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ASYMPTOTIC SHAPE OF SOLUTIONS TO NONLINEAR
EIGENVALUE PROBLEMS

TETSUTARO SHIBATA

Abstract. We consider the nonlinear eigenvalue problem

−u′′(t) = f(λ, u(t)), u > 0, u(0) = u(1) = 0,

where λ > 0 is a parameter. It is known that under some conditions on f(λ, u),
the shape of the solutions associated with λ is almost ‘box’ when λ� 1. The
purpose of this paper is to study precisely the asymptotic shape of the solutions
as λ → ∞ from a standpoint of L1-framework. To do this, we establish the

asymptotic formulas for L1-norm of the solutions as λ→∞.

1. Introduction

We consider the nonlinear eigenvalue problem

−u′′(t) = f(λ, u(t)), t ∈ I := (0, 1), (1.1)

u(t) > 0, t ∈ I, (1.2)

u(0) = u(1) = 0, (1.3)

where λ > 0 is a parameter. The nonlinearities considered here are as follows:

f(λ, u) = λ sinu, (1.4)

f(λ, u) = λ sinu− g(u), (1.5)

f(λ, u) = λ(u− u3). (1.6)

Equation (1.1)–(1.3) with the nonlinearities (1.4) and (1.5) are called the simple
pendulum type equations (SPE), and that with (1.6) is derived from the logistic
equation of population dynamics (LEPD). Throughout this paper, in (1.5), we
assume that g(u) satisfies the following conditions:

(A1) g ∈ C1(R) and g(u) > 0 for u > 0.
(A2) g(0) = g′(0) = 0.
(A3) g(u)/u is strictly increasing for 0 ≤ u ≤ π.

Nonlinear eigenvalue problems and singularly perturbed problems are intensively
investigated by many authors. We refer to [5, 9] and the references therein. One of
the most interesting problems to study in these fields is to clarify the asymptotic
shapes of the solutions. We know (cf. [2, 3]) that for a given λ > π2, there exists a

2000 Mathematics Subject Classification. 34B15.

Key words and phrases. Asymptotic formula; L1-norm; simple pendulum; logistic equation.
c©2005 Texas State University - San Marcos.

Submitted January 11, 2005. Published March 29, 2005.

1



2 T. SHIBATA EJDE-2005/37

unique solution u ∈ C2(I) to (1.1)–(1.3). We denote by u0,λ, uλ and vλ the solutions
u of (1.1)–(1.3) with (1.4), (1.5) and (1.6), respectively. Let mλ := min{m > 0 :
f(λ, m) = 0}. Then it is well known (cf. [2, 3] and Appendix) that ‖u0,λ‖∞ < mλ

(resp. ‖uλ‖∞ < mλ, ‖vλ‖∞ < mλ). Clearly, mλ = π and mλ = 1 for (1.4) and
(1.6), respectively. By (A1), we see that 0 < mλ < π for (1.5). Furthermore, it is
known (cf. [2, 6]) that

u0,λ → π, uλ → π, vλ → 1 (1.7)

uniformly on any compact interval in I as λ →∞. In other words, the asymptotic
shape of these solutions are almost boxes. Therefore, a natural question we have to
ask here is “how close to the boxes are the shape of the solutions u0,λ, uλ and vλ

asymptotically?
The purpose of this paper is to answer this question from a viewpoint of L1-

framework. More precisely, we restrict our attention to the typical nonlinear-
ities (1.4)–(1.6), and establish the precise asymptotic formulas for L1-norm of
‖u0,λ‖1, ‖uλ‖1 and ‖vλ‖1 as λ →∞. By these formulas, we understand well

(i) The difference of the shape between u0,λ and uλ from a non-local point of
view, and

(ii) The difference between ‖vλ‖1 and ‖vλ‖2 when λ � 1.
The first approach to the study of the asymptotic shape of the solutions of (SPE) is
to investigate the asymptotic behavior of the L∞-norm of the solutions as λ →∞
and the following results have been obtained in [6, 8]:

‖u0,λ‖∞ = π − 8e−
√

λ/2 + o(e−
√

λ/2), (1.8)

‖uλ‖∞ = π − g(π)
λ

+
g(π)g′(π)

λ2
+ o

( 1
λ2

)
. (1.9)

By (1.8) and (1.9), we understand the difference between the pointwise (local)
behavior of u0,λ and uλ. However, we do not know the difference between the total
mass of u0,λ and uλ, which gives us the important information about the non-local
property of u0,λ and uλ. Therefore, it seems meaningful for us to establish the
asymptotic formulas for ‖u0,λ‖1 and ‖uλ‖1, which give us the better understanding
of the difference between the original (SPE) and the perturbed (SPE).

