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EXISTENCE RESULTS FOR IMPULSIVE PARTIAL NEUTRAL
FUNCTIONAL DIFFERENTIAL INCLUSIONS

SOTIRIS K. NTOUYAS

Abstract. In this paper we prove existence results for first order semilinear
impulsive neutral functional differential inclusions under the mixed Lipschitz

and Carathéodory conditions.

1. Introduction

The theory of impulsive differential equations is emerging as an important area
of investigation since it is much richer that the corresponding theory of differential
equations; see the monograph of Lakshmikantham et al [3]. In this paper, we
study the existence of solutions for initial value problems for first order impulsive
semilinear neutral functional differential inclusions. More precisely in Section 3 we
consider first-order impulsive semilinear neutral functional differential inclusions of
the form

d

dt
[x(t)− f(t, xt)] ∈ Ax(t) +G(t, xt)

a.e. t ∈ J := [0, T ], t 6= tk k = 1, . . . ,m,
(1.1)

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, . . . ,m, (1.2)

x(t) = φ(t), t ∈ [−r, 0], (1.3)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators, S(t), t ≥ 0 on a Banach space X, f : J×D → X and G : J×D → P(X);
D consists of functions ψ : [−r, 0] → X such that ψ is continuous everywhere except
for a finite number of points s at which ψ(s) and the right limit ψ(s+) exist and
ψ(s−) = ψ(s); φ ∈ D, (0 < r < ∞), 0 = t0 < t1 < · · · < tm < tm+1 = T ,
Ik : X → X (k = 1, 2, . . . ,m), x(t+k ) and x(t−k ) are respectively the right and the
left limit of x at t = tk, and P(X) denotes the class of all nonempty subsets of X.

For any continuous function x defined on the interval [−r, T ] \ {t1, . . . , tm} and
any t ∈ J , we denote by xt the element of D defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].
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For ψ ∈ D the norm of ψ is defined by

‖ψ‖D = sup{|ψ(θ)|, θ ∈ [−r, 0]}.
The main tools used in the study is a fixed point theorem proved by Dhage [1].

In the following section, we give some auxiliary results needed in the subsequent
part of the paper.

2. Auxiliary results

Throughout this paper, X will be a separable Banach space provided with norm
‖·‖ and A : D(A) → X will be the infinitesimal generator of an analytic semigroup,
S(t), t ≥ 0, of bounded linear operators onX. For the theory of strongly continuous
semigroup, refer to Pazy [5]. If S(t), t ≥ 0, is a uniformly bounded and analytic
semigroup such that 0 ∈ ρ(A), then it is possible to define the fraction power (−A)α,
for 0 < α ≤ 1, as closed linear operator on its domain D(−A)α. Furthermore, the
subspace D(−A)α is dense in X, and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α

defines a norm on D(−A)α. Hereafter we denote by Xα the Banach space D(−A)α

normed with ‖ · ‖α. Then for each 0 < α ≤ 1, Xα is a Banach space, and Xα ↪→ Xβ

for 0 < β ≤ α ≤ 1 and the imbedding is compact whenever the resolvent operator
of A is compact. Also for every 0 < α ≤ 1 there exists Cα > 0 such that

‖(−A)αS(t)‖ ≤ Cα

tα
, 0 < t ≤ T. (2.1)

Let P(X) denote the class of all nonempty subsets of X. Let Pbd,cl(X) and
Pcp,cv(X) denote respectively the classes of all bounded-closed and compact-convex
subsets of X. For x ∈ X and Y, Z ∈ Pbd,cl(X) we denote by D(x, Y ) = inf{‖x−y‖ :
y ∈ Y }, and ρ(Y, Z) = supa∈Y D(a, Z).

Define the function H : Pbd,cl(X)× Pbd,cl(X) → R+ by

H(A,B) = max{ρ(A,B), ρ(B,A)}.
The function H is called a Hausdorff metric on X. Note that ‖Y ‖ = H(Y, {0}).

