathbb{R}$. We can say then

$$
\int_{t}^{s}\left(-\frac{G(x, u)}{u^{p^{1}}}\right)^{\prime} d u \geq \int_{t}^{s} \frac{k(x)-\varepsilon}{p^{1}}\left(-\frac{1}{u^{p^{1}}}\right)^{\prime} d u
$$

Take now $s \rightarrow \infty$ and using (H2)(iii), we obtain

$$
G(x, t) \geq \frac{k(x)}{p^{1}}
$$

for large enough $t \in \mathbb{R}$. From this we obtain

$$
\limsup _{a_{n} \rightarrow \infty} I\left(a_{n}\right) \geq \liminf _{a_{n} \rightarrow \infty} I\left(a_{n}\right) \geq 0
$$

implies

$$
\limsup _{a_{n} \rightarrow \infty} \int_{\Omega}-G\left(x, a_{n}\right) d x \geq 0
$$

which implies $\int_{\Omega} \frac{-k(x)}{p^{1}} d x \geq 0$. Then using (H2)(iii) we obtain the contradiction.
Lemma 1.5. If (H1)(ii) and (H2) hold, then there exists some $\rho>0$ such that for all $u \in X$ with $\|u\|_{\Phi}=\rho$ we have that $I(u)>\eta>0$.

Proof. ¿From (H2)(ii) we have that for every $\varepsilon>0$ there exists some $u^{*} \leq 1$ such that for every $|u| \leq u^{*}$ we have $G(x, u) \leq(-\mu+\varepsilon) \Phi(|u|) \leq k(-\mu+\varepsilon)|u|^{p^{0}}$ with $k>0$. On the other hand there exists $c_{1}, c_{2}>0$ such that $|G(x, u)| \leq c_{1}|u|^{\frac{N p^{1}}{N-p^{1}}}+c_{2}$ for every $u \in \mathbb{R}$. Recall that $p^{0}<\frac{N p^{1}}{N-p^{1}}$ so we can find some $\gamma>0$ such that $G(x, u) \leq k(-\mu+\varepsilon)|u|^{p^{0}}+\gamma|u|^{\frac{N p^{1}}{N-p^{1}}}$. Indeed, we can choose

$$
\gamma \geq c_{1}+\frac{c_{2}}{\left|u^{*}\right|^{\frac{N p^{1}}{N-p^{1}}}}+k(\mu-\varepsilon) \frac{\left|u^{*}\right|^{p^{0}}}{\left|u^{*}\right|^{\frac{N p^{1}}{N-p^{1}}}} .
$$

Take now a sequence $\left\{u_{n}\right\} \in X$ such that $\left\|u_{n}\right\|_{1, \Phi} \rightarrow 0$. Thus, we can see that

$$
I\left(u_{n}\right) \geq \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x+k(\mu-\varepsilon)\left\|u_{n}\right\|_{p^{0}}^{p^{0}}-\gamma\left\|u_{n}\right\|_{\frac{N p^{1}}{N-p^{1}}}^{\frac{N p^{1}}{N-p^{1}}}
$$

implies

$$
I\left(u_{n}\right) \geq c\| \| \nabla u_{n}\left\|_{\Phi}^{p^{0}}+k(\mu-\varepsilon)\right\| u_{n}\left\|_{\Phi}^{p^{0}}-\gamma\right\| u_{n} \|_{\frac{N p^{1}}{N-p^{1}}}^{\frac{N p^{1}}{N-1}}
$$

which implies

$$
I\left(u_{n}\right) \geq C\left\|u_{n}\right\|_{1, \Phi}^{p^{0}}-\gamma\left\|u_{n}\right\|_{1, \Phi}^{\frac{N p^{1}}{N-p^{1}}}
$$

Here we have used the fact that $L^{p^{0}}(\Omega)$ imbeds continuously in $L_{\Phi}(\Omega)$ and the fact that $L^{N p^{1} /\left(N-p^{1}\right)}$ imbeds continuously in $W^{1} L_{\Phi}$. Finally we have $C=\min \{c, k(\mu-$ $\varepsilon)\}$. Thus, for big enough $n \in \mathbb{N}$ and noting that $p^{0}<\frac{N p^{1}}{N-p^{1}}$ we deduce that there exists some $\rho>0$ such that for all $u \in X$ with $\|u\|_{\Phi}=\rho$ we have that $I(u)>\eta>0$. The Lemma is proved.