We now state the results for (SPE).

Theorem 1.1. As λ →∞

‖u0,λ‖1 = π − C1
1√
λ

+
8√
λ

e−
√

λ/2 + o
( 1√

λ
e−
√

λ/2
)
, (1.10)

‖uλ‖1 = π − C1
1√
λ
− g(π)

λ
+ O

( log λ

λ
√

λ

)
, (1.11)

where

C1 = 8
∫ π/4

0

log(cot θ)dθ.

Roughly speaking, the second terms in (1.10) and (1.11) are derived from the
width of the boundary layers of u0,λ and uλ, while the third terms come directly
from the second terms in (1.8) and (1.9).

We next consider (LEPD). The motivation to consider the asymptotic behavior
of ‖vλ‖1 as λ →∞ is as follows. Recently, from a viewpoint of L2-bifurcation theory
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and nonlinear eigenvalue problems, the following formula for ‖vλ‖2 as λ → ∞ has
been obtained.

‖vλ‖2 = 1−
√

2
λ
− 1

λ
+ o

( 1
λ

)
. (1.12)

This has been obtained by using [7, Theorem 1]. On the other hand, since (LEPD)
is a model equation of population density for some species, ‖vλ‖1 stands for the
total population of the species with λ, which describes the reciprocal number of
its diffusion rate. Motivated by this biological background, it is also important to
investigate the asymptotic behavior of ‖vλ‖1 as λ → ∞. Furthermore, since (1.6)
is a special nonlinearlity, we also obtain the asymptotic formula for ‖vλ‖∞ better
than (1.8) as λ →∞.

Now we state our second results.

Theorem 1.2. As λ →∞

‖vλ‖1 = 1− 2
√

2 log 2√
λ

− 12e−
√

2λ + o(e−
√

2λ), (1.13)

‖vλ‖∞ = 1− 4e−
√

λ/
√

2 − 8e−2
√

λ/
√

2 − 24
√

2
√

λe−3
√

λ/
√

2 + o(
√

λe−3
√

λ/
√

2).
(1.14)

We see from (1.12) and (1.13) that the third term of ‖vλ‖1 and ‖vλ‖2 are totally
different each other. The further direction of this study will be to treat more general
nonlinear term f(λ, u) and extend our results to PDE cases.

The remainder of this paper is organized as follows. In Sections 2 and 3, we
prove (1.11) and (1.10) in Theorem 1.1, respectively. By using the properties of
complete elliptic integral, we prove Theorem 1.2 in Section 4.

2. Proof of (1.11) in Theorem 1.1

In this section, we consider (1.1)–(1.3) with (1.5) and prove the formula (1.11).
In what follows, the character C denotes various positive constants independent of
λ � 1. We know that

uλ(t) = uλ(1− t) for t ∈ Ī ,

u′λ(t) > 0 for 0 ≤ t < 1/2,

‖uλ‖∞ = uλ(1/2).

(2.1)

We begin with the fundamental equality. Multiply (1.1) by u′λ. Then

{u′′λ(t) + λ sinuλ(t)− g(uλ(t))}u′λ(t) = 0.

This implies that for t ∈ Ī

d

dt

{1
2
u′λ(t)2 − λ cos uλ(t)−G(uλ(t))

}
≡ 0,

where G(u) =
∫ u

0
g(s)ds. By this and (2.1), for 0 ≤ t ≤ 1,

1
2
u′λ(t)2 − λ cos uλ(t)−G(uλ(t)) ≡ constant = −λ cos ‖uλ‖∞ −G(‖uλ‖∞). (2.2)

By this and (2.1), for 0 ≤ t ≤ 1/2,

u′λ(t) =
√

2λ(cos uλ(t)− cos ‖uλ‖∞) + 2(G(uλ(t))−G(‖uλ‖∞)) (2.3)

We know from (1.7) that as λ →∞
r1(λ) := ‖uλ‖∞ − ‖uλ‖1 → 0. (2.4)
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Since we have (1.9), we establish an asymptotic formula for r1(λ) as λ → ∞ to
obtain (1.11). By (2.1) and (2.3), for λ � 1

r1(λ) = 2
∫ 1/2

0

(‖uλ‖∞ − uλ(t))dt

= 2
∫ 1/2

0

(‖uλ‖∞ − uλ(t))u′λ(t)dt√
2λ(cos uλ(t)− cos ‖uλ‖∞) + 2(G(uλ(t))−G(‖uλ‖∞))