A correspondence G : X → P(X) is called a multi-valued mapping on X. A
point x0 ∈ X is called a fixed point of the multi-valued operator G : X → P(X) if
x0 ∈ G(x0). The fixed points set of G will be denoted by Fix(G).

Definition 2.1. Let G : X → Pbd,cl(X) be a multi-valued operator. Then G is
called a multi-valued contraction if there exists a constant k ∈ (0, 1) such that for
each x, y ∈ X we have

H(G(x), G(y)) ≤ k‖x− y‖.
The constant k is called a contraction constant of G.

A multi-valued mapping G : X → P(X) is called lower semi-continuous (shortly
l.s.c.) (resp. upper semi-continuous (shortly u.s.c.)) if B is any open subset of
X then {x ∈ X : Gx ∩ B 6= ∅}(resp. {x ∈ X : Gx ⊂ B}) is an open subset of
X. The multi-valued operator G is called compact if G(X) is a compact subset of
X. Again G is called totally bounded if for any bounded subset S of X, G(S) is
a totally bounded subset of X. A multi-valued operator G : X → P(X) is called
completely continuous if it is upper semi-continuous and totally bounded on X, for
each bounded B ∈ P(X). Every compact multi-valued operator is totally bounded
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but the converse may not be true. However the two notions are equivalent on a
bounded subset of X.

We apply the following form of the fixed point theorem by Dhage [1] in the
sequel.

Theorem 2.2. Let X be a Banach space, A : X → Pcl,cv,bd(X) and B : X →
Pcp,cv(X) two multi-valued operators satisfying

(a) A is contraction with a contraction constant k, and
(b) B is completely continuous.

Then either
(i) The operator inclusion λx ∈ Ax+Bx has a solution for λ = 1, or
(ii) The set E = {u ∈ X : λu ∈ Au+Bu, λ > 1} is unbounded.

3. Existence results

Let us state what we mean by a solution of problem (1.1)–(1.3). For this purpose,
we consider the space PC([−r, T ], X) consisting of functions x : [−r, T ] → X such
that x(t) is continuous almost everywhere except for some tk at which x(t−k ) and
x(t+k ), k = 1, . . . ,m exist and x(t−k ) = x(tk).

Obviously, for any t ∈ [0, T ] we have xt ∈ D and PC([−r, T ], X) is a Banach
space with the norm

‖x‖ = sup{|x(t)| : t ∈ [−r, T ]}.
In the following we set for convenience

Ω = PC([−r, T ], X).

Also we denote by AC(J,X) the space of all absolutely continuous functions x :
J → X.

A function x ∈ Ω ∩ AC((tk, tk+1), X), k = 1, . . . ,m, is said to be a solution of
(1.1)–(1.3) if x(t)− f(t, xt) is absolutely continuous on J \ {t1, . . . , tm} and (1.1)–
(1.3) are satisfied.

A multi-valued map G : J → Pcp,cv(Rn) is said to be measurable if for every
y ∈ Rn, the function t→ d(y,G(t)) = inf{‖y − x‖ : x ∈ G(t)} is measurable.

A multi-valued map G : J ×D → Pcl(X) is said to be L1-Carathéodory if
(i) t 7→ G(t, x) is measurable for each x ∈ D,
(ii) x 7→ G(t, x) is upper semi-continuous for almost all t ∈ J , and
(iii) for each real number ρ > 0, there exists a function hρ ∈ L1(J,R+) such

that

‖G(t, u)‖ := sup{‖v‖ : v ∈ G(t, u)} ≤ hρ(t), a.e. t ∈ J

for all u ∈ D with ‖u‖D ≤ ρ.
Then we have the following lemmas due to Lasota and Opial [4].

Lemma 3.1. If dim(X) < ∞ and F : J × X → P(X) is L1-Carathéodory, then
S1

G(x) 6= ∅ for each x ∈ X.

