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BOUNDENESS AND STEPANOV’S ALMOST PERIODICITY OF
SOLUTIONS

ZUOSHENG HU

Abstract. In this paper, we establish a necessary condition of Stepanov’s
almost periodicity of solutions for general linear almost periodic systems, and

then we construct an example of linear system in which all solutions are

bounded, but any non-trivial solution is not Stepanov’s almost periodic.

1. Introduction

It is well-known that for (Bohr) almost periodic differential equations

x′ = A(t)x + f(t), (1.1)

boundedness of solutions does not imply their almost periodicity. Conley and Miller
[2] gave an example of an equation (1.1) with n = 1 where a bounded solution is
not almost periodic. In [5], Mingarelli, Pu and Zheng constructed an example,
for each n > 1, of an equation (1.1) with almost periodic coefficients in which
there exists a bounded solution which is not almost periodic. In [4], Hu and Min-
garelli constructed a class of linear almost periodic systems in which all solutions
are bounded but there still exists no any non-trivial solution which is almost peri-
odic. The question arising naturally is whether boundedness of solutions can imply
their Stepanov’s almost periodicity which is a weaker almost periodicity defined by
Stepanov (see [1] for the details). As far as we know, this is an open problem. In
this paper, in order to solve this open problem, we establish a necessary condition
of Stepanov’s almost periodicity of solutions for general linear almost periodic sys-
tems, and then we construct an example of linear system in which all solutions are
bounded, but any non-trivial solution is not Stepanov’s almost periodic. So, the
answer of this problem is negative.

For completeness, we recall the definition of the Stepanov norm Sl(f) of a func-
tion f ∈ Lloc

1 (R, X). The quantity

Sl(f) = sup
t∈R

1
l

∫ t+l

t

‖f(s)‖ds

where l > 0 is some constant, is the Stepanov norm (or Sl-norm) of f .
Replacing the supremum norm by the Sl-norm in the definition of continuity

(respectively, uniform continuity, boundedness) of f , we can introduce the concept
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of Sl-continuity (respectively, Sl-uniform continuity, Sl-boundedness) of f . For
example, we call f ∈ Lloc

1 (R, X) Sl-bounded if there exists a constant M > 0 such
that Sl(f) ≤ M . It is easy to show that Sl-boundedness (Sl-continuity, Sl-uniform
continuity) is not dependent on the constant l (see [1]). So, we simply call such
functions S-bounded, S-continuous, and S-uniformly continuous whenever these
notions apply.

We define Sl(t, f) as follows:

Sl(t, f) =
1
l

∫ t+l

t

‖f(s)‖ds for all t ∈ R. (1.2)

From (1.2) we have that for any t, s ∈ R,

Sl(t, fs) = Sl(t + s, f).

where fs is the translate of f . We use SlC(R, X) to denote the set of all Sl-
continuous functions. Obviously, C(R, X) ⊂ SlC(R, X). Because l can be taken
any positive real number, we simply denote SlC(R, X) by SC(R, X). As in the
case of Bohr almost periodic functions, we introduce the definition of a Stepanov
almost periodic function.

Definition 1.1. Let f ∈ SlC(R, X). If for any sequence {αn} ⊂ R, there exist a
subsequence {α′n} of {αn} and a function g ∈ SlC(R, X) such that

lim
n→∞

Sl(t, fα′n − g) = 0, uniformly on R,

then f is called Sl-almost periodic on R.

We use the notation in [3]. α = {αn} is a sequence of real numbers. α′ ⊂ α
means that α′ = {α′n} ⊂ {αn} is a subsequence of α. For f, g ∈ R, STαf = g means
that there exist a sequence α and a real number l > 0 such that

lim
n→∞

1
l

∫ t+l

t

‖f(s + αn)− g(s)‖ds = 0, (1.3)

pointwise for t ∈ R and USTαf = g means that (1.3) holds uniformly on t ∈ R.
Now we give the definition of the uniform Stepanov hull of a Stepanov almost

periodic function.