= 2
∫ ‖uλ‖∞

0

(‖uλ‖∞ − θ)dθ√
2λ(cos θ − cos ‖uλ‖∞) + 2(G(θ)−G(‖uλ‖∞))

= K1(λ) + K2(λ),

(2.5)

where

K1(λ) := 2
∫ ‖uλ‖∞

‖uλ‖∞−1/λ

(‖uλ‖∞ − θ)dθ√
2λ(cos θ − cos ‖uλ‖∞) + 2(G(θ)−G(‖uλ‖∞))

,

K2(λ) := 2
∫ ‖uλ‖∞−1/λ

0

(‖uλ‖∞ − θ)dθ√
2λ(cos θ − cos ‖uλ‖∞) + 2(G(θ)−G(‖uλ‖∞))

.

Lemma 2.1. K1(λ) = O(λ−3/2) for λ � 1.

Proof. For j = 1, 2, . . . , let

Ij :=
[
‖uλ‖∞ − 1

jλ
, ‖uλ‖∞ − 1

(j + 1)λ
]
.

We put

Jj := 2
∫

Ij

(‖uλ‖∞ − θ)dθ√
2λ(cos θ − cos ‖uλ‖∞) + 2(G(θ)−G(‖uλ‖∞))

. (2.6)

We know by [2] that
λ sin ‖uλ‖∞ > g(‖uλ‖∞). (2.7)

Let an arbitrary 0 < ε � 1 be fixed. Let ηλ,ε := min‖uλ‖∞−2ε≤u≤‖uλ‖∞ g′(u). Then
by (A3), we see that ηλ,ε > 0. Then for θ ∈ [‖uλ‖∞ − 2ε, ‖uλ‖∞], by (1.7), (2.7)
and Taylor expansion, we have

2λ(cos θ − cos ‖uλ‖∞) + 2(G(θ)−G(‖uλ‖∞))

≥ 2 (λ sin ‖uλ‖∞ − g(‖uλ‖∞)) (‖uλ‖∞ − θ)

+ 2
(
−λ

2
cos(‖uλ‖∞ − 2ε) +

1
2
ηλ,ε

)
(‖uλ‖∞ − θ)2

≥ Cλ(‖uλ‖∞ − θ)2.

(2.8)

By this and (2.6), for λ > 1/ε,

Jj ≤
∫

Ij

‖uλ‖∞ − θ√
Cλ(‖uλ‖∞ − θ)2

dθ

=
1√
Cλ

1
λ

(1
j
− 1

j + 1
)
≤ C

λ3/2

1
j(j + 1)

.

By this,

K1(λ) =
∞∑

j=1

Jj ≤
∞∑

j=1

C

λ3/2

1
j(j + 1)

≤ C

λ3/2
.
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Thus the proof is complete. �

The formula (1.11) follows from (1.9), Lemma 2.1 and the following Proposition.

Proposition 2.2. For λ � 1

K2(λ) =
C1√

λ
+ O

(
log λ

λ3/2

)
. (2.9)

We prove this proposition using Lemmas 2.3–2.7 below. We put

K2(λ) := K2,1(λ) + K2,2(λ),

where

K2,1(λ) := 2
∫ ‖uλ‖∞−1/λ

0

(‖uλ‖∞ − θ)dθ√
2λ(cos θ − cos ‖uλ‖∞)

,

K2,2(λ) := K2(λ)−K2,1(λ).

Furthermore, we put
K2,1(λ) := L1(λ) + L2(λ),

where

L1(λ) := 2
∫ π−1/λ

0

π − θ√
2λ(cos θ + 1)

dθ.

Lemma 2.3. For λ � 1

L1(λ) =
C1√

λ
+ o

( log λ

λ3/2

)
.