Lemma 3.2. Let X be a Banach space, G an L1-Carathéodory multi-valued map
with S1

G 6= ∅ where

S1
G(x) := {v ∈ L1(I,Rn) : v(t) ∈ G(t, xt) a.e. t ∈ J},
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and K : L1(J,X) → C(J,X) be a linear continuous mapping. Then the operator

K ◦ S1
G : C(J,X) → Pcp,cv(C(J,X))

is a closed graph operator in C(J,X)× C(J,X).

We need also the following result from [2].

Lemma 3.3. Let v(·), w(·) : [0, T ] → [0,∞) be continuous functions. If w(·) is
nondecreasing and there are constants θ > 0, 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)
(t− s)1−α

ds, t ∈ [0, T ],

then

v(t) ≤ eθnΓ(α)ntnα/Γ(nα)
n−1∑
J=0

(θTα

α

)j
w(t),

for every t ∈ [0, T ] and every n ∈ N such that nα > 1, and Γ(·) is the Gamma
function.

We consider the following set of assumptions in the sequel.
(H1) There exist constants 0 < β < 1, c1, c2, Lf such that f is Xβ-valued,

(−A)βf is continuous, and
(i) ‖(−A)βf(t, x)‖ ≤ c1‖x‖D + c2, (t, x) ∈ J ×D
(ii) ‖(−A)βf(t, x1) − (−A)βf(t, x2)‖ ≤ Lf‖x1 − x2‖D, (t, xi) ∈ J × D,

i = 1, 2, with

Lf

{
‖(−A)−β‖+

C1−βT
β

β

}
< 1.

(H2) The multivalued map G(t, x) has compact and convex values for each
(t, x) ∈ J ×D.

(H3) The semigroup S(t) is compact for t > 0, and there exists M ≥ 1 such that

‖S(t)‖ ≤M, for all t ≥ 0.

(H4) G is L1-Carathéodory.
(H5) There exists a function q ∈ L1(I,R) with q(t) > 0 for a.e. t ∈ J and a

nondecreasing function ψ : R+ → (0,∞) such that

‖G(t, x)‖ := sup{‖v‖ : v ∈ G(t, x)} ≤ q(t)ψ(‖x‖D) a.e. t ∈ J,
for all x ∈ D.

(H6) The impulsive functions Ik are continuous and there exist constants ck such
that ‖Ik(x)‖ ≤ ck, k = 1, . . . ,m for each x ∈ X.

Theorem 3.4. Assume that (H1)–(H6) hold. Suppose that

bK2

∫ T

0

q(s) ds <
∫ ∞

K0

ds

s+ ψ(s)
,

where

K0 =
F

1− c1‖(−A)−β‖
, K2 =

M

1− c1‖(−A)−β‖
,

b = eKn
1 (Γ(β))nT nβ/Γ(nβ)

n−1∑
j=0

(K1T
β

β

)j
,
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and

F = M‖φ‖D{1 + c1‖(−A)−β‖}+ c2‖(−A)−β‖{M + 1}+M
m∑

k=1

ck +
C1−βc2T

β

β
.

Then the initial-value problem (1.1)–(1.3) has at least one solution on [−r, T ].

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Consider the
operator N : Ω → P(Ω) defined by

Nx(t) =
{
h ∈ Ω : h(t) = φ(t) for t ∈ [−r, 0], and h(t) = S(t)[φ(0)− f(0, φ(0))]

+ f(t, xt) +
∫ t

0

AS(t− s)f(s, xs)ds+
∫ t

0

S(t− s)v(s)ds

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )) for t ∈ J
}
,

where v ∈ S1
G(x).

Now, we define two operators as follows. A : Ω → Ω by

Ax(t) =

{
0, if t ∈ [−r, 0],{
−S(t)f(0, φ) + f(t, xt) +

∫ t

0
AS(t− s)f(s, xs)ds

}
, if t ∈ J,

(3.1)
and the multi-valued operator B : Ω → P(Ω) by

Bx(t) =
{
h ∈ Ω : h(t) = φ(t) for t ∈ [−r, 0], and h(t) = S(t)φ(0)

+
∫ t

0

S(t− s)v(s) ds+
∑

0<tk<t

S(t− tk)Ik(x(t−k )) for t ∈ J
}
.