Definition 1.2. Let f ∈ SC(R, X). The set

{g ∈ SC(R, X) : there exists a sequence {αn} ⊂ R such that USTαf = g}

is called the uniform Stepanov hull, or simply uniform S-hull, and is denoted by
SH(f).

Obviously, for any f ∈ SC(R, X), SH(f) is not empty since f ∈ SH(f).

2. Necessary Condition

Consider the general system of linear differential equations

x′ = A(t)x + f(t), (2.1)

where x ∈ Rn, A(t) is an n×n matrix function, and f(t) is an n-dimensional vector
function, defined on R. Throughout this paper, we assume that A(t) and f(t) are
all Bohr’s almost periodic on R.
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Lemma 2.1. Suppose that φ(t) is a solution of (2.1) and that there exist a se-
quence α = {αn}, g ∈ SH(f), B ∈ SH(A) and ϕ ∈ SH(φ) such that USTαA =
B, USTαf = g and USTαφ = ϕ. Then there exist a subsequence α′ of α and a
solution ϕ̃(t) of

x′ = B(t)x + g(t), (2.2)

such that USTα′φ = ϕ̃ on R. If φ is bounded, so is ϕ̃ with the same bound.

Proof. By the assumption, there is a constant l > 0 such that

lim
n→∞

1
l

∫ t+l

t

|A(s + αn)−B(s)|ds = 0,

lim
n→∞

1
l

∫ t+l

t

|f(s + αn)− g(s)|ds = 0,

lim
n→∞

1
l

∫ t+l

t

|φ(s + αn)− ϕ(s)|ds = 0,

uniformly on R. In particular, for each t ∈ R it follows that limn→∞
∫ l

0
|φ(s + t +

αn) − ϕ(t + s)|ds = 0; in other words, the sequence {φ(t + s + αn)} in L1[0, l]
converges to ϕ(t + s), and hence the sequence converges to ϕ(t + s) in the sense
of measure on [0, l]. Since t ∈ R is arbitrary, the sequence of measurable functions
{φ(τ+αn)} converges to ϕ(τ) in the sense of measure on R; hence from a well known
result in the theory of Lebesgue measure we know that there is a subsequence α′

of α such that limn→∞ φ(τ + α′n) = ϕ(τ) a.e. on R. Take a point t0 in R such that
limn→∞ φ(t0 + α′n) = ϕ(t0). Notice that

lim
n→∞

∫ t

t0

|A(s + α′n)−B(s)|ds = 0,

lim
n→∞

∫ t

t0

|f(s + α′n)− g(s)|ds = 0,

lim
n→∞

∫ t

t0

|φ(s + α′n)− ϕ(s)|ds = 0,

locally uniformly for t ∈ R (which means the uniformity of convergence on any
finite interval in R). Since φ is a solution of (2.1), we get the following relations:

φ(t + α′n) = φ(t0 + α′n) +
∫ t

t0

{A(s + α′n)φ(s + α′n) + f(s + α′n)}ds, (2.3)

for t ∈ R, n = 1, 2, . . . . Note that A(t) and f(t) are bound on R because of Bohr’s
almost periodicity of A(t) and f(t). Then, by Gronwall’s inquality one can see that
{φ(t + α′n)} is uniformly bounded on each finite interval in R. From these facts we
see that

lim
n→∞

∫ t

t0

{A(s + α′n)φ(s + α′n) + f(s + α′n)}ds =
∫ t

t0

{B(s)ϕ(s) + g(s)}ds,

locally uniformly for t ∈ R. Define a (continuous) function ϕ̃(t) by

ϕ̃(t) = ϕ(t0) +
∫ t

t0

{B(s)ϕ(s) + g(s)}ds, t ∈ R.
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From (2.3) we see that limn→∞ φ(t + α′n) = ϕ̃(t), locally uniformly for t ∈ R.
Consequently, it follows that ϕ(t) ≡ ϕ̃(t) a.e. on R. Hence