Proof. For λ � 1

L1(λ) =
1√
λ

∫ π−1/λ

0

π − θ

cos(θ/2)
dθ

=
1√
λ

∫ π

1/λ

t

sin(t/2)
dt =

4√
λ

∫ π/2

1/(2λ)

t

sin t
dt (put θ = tan(t/2))

=
8√
λ

∫ 1

tan(1/(4λ))

tan−1 θ

θ
dθ

=
8√
λ

{
[log θ tan−1 θ]1tan(1/(4λ)) −

∫ 1

tan(1/(4λ))

log θ

1 + θ2
dθ

}
(put θ = tan t)

=
2 + o(1)

λ3/2
log λ− 8√

λ

∫ π/4

0

log(tan t)dt +
8√
λ

∫ 1/(4λ)

0

log(tan t)dt

=
2 + o(1)

λ3/2
log λ +

8√
λ

∫ π/4

0

log(cot t)dt +
8√
λ

(1 + o(1))
∫ 1/(4λ)

0

log tdt

=
2 + o(1)

λ3/2
log λ +

8√
λ

∫ π/4

0

log(cot t)dt +
8√
λ

(1 + o(1))
( 1
4λ

log
1
4λ

− 1
4λ

)
=

8√
λ

∫ π/4

0

log(cot t)dt + o
( log λ

λ3/2

)
.

Thus the proof is complete. �
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Next, we calculate L2(λ). To do this, we put

L2(λ) = K2,1(λ)− L1(λ) := D1(λ) + D2(λ) + D3(λ), (2.10)

where

D1(λ) := 2
∫ ‖uλ‖∞−1/λ

0

‖uλ‖∞ − π√
2λ(cos θ − cos ‖uλ‖∞)

dθ,

D2(λ) := 2
∫ ‖uλ‖∞−1/λ

0

( π − θ√
2λ(cos θ − cos ‖uλ‖∞)

− π − θ√
2λ(cos θ + 1)

)
dθ,

D3(λ) := −2
∫ π−1/λ

‖uλ‖∞−1/λ

π − θ√
2λ(cos θ + 1)

dθ.

Lemma 2.4. D1(λ) = O(λ−3/2) as λ →∞.

Proof. Let an arbitrary 0 < ε � 1 be fixed. Then for λ � 1

D1(λ) = D1,1(λ) + D1,2(λ)

:= 2
∫ ‖uλ‖∞−1/λ

‖uλ‖∞−ε

‖uλ‖∞ − π√
2λ(cos θ − cos ‖uλ‖∞)

dθ

+ 2
∫ ‖uλ‖∞−ε

0

‖uλ‖∞ − π√
2λ(cos θ − cos ‖uλ‖∞)

dθ.

For 0 ≤ θ ≤ ‖uλ‖∞ − ε, there exists a constant Cε > 0 such that for λ � 1

Cε ≤ cos θ − cos ‖uλ‖∞. (2.11)

By this and (1.9), for λ � 1,

|D1,2(λ)| ≤ 2g(π)
λ

(1 + o(1))
1√

2Cελ
π ≤ C(λ−3/2). (2.12)

We next estimate D1,1(λ). For a given λ � 1, there exists kλ ∈ N satisfying

‖uλ‖∞ − 2ε ≤ ‖uλ‖∞ − kλ + 1
λ

≤ ‖uλ‖∞ − ε ≤ ‖uλ‖∞ − kλ

λ
. (2.13)

For j = 1, 2, . . . , kλ, we define an interval

Mj =
[
‖uλ‖∞ − j + 1

λ
, ‖uλ‖∞ − j

λ

]
. (2.14)

By (2.13), we see that kλ ≤ ελ. By this, (1.9) and (2.8), we obtain

|D1,1(λ)| ≤ g(π)
λ

(1 + o(1))
kλ∑

j=1

∫
Mj

1√
2λ(cos θ − cos ‖uλ‖∞)

dθ

≤ g(π)√
2Cλ3/2

(1 + o(1))
kλ∑

j=1

∫
Mj

1
‖uλ‖∞ − θ

dθ

≤ Cλ−3/2
kλ∑

j=1

(log(j + 1)− log j)

= Cλ−3/2 log(kλ + 1) ≤ Cλ−3/2 log λ.

By this and (2.12), we obtain our conclusion. Thus the proof is complete. �



EJDE-2005/37 ASYMPTOTIC SHAPE OF SOLUTIONS 7

Lemma 2.5. D2(λ) = O(λ−3/2) for λ � 1.

Proof. We put

Aλ(θ) := 2λ(cos θ − cos ‖uλ‖∞), Bλ(θ) := 2λ(cos θ + 1). (2.15)

By (1.9) and Taylor expansion, for λ � 1, we have

1 + cos ‖uλ‖∞ =
g(π)2

2λ2
(1 + o(1)). (2.16)

Note that Aλ(θ) ≤ Bλ(θ). By this, (2.16) and Taylor expansion, for a fixed 0 <
ε � 1

D2(λ) = 2
∫ ‖uλ‖∞−1/λ

0

2λ(π − θ)(1 + cos ‖uλ‖∞)√
Aλ(θ)

√
Bλ(θ)(

√
Aλ(θ) +

√
Bλ(θ))

dθ

≤ 2g(π)2

λ
(1 + o(1))

[ ∫ ‖uλ‖∞−1/λ

‖uλ‖∞−ε

π − θ

(2λ(cos θ − cos ‖uλ‖∞))3/2
dθ

+
∫ ‖uλ‖∞−ε

0

π − θ

(2λ(cos θ − cos ‖uλ‖∞))3/2
dθ

]
:= D2,1(λ) + D2,2(λ).