(3.2)

Then N = A + B. We shall show that the operators A and B satisfy all the
conditions of Theorem 2.2 on [−r, T ]. For better readability, we break the proof
into a sequence of steps.
Step I. First we remark that A for each x ∈ Ω, has closed, convex values on Ω.
Next we show that A has bounded values for bounded sets in X. To show this, let
S be a bounded subset of Ω, with bound ρ. Then, for any x ∈ S one has

‖Ax(t)‖ ≤M‖f(0, φ)‖+ ‖(−A)−β‖[c1‖xt‖D + c2]

+
∫ t

0

‖(−A)1−βS(t− s)‖‖(−A)βf(s, xs)‖ds

≤M‖f(0, φ)‖+ ‖(−A)−β‖[c1‖xt‖D + c2]

+
∫ t

0

C1−βc1
(t− s)1−β

‖xs‖Dds+
C1−βc2T

β

β

≤M‖f(0, φ)‖+ ‖(−A)−β‖[c1ρ+ c2] +
C1−βT

β

β
[ρc1 + c2],

and consequently

‖Ax‖ ≤M‖f(0, φ)‖+ ‖(−A)−β‖[c1ρ+ c2] +
C1−βT

β

β
[ρc1 + c2].

Hence A is bounded on bounded subsets of Ω.
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Step II. Next we prove that Bx is a convex subset of Ω for each x ∈ Ω. Let
u1, u2 ∈ Bx. Then there exists v1 and v2 in S1

G(x) such that

uj(t) = S(t)φ(0) +
∑

0<tk<t

S(t− sk)Ik(x(t−k )) +
∫ t

0

S(t− s)vj(s) ds, j = 1, 2.

Since G(t, x) has convex values, one has for 0 ≤ µ ≤ 1,

[µv1 + (1− µ)v2](t) ∈ S1
G(x)(t), ∀t ∈ J.

As a result we have

[µu1 + (1− µ)u2](t)

= S(t)φ(0) +
∑

0<tk<t

S(t− tk)Ik(x(t−k )) +
∫ t

0

S(t− s)[µv1(s) + (1− µ)v2(s)] ds.

Therefore, [µu1 + (1 − µ)u2] ∈ Bx and consequently Bx has convex values in Ω.
Thus we have B : Ω → Pcv(Ω).
Step III. We show that A is a contraction on Ω. Let x, y ∈ X. By hypothesis (H1)

‖Ax(t)−Ay(t)‖ ≤ ‖f(t, xt)− f(t, yt)‖+
∥∥∫ t

0

AS(t− s)[f(s, xs)− f(s, ys)] ds
∥∥

≤ ‖(−A)−β‖Lf‖xt − yt‖D +
∫ t

0

C1−β

(t− s)1−β
dsLf‖xt − yt‖D

≤ Lf

{
‖(−A)−β‖+

C1−βT
β

β

}
‖xt − yt‖D.

Taking supremum over t,

‖Ax−Ay‖ ≤ L0‖x− y‖D, L0 := Lf

{
‖(−A)−β‖+

C1−βT
β

β

}
.

This shows that A is a multi-valued contraction, since L0 < 1.
Step IV. Now we show that the multi-valued operator B is completely continuous
on Ω. First we show that B maps bounded sets into bounded sets in Ω. To see
this, let Q be a bounded set in Ω. Then there exists a real number ρ > 0 such that
‖x‖ ≤ ρ,∀x ∈ Q.

Now for each u ∈ Bx, there exists a v ∈ S1
G(x) such that

u(t) = S(t)φ(0) +
∑

0<tk<t

S(t− tk)Ik(x(t−k )) +
∫ t

0

S(t− s)v(s) ds, t ∈ J.