lim
n→∞

1
l

∫ t+l

t

|φ(s + α′n)− ϕ̃(s)|ds = lim
n→∞

1
l

∫ t+l

t

|φ(s + α′n)− ϕ(s)|ds = 0,

uniformly on R, which shows USTα′φ = ϕ̃. Furthermore, we get

ϕ̃(t) = ϕ(t0) +
∫ t

t0

{B(s)ϕ(s) + g(s)}ds

= ϕ̃(t0) +
∫ t

t0

{B(s)ϕ̃(s) + g(s)}ds, t ∈ R,

which shows that ϕ̃ is a solution of (2.2). The last conclusion is obvious. This
completes the proof of Lemma. �

Remark. According to Lemma 2.1, if φ is a solution of (2.1) and assumptions are
satisfied, we can simply say that USTαφ is a solution of (2.2).

Theorem 2.2. Let A(t) be Bohr’s almost periodic on R. If x(t) is a non-trivial
Stepanov’s almost periodic solution of the equation

x′ = A(t)x, (2.4)

then for any l > 0,

inf
t∈R

1
l

∫ t+l

t

‖x(s)‖ds > 0 (2.5)

Proof. On the contrary, suppose that there exists a real number l > 0 such that
(2.5) does not hold, i. e.

lim
t∈R

1
l

∫ t+l

t

‖x(s)‖ds = 0. (2.6)

Then we will find a contradiction. From (2.6), we can pick up a sequence α = {αn}
such that

lim
n→∞

1
l

∫ αn+l

αn

‖x(s)‖ds = 0

or

lim
n→∞

1
l

∫ l

0

‖x(s + αn)‖ds = 0. (2.7)

Since A(t) is almost periodic on R and x(t) is Stepanov’s almost periodic on R,
we can extract a subsequence α′ ⊂ α, B(t) ∈ H(A) and y(t) ∈ SH(x) such that
y = USTα′x and B = UTα′A. By Lemma 2.1, there exist a subsequence α′′ ⊂ α′

and a solution ỹ of the equation

y′ = B(t)y (2.8)

such that
ỹ = USTα′′x (2.9)

on R. On the other hand, we have

1
l

∫ l

o

|ỹ(s)|ds ≤ 1
l

∫ l

0

|ỹ(s)− x(s + α′′n)|ds +
1
l

∫ l

0

|x(s + α′′n)|ds (2.10)
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Let n →∞, we obtain that
1
l

∫ l

0

|ỹ(s)|ds = 0

from (2.7) and (2.9). And thus, there exists at least one t0 ∈ [0, l] such that
ỹ(t0) = 0. Since ỹ(t) is a solution of (2.8), we have ỹ(t) = 0 for all t ∈ R. Then
(2.9) implies

lim
n→∞

1
l

∫ τ+l

τ

‖x(s + α′′n)‖ds = 0

uniformly for τ ∈ R; hence

1
l

∫ l

0

‖x(t + s)‖ds = lim
n→∞

1
l

∫ l

0

‖x(t− α′′ + s + α′′n)‖ds

= lim
n→∞

1
l

∫ t−α′′+l

t−α′′
‖x(s + α′′n)‖ds = 0

and consequently, x(t + s) = 0 on [0, l] for any t ∈ R. Since t ∈ R is arbitrary,
we must have x(t) ≡ 0 on R, which is a contradiction to the fact that x(t) is a
non-trivial solution of (2.8). This completes the proof of this theorem. �

Corollary 2.3. Let a(t) be a scalar almost periodic function defined on R. If each
bounded solution of the equation

x′ = a(t)x (2.11)

is Stepanov’s almost periodic on R, then

sup
t∈R

∫ t

0

a(s)ds < ∞ (2.12)

implies that for any real number l > 0,

inf
t∈R

(
sup

s∈[t,t+l]

∫ s

0

a(τ)dτ
)

> −∞. (2.13)

Proof. Suppose that (2.12) holds. Then x(t) = exp
( ∫ t

0
a(s)ds

)
is a non-trivial

bounded solution of (2.11), so it is Stepanov’s almost periodic. By Theorem 2.2,
for any l > 0,

inf
t∈R

1
l

∫ t+l

t

e
∫ s
0 a(τ)dτds > 0., . (2.14)

Now we show that for any l > 0,

inf
t∈R

sup
s∈[t,t+l]

∫ s

0

a(τ)dτ > −∞.