(2.17)

We know that 2θ/π ≤ sin θ for 0 ≤ θ ≤ π/2. By this, (1.9) and mean value theorem,
for θ ∈ Mj defined by (2.14), we have

cos θ − cos ‖uλ‖∞ ≥ sin
(
‖uλ‖∞ − j

λ

)
(‖uλ‖∞ − θ)

= sin
(
π − g(π)

λ
(1 + o(1))− j

λ

)
(‖uλ‖∞ − θ)

= sin
(g(π)

λ
(1 + o(1)) +

j

λ

)
(‖uλ‖∞ − θ)

≥ 2
π

(g(π)(1 + o(1)) + j

λ

)
(‖uλ‖∞ − θ).

By this, (1.9) and (2.17),

D2,1(λ) ≤ C

λ

kλ∑
j=1

∫
Mj

(j + 1 + g(π) + o(1))/λ

{ 4
π (j + g(π) + o(1))(‖uλ‖∞ − θ)}3/2

dθ

≤ C

λ2

kλ∑
j=1

(j + g(π) + 1 + o(1))(j + g(π) + o(1))−3/2

∫
Mj

(‖uλ‖∞ − θ)−3/2dθ

≤ C

λ3/2

kλ∑
j=1

j−1/2
( 1√

j
− 1√

j + 1
)

=
C

λ3/2

kλ∑
j=1

1√
j
√

j + 1(
√

j +
√

j + 1)
j−1/2

≤ C

λ3/2

kλ∑
j=1

1
j2
≤ C

λ3/2
.

(2.18)
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By (2.11), we have

D2,2(λ) ≤ 2g(π)2 + o(1)
λ

1
(2Cελ)3/2

π2 ≤ Cλ−5/2.

This along with (2.17) and (2.18) implies our conclusion. �

Lemma 2.6. D3(λ) = O(λ−3/2) for λ � 1.

Proof. By (1.9), for λ � 1

|D3(λ)| =
∫ π−1/λ

‖uλ‖∞−1/λ

π − θ√
λ cos(θ/2)

dθ

=
1√
λ

∫ 1/λ

π−‖uλ‖∞+1/λ

−t

sin(t/2)
dt

=
4√
λ

∫ (π−‖uλ‖∞+1/λ)/2

1/(2λ)

θ

sin θ
dθ

=
4√
λ

(1 + o(1))
π − ‖uλ‖∞

2
=

2g(π)
λ3/2

(1 + o(1)).

Thus the proof is complete. �

By Lemmas 2.3–2.6, we see that

K2,1(λ) =
C1√

λ
+ O

(
log λ

λ3/2

)
. (2.19)

Now we estimate K2,2(λ).

Lemma 2.7. K2,2(λ) = O(λ−3/2 log λ) for λ � 1.

Proof. We put Eλ(θ) := 2(G(θ) − G(‖uλ‖∞)). We recall Aλ(θ) defined in (2.15).
Let an arbitrary 0 < ε � 1 be fixed. For λ � 1

K2,2(λ)

= 2
∫ ‖uλ‖∞−1/λ

0

( ‖uλ‖∞ − θ√
Aλ(θ) + Eλ(θ)

− ‖uλ‖∞ − θ√
Aλ(θ)

)
dθ

= 2
∫ ‖uλ‖∞−ε

0

(‖uλ‖∞ − θ)(G(‖uλ‖∞)−G(θ))√
Aλ(θ) + Eλ(θ)

√
Aλ(θ)(

√
Aλ(θ) + Eλ(θ) +

√
Aλ(θ))

dθ

+ 2
∫ ‖uλ‖∞−1/λ

‖uλ‖∞−ε

(‖uλ‖∞ − θ)(G(‖uλ‖∞)−G(θ))√
Aλ(θ) + Eλ(θ)

√
Aλ(θ)(

√
Aλ(θ) + Eλ(θ) +

√
Aλ(θ))

dθ

= H1(λ) + H2(λ).