Then for each t ∈ J ,

‖u(t)‖ ≤M‖φ(0)‖+M
m∑

k=1

ck +M

∫ t

0

|v(s)| ds

≤M‖φ‖D +M
m∑

k=1

ck +M

∫ t

0

hρ(s) ds

≤M‖φ‖D +M

m∑
k=1

ck +M‖hρ‖L1 .
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This implies

‖u‖ ≤M‖φ‖D +M
m∑

k=1

ck +M‖hρ‖L1

for all u ∈ Bx ⊂ B(Q) =
⋃

x∈QB(x). Hence B(Q) is bounded.
Next we show that B maps bounded sets into equi-continuous sets. Let Q be,

as above, a bounded set and h ∈ Bx for some x ∈ Q. Then there exists v ∈ S1
G(x)

such that

h(t) = S(t)φ(0) +
∑

0<tk<t

S(t− tk)Ik(x(t−k )) +
∫ t

0

S(t− s)v(s) ds, t ∈ J.

Let τ1, τ2 ∈ J\{t1, . . . , tm}, τ1 < τ2. Then we have

‖h(τ2)− h(τ1)‖

≤ ‖[S(τ2)− S(τ1)]φ(0)‖+
∫ τ1−ε

0

‖S(τ2 − s)− S(τ1 − s)‖ϕq(s)ds

+
∫ τ1

τ1−ε

‖S(τ2 − s)− S(τ1 − s)‖ϕq(s)ds+
∫ τ2

τ1

‖S(τ2 − s)‖ϕq(s)ds

+
∑

0<tk<τ2−τ1

Mck +
∑

0<tk<τ2

‖S(τ2 − tk)− S(τ1 − tk)‖ck.

As τ2 → τ1 and ε becomes sufficiently small the right-hand side of the above inequal-
ity tends to zero, since S(t) is a strongly continuous operator and the compactness
of S(t) for t > 0 implies the continuity in the uniform operator topology.

This proves the equicontinuity for the case where t 6= ti, i = 1, . . . ,m + 1. It
remains to examine the equicontinuity at t = ti. Set

h1(t) = S(t)φ(0) +
∑

0<tk<t

S(t− tk)Ik(y(t−k ))

and

h2(t) =
∫ t

0

S(t− s)v(s)ds.

First we prove equicontinuity at t = t−i . Fix δ1 > 0 such that {tk : k 6= i} ∩ [ti −
δ1, ti + δ1] = ∅,

h1(ti) = S(ti)φ(0) +
∑

0<tk<ti

S(t− tk)Ik(y(t−k ))

= S(ti)φ(0) +
i−1∑
k=1

T (ti − tk)Ik(y(t−k )).

For 0 < h < δ1 we have

‖h1(ti − h)− h1(ti)‖

≤ ‖(S(ti − h)− S(ti))φ(0) +
i−1∑
k=1

|[S(ti − h− tk)− S(ti − tk)]I(y(t−k ))‖.

The right-hand side tends to zero as h→ 0. Moreover

‖h2(ti − h)− h2(ti)‖ ≤
∫ ti−h

0

‖[S(ti − h− s)−S(ti − s)]v(s)‖ds+
∫ ti

ti−h

Mφq(s)ds,
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which tends to zero as h→ 0. Define

ĥ0(t) = h(t), t ∈ [0, t1]

and

ĥi(t) =

{
h(t), if t ∈ (ti, ti+1],
h(t+i ), if t = ti

Next we prove equicontinuity at t = t+i . Fix δ2 > 0 such that {tk : k 6= i} ∩ [ti −
δ2, ti + δ2] = ∅. Then

ĥ(ti) = S(ti)φ(0) +
∫ ti

0

S(ti − s)v(s) +
i∑

k=1

S(ti − tk)Ik(y(tk)).