Otherwise, we can pick up a sequence {tn} ⊂ R such that

sup
s∈[tn,tn+l]

∫ s

0

a(τ)dτ ≤ −n, n = 1, 2, . . . .

So, ∫ s

0

a(τ)dτ ≤ −n
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for all s ∈ [tn, tn + l], n = 1, 2, . . . . Hence,

1
l

∫ tn+l

tn

e
∫ s
0 a(τ)dτds ≤ 1

l

∫ tn+l

tn

e−nds = e−n, n = 1, 2, . . . .

This implies that

lim
n→∞

1
l

∫ tn+l

tn

e
∫ s
0 a(τ)dτds = 0

This contradicts (2.14) and the proof of this corollary is completed. �

Corollary 2.4. Let a(t) be an almost periodic function defined on R. If there exists
a positive constant M such that

∫ t

0
a(s)ds ≤ M and

inf
t∈R

1
l

∫ t+l

t

e
∫ s
0 a(τ)dsds = 0

then the function exp
( ∫ t

0
a(s)ds

)
is not Stepanov’s almost periodic on R.

Example. According to Corollary 2.4, we can construct many examples of equa-
tions whose solutions are bounded, but not Stepanov’s almost periodic on R. To
construct such an example, let n ≥ 3 and define

gn(t) =


0 t ∈ [0, 1] ∪ [2n−1 − 1, 2n−1]
−n/(2n−1 − 1) t ∈ [2, 2n−1 − 2]
linear t ∈ [1, 2] ∪ [2n−1 − 2, 2n−1 − 1].

Now, extend gn(t) to be odd and periodic with period 2n. Then, gn(t) satisfies∫ t

0

gn(s)ds ≤ 0, for all t ∈ R; (2.15)

sup
t∈R

|gn(t)| = n

2n−1 − 1
; (2.16)∫ t

0

gn(s)ds = −n
2n−1 − 3
2n−1 − 1

, for all t ∈ [2n−1 − 1, 2n−1] (2.17)

for each n ∈ Z+. Since
∞∑

n=3

sup
t∈R

|gn(t)| =
∞∑

n=3

n

2n−1 − 1
< ∞ ,

the function

g(t) =
∞∑

n=3

gn(t)

is almost periodic on R and∫ t

0

g(s)ds =
∞∑

n=3

∫ t

0

gn(s)ds ≤ 0, t ∈ R. (2.18)
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Now, let l = 1, tn = 2n−1 − 1, then

1
l

∫ tn+l

tn

e
∫ s
0 g(τ)dτds =

∫ 2n−1

2n−1−1

e
∫ s
0 g(τ)dτds

≤
∫ 2n−1

2n−1−1

e
∫ s
0 gn(τ)dτds

=
∫ 2n−1

2n−1−1

e
−n 2n−1−3

2n−1−1 ds

= e
−n 2n−1−3

2n−1−1

(2.19)

for each n ∈ Z+. So,

lim
n→∞

1
l

∫ tn+l

tn

e
∫ s
0 g(τ)dτds = 0.

This implies

inf
t∈R

1
l

∫ t+l

t

e
∫ s
0 g(τ)dτds = 0.

By Corollary 2.4, the function exp
( ∫ t

0
g(s)ds

)
is not Stepanov,s almost periodic on

R. Therefore, all non-trivial solutions of equation

x′ = g(t)x

are not Stepanov’s almost periodic on R, but they are all bounded on R because
(2.18) holds.
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