The existence theorem follows from the Mountain-Pass theorem. Note that we also extend the recently results of Tang [10] for Neumann problems because the author there needs $h(u)=u$.

2. Superlinear Case

In this section we consider problem with a superlinear right hand side. We assume the following conditions on g,
(H3) The funciton $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying the following hypotheses:
(i) There exists nonnegative constants a_{1}, a_{2} such that $|g(x, s)| \leq a_{1}+$ $a_{2}|s|^{a-1}$, for all $(x, s) \in \Omega \times \mathbb{R}$, with $p^{0} \leq a<\frac{N p^{1}}{N-p^{1}}$, .
(ii) There exists some $q>0$ such that for all $x \in \Omega$,

$$
\limsup _{u \rightarrow 0} \frac{G(x, u)}{\Phi(|u|)}<-k<0 \quad \lim _{u \rightarrow \infty} \frac{G(x, u)}{|u|^{q}}=0, \quad 0<\beta \leq \liminf _{|s| \rightarrow \infty} \frac{G(x, s)}{\Phi(s)}
$$

(iii) There exists $\mu>N / p^{1}\left(q-p^{1}\right)$ such that

$$
\liminf _{|u| \rightarrow \infty} \frac{g(x, u) u-p^{1} G(x, u)}{|u|^{\mu}} \geq m>0 .
$$

with $G(x, u)=\int_{0}^{u} g(x, r) d r$.
Theorem 2.1. If hypotheses (H1)(ii) and (H3) hold, then problem (1.1) has a nontrivial solution $u \in X$.

Proof. Let us denote first by $N(u)=\int_{\Omega} G(x, u) d x$. Suppose that there exists a sequence $\left\{u_{n}\right\} \subseteq X$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left|<I^{\prime}\left(u_{n}\right), y>\right| \leq \varepsilon_{n} \frac{\|y\|_{1, \Phi}}{1+\left\|u_{n}\right\|_{1, \Phi}}$ for all $y \in X$. We are going to show that $\left\|u_{n}\right\|_{1, \Phi}$ is bounded in X. Suppose not. Then there exists a subsequence such that $\left\|u_{n}\right\|_{1, \Phi} \rightarrow \infty$.

Using the definition of p^{1} it is easy to see that $\left|\left\langle I^{\prime}(u), u\right\rangle-p^{1} I(u)\right| \geq \mid\left\langle N^{\prime}(u), u\right\rangle-$ $p^{1} N(u) \mid$ and using (H3)(iii), we arrive at $\left\|u_{n}\right\|_{\mu}^{\mu} \leq C$.

Next, we use the interpolation inequality, namely

$$
\|u\|_{q} \leq\|u\|_{\mu}^{1-t}\|u\|_{\frac{N p^{1}}{N-p^{1}}}^{t}
$$

where $0<\mu \leq q \leq \frac{N p^{1}}{N-p^{1}}, t \in[0,1]$. Using the fact that X imbeds continuously in $L^{\frac{N p^{1}}{N-p^{1}}}$ we have

$$
\begin{align*}
\int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x & =I\left(u_{n}\right)+N\left(u_{n}\right) \\
& \leq c_{1}\left\|u_{n}\right\|_{q}^{q}+c_{2} \tag{2.1}\\
& \leq\left\|u_{n}\right\|_{\mu}^{(1-t) q}\left\|u_{n}\right\|_{\frac{N p^{1}}{N-p^{1}}}^{q t} \\
& \leq c_{1}\left\|u_{n}\right\|_{1, \Phi}^{q t}+c_{2},
\end{align*}
$$

here we have used the second assertion of (H3)(ii). From the relation $\left|I\left(u_{n}\right)\right| \leq M$ we obtain

$$
\int_{\Omega} G\left(x, u_{n}\right) d x \leq \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x+M
$$

and

$$
\beta \int_{\Omega} \Phi\left(u_{n}\right) d x \leq \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x+M .
$$