For 0 < h < δ2 we have

‖ĥ(ti + h)− ĥ(ti)‖

≤ ‖(S(ti + h)− S(ti))φ(0)‖+
∫ ti

0

‖[S(ti + h− s)− S(ti − s)]v(s)‖ds

+
∫ ti+h

ti

Mϕq(s)ds+
i∑

k=1

‖[S(ti + h− tk)− S(ti − tk)]I(y(t−k ))‖.

The right-hand side tends to zero as h→ 0.
The equicontinuity for the cases τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2 follows from the

uniform continuity of φ on the interval [−r, 0]. As a consequence of Steps 1 to 3,
together with the Arzelá-Ascoli theorem it suffices to show that B maps Q into a
precompact set in X.

Let 0 < t ≤ b be fixed and let ε be a real number satisfying 0 < ε < t. For x ∈ Q
we define

hε(t)

= S(t)φ(0) + S(ε)
∫ t−ε

0

S(t− s− ε)v1(s)ds+ S(ε)
∑

0<tk<t−ε

S(t− tk − ε)Ik(y(t−k )),

where v1 ∈ S1
F . Since S(t) is a compact operator, the set Hε(t) = {hε(t) : hε ∈

N(y)} is precompact in X for every ε, 0 < ε < t. Moreover, for every h ∈ N(y) we
have

|h(t)− hε(t)| ≤
∫ t

t−ε

‖S(t− s)‖ϕq(s)ds+
∑

t−ε<tk<t

‖S(t− tk)‖ck.

Therefore, there are precompact sets arbitrarily close to the set H(t) = {hε(t) : h ∈
N(y)}. Hence the set H(t) = {h(t) : h ∈ B(Q)} is precompact in X. Hence, the
operator B : Ω → P(Ω) is completely continuous.
Step V. Next we prove that B has a closed graph. Let {xn} ⊂ Ω be a sequence
such that xn → x∗ and let {yn} be a sequence defined by yn ∈ Bxn for each n ∈ N
such that yn → y∗. We will show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there exists a
vn ∈ S1

G(xn) such that

yn(t) = φ(0) +
∑

0<tk<t

S(t− tk)Ik(yn(t−k )) +
∫ t

0

vn(s) ds.
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Consider the linear and continuous operator K : L1(J,Rn) → C(J,Rn) defined by

Kv(t) =
∫ t

0

vn(s) ds.

Now

∥∥∥yn(t)− φ(0)−
∑

0<tk<t

S(t− tk)Ik(yn(t−k ))

−
(
y∗(t)− φ(0)−

∑
0<tk<t

S(t− tk)Ik(y∗(t−k ))
)∥∥∥ → 0,

as n → ∞. From Lemma 3.2 it follows that (K ◦ S1
G) is a closed graph operator

and from the definition of K one has

yn(t)− φ(0)−
∑

0<tk<t

S(t− tk)Ik(yn(t−k )) ∈ (K ◦ S1
F (yn)).

As xn → x∗ and yn → y∗, there is a v ∈ S1
G(x∗) such that

y∗(t) = φ(0) +
∑

0<tk<t

S(t− tk)Ik(y∗(t−k )) +
∫ t

0

v∗(s) ds.

Hence the multi-valued operator B is an upper semi-continuous operator on Ω.

Step VI. Finally we show that the set

E = {u ∈ Ω : λu ∈ Au+Bu for some λ > 1}

is bounded. Let u ∈ E be any element. Then there exists v ∈ S1
G(u) such that

u(t) =λ−1S(t)[φ(0)− f(0, φ(0))] + λ−1f(t, xt)

+ λ−1

∫ t

0

AS(t− s)f(s, xs)ds+ λ−1

∫ t

0

S(t− s)v(s)ds

+ λ−1
∑

0<tk<t

S(t− tk)Ik(x(t−k )).
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Then

‖u(t)‖ ≤M‖φ‖D +M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖ut‖D + c2]

+
∫ t

0

‖(−A)1−βS(t− s)‖‖(−A)βf(s, xs)‖ ds

+M

∫ t

0

q(s)ψ(‖us‖D)ds+M
m∑

k=1

ck

≤M‖φ‖D +M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖ut‖D + c2]