We have used here the third assertion of (H3)(ii). Adding $\beta \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x$ to the last inequality, we obtain

$$
\begin{equation*}
\beta\left(\int_{\Omega} \Phi\left(u_{n}\right) d x+\int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x\right) \leq C \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x+M \tag{2.2}
\end{equation*}
$$

We can prove that $\Phi(t) \geq \rho^{p^{1}} \Phi(t / \rho)$ for $\rho \geq 1$ and combining (2.1) and (2.2), we arrive at

$$
c_{1}\left\|u_{n}\right\|_{1, \Phi}^{p^{1}}-c_{2} \leq \int_{\Omega} \Phi\left(\left|\nabla u_{n}\right|\right) d x \leq c_{1}\left\|u_{n}\right\|_{1, \Phi}^{q t}+c_{2} .
$$

for some $c_{1}, c_{2}>0$. Choosing $q t<p^{1}$ (or equivalently $\mu>N / p^{1}\left(q-p^{1}\right)$) we obtain a contradiction. Thus, $\left\{u_{n}\right\} \subseteq X$ is bounded and using the same arguments as in Lemma 1.3 we can prove that in fact $\left\{u_{n}\right\}$ has a strongly convergent subsequence in X.

Next we prove that there exists some $e \in X$ such that $I(e) \leq 0$. Indeed, take a sequence $t_{n} \rightarrow \infty$, then

$$
I\left(t_{n}\right)=-\int_{\Omega} G\left(x, t_{n}\right) d x \leq-\beta \int_{\Omega} \Phi\left(t_{n}\right) d x+C
$$

It is clear now that for big enough $n \in \mathbb{N}$ we have $I\left(t_{n}\right) \leq 0$. Using Lemma 1.5 and the Mountain-Pass theorem, we obtain a nontrivial solution.

As an example of functions that satisfy the above hypotheses, we have $\Phi(u)=$ $\log (1+|u|)|u|^{2}$ and $G(u)=\log (1+|u|) \Phi(u)$.
Acknowledgement. The author wishes to thank Professor Vy Khoi Le for his helpful suggestions and remarks.

References

[1] P. Bartolo P, V. Benci, D. Fortunato; Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonl. Anal. 7 (1983), 981-1012.
[2] Ph. Clement, M. Garcia-Huidobro, R. Manasevich, K.Schmitt; Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. 11, 33-62 (2000).
[3] Ph. Clement, M. Garcia-Huidobro, R. Manasevich; Mountain pass type solutions for quasilinear elliptic inclusions, Comm. Contem. Math. 2002, pp. 607-637.
[4] D. Costa, C. A. Magalhaes; Existence results for perturbations of the p-Laplacian, Nonl. Anal. TMA Vol. 24, No. 3, pp. 409-418, 1995.
[5] M. Garcia-Huidobro, V. K. Le, R. Manasevich, K. Schmitt; On principal eigenvalues for quasilinear differential operators: an Orlicz-Sobolev space setting, Nonl. differ. equ. appl. (1999) 207-225.
[6] V. K. Le; A global bifurcation result for quasilinear elliptic equations in Orlicz-Sobolev spaces, Top. Meth. Non. Anal. Vol. 15, 2000, 301-327.
[7] V. K. Le; Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts, Diff. Integ. Equat. Vol. 15, 2002, 839-862.
[8] M. M. Rao, Z. D. Ren; Theory of Orlicz Spaces, Marcel Dekker, Inc., Neq York, 1991.
[9] M. Struwe; Variational Methods, Springer - Verlag, Berlin (1990).
[10] C. Tang; Solvability of Neumann Problem for Elliptic Equations at Resonance, Nonl. Anal. 44 (2001) 323-335.

Nikolaos Halidias
University of the Aegean, Department of Statistics and Actuarial Science, Karlovassi, 83200, Samos, Greece

E-mail address: nick@aegean.gr