+
∫ t

0

C1−βc1
(t− s)1−β

‖us‖D ds+
C1−βc2T

β

β

+M

∫ t

0

q(s)ψ(‖us‖D)ds+M
m∑

k=1

ck

≤ F + c1‖(−A)−β‖‖ut‖D

+
∫ t

0

C1−βc1
(t− s)1−β

‖us‖D ds+M

∫ t

0

q(s)ψ(‖us‖D)ds, t ∈ J,

where

F = M‖φ‖D{1 + c1‖(−A)−β‖}+ c2‖(−A)−β‖{M + 1}+M
m∑

k=1

ck +
C1−βc2T

β

β
.

Put w(t) = max{‖u(s)‖ : −r ≤ s ≤ t}, t ∈ J . Then ‖ut‖D ≤ w(t) for all t ∈ J and
there is a point t∗ ∈ [−r, t] such that w(t) = ‖u(t∗)‖. Hence we have

w(t) = ‖u(t∗)‖

≤ F + c1‖(−A)−β‖‖ut∗‖D + C1−βc1

∫ t∗

0

‖us‖D
(t− s)1−β

ds

+M

∫ t∗

0

q(s)ψ(‖us‖D)ds

≤ F + c1‖(−A)−β‖w(t) + C1−βc1

∫ t

0

w(s)
(t− s)1−β

ds+M

∫ t

0

q(s)ψ(w(s)) ds,

or

w(t) ≤ F

1− c1‖(−A)−β‖

+
1

1− c1‖(−A)−β‖

{
C1−βc1

∫ t

0

w(s)
(t− s)1−β

ds+M

∫ t

0

q(s)ψ(w(s)) ds
}

≤ K0 +K1

∫ t

0

w(s)
(t− s)1−β

ds+K2

∫ t

0

q(s)ψ(w(s)) ds, t ∈ I,

where

K0 =
F

1− c1‖(−A)−β‖
, K1 =

C1−βc1
1− c1‖(−A)−β‖

and K2 =
M

1− c1‖(−A)−β‖
.
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From Lemma 3.3 we have

w(t) ≤ b
(
K0 +K2

∫ t

0

q(s)ψ(w(s)) ds
)
,

where

b = eKn
1 (Γ(β))nT nβ/Γ(nβ)

n−1∑
j=0

(K1T
β

β

)j

.

Let

m(t) = b
(
K0 +K2

∫ t

0

q(s)ψ(w(s)) ds
)
, t ∈ J.

Then we have w(t) ≤ m(t) for all t ∈ J . Differentiating with respect to t, we obtain

m′(t) = bK2q(t)ψ(w(t)), a.e. t ∈ J, m(0) = K0.

This implies m′(t) ≤ bK2q(t)ψ(m(t)) a.e. t ∈ J ; that is,
m′(t)
ψ(m(t))

≤ bK2q(t), a.e. t ∈ J.

Integrating from 0 to t, we obtain∫ t

0

m′(s)
ψ(m(s))

ds ≤ bK2

∫ t

0

q(s) ds.

By the change of variable,∫ m(t)

K0

ds

ψ(s)
≤ bK2

∫ T

0

q(t) ds <
∫ ∞

K0

ds

ψ(s)
.

Hence there exists a constant M such that m(t) ≤M for all t ∈ J , and therefore

w(t) ≤ m(t) ≤M for all t ∈ J.
Now from the definition of w it follows that

‖u‖ = sup
t∈[−r,T ]

‖u(t)‖ = w(T ) ≤ m(T ) ≤M,

for all u ∈ E . This shows that the set E is bounded in Ω. As a result the conclusion
(ii) of Theorem 2.2 does not hold. Hence the conclusion (i) holds and consequently
the initial value problem (1.1)–(1.3) has a solution x on [−r, T ]. This completes
the proof. �
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