By (2.11) we see that for λ � 1,

H1(λ) ≤ 2g(π)π3(2Cελ)−3/2.
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Note that Aλ(θ) + Eλ(θ) ≤ Aλ(θ) for ‖uλ‖∞ − ε ≤ θ ≤ ‖uλ‖∞ − 1/λ. Then by
(2.8),

H2(λ) ≤ 2
∫ ‖uλ‖∞−1/λ

‖uλ‖∞−ε

g(π)(‖uλ‖∞ − θ)2

(Aλ + Eλ)3/2
dθ

≤ C

λ3/2

∫ ‖uλ‖∞−1/λ

‖uλ‖∞−ε

1
‖uλ‖∞ − θ

dθ

=
C

λ3/2
(log ε− log(1/λ)) ≤ C

λ3/2
log λ.

Thus the proof is complete. �

By (2.19) and Lemma 2.7, we obtain Proposition 2.2. Now (1.11) follows from
(1.9), (2.4), (2.5), Lemma 2.1 and Proposition 2.2. Thus the proof is complete.

3. Proof of (1.10) in Theorem 1.1

To prove (1.10), we put

Q(λ) := π − ‖u0,λ‖1. (3.1)

By the similar calculation to that in (2.5), we have

Q(λ) = 2
∫ ‖u0,λ‖∞

0

π − θ√
2λ(cos θ − cos ‖u0,λ‖∞)

dθ = Q1(λ) + Q2(λ), (3.2)

Q2(λ) := Q(λ)−Q1(λ), (3.3)

where

Q1(λ) := 2
∫ π

0

π − θ√
2λ(cos θ + 1)

dθ. (3.4)

Lemma 3.1. Q1(λ) = C1λ
−1/2.

Proof.

Q1(λ) =
1√
λ

∫ π

0

π − θ

cos(θ/2)
dθ

=
1√
λ

∫ π

0

t

sin(t/2)
dt =

4√
λ

∫ π/2

0

t

sin t
dt (put θ = tan(t/2))

=
8√
λ

∫ 1

0

tan−1 θ

θ
dθ

=
8√
λ

{
[log θ tan−1 θ]10 −

∫ 1

0

log θ

1 + θ2
dθ

}
(put θ = tan t)

= − 8√
λ

∫ π/4

0

log(tan t)dt =
8√
λ

∫ π/4

0

log(cot t)dt

Thus the proof is complete. �

Lemma 3.2. Q2(λ) = − 8√
λ
(1 + o(1))e−

√
λ/2 as λ →∞.
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Proof. We put

Q2(λ) := R(λ) + S(λ), (3.5)

where

R(λ) =

√
2
λ

∫ ‖u0,λ‖∞

0

( π − θ√
cos θ − cos ‖u0,λ‖∞

− π − θ√
cos θ + 1

)
dθ

S(λ) = −
√

2
λ

∫ π

‖u0,λ‖∞

π − θ√
cos θ + 1

dθ.

For λ � 1

R(λ) =

√
2
λ

∫ ‖u0,λ‖∞

0

(π − θ)(
√

cos θ + 1−
√

cos θ − cos ‖u0,λ‖∞)
√

cos θ + 1
√

cos θ − cos ‖u0,λ‖∞
dθ

=

√
2
λ

(1 + o(1))
∫ ‖u0,λ‖∞

0

(π − θ)(cos ‖u0,λ‖∞ + 1)
(cos θ + 1)(

√
cos θ − cos ‖u0,λ‖∞ +

√
cos θ + 1)

dθ

=

√
2
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))
∫ ‖u0,λ‖∞

0

π − θ

2(cos θ + 1)3/2
dθ

=

√
2
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))
∫ ‖u0,λ‖∞

0

π − θ

4
√

2 cos3(θ/2)
dθ

=

√
2
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))
∫ π−‖u0,λ‖∞

π

−θ

4
√

2 sin3(θ/2)
dθ

=

√
1
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))
∫ π/2

(π−‖u0,λ‖∞)/2

θ

sin3 θ
dθ

=

√
1
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))
∫ π/2

(π−‖u0,λ‖∞)/2

1
sin2 θ

dθ

=

√
1
λ

(cos ‖u0,λ‖∞ + 1)(1 + o(1))[− cot θ]π/2
(π−‖u0,λ‖∞)/2

=

√
1
λ

cos((π − ‖u0,λ‖∞)/2)
sin((π − ‖u0,λ‖∞)/2)

(cos ‖u0,λ‖∞ + 1)(1 + o(1))

=

√
1
λ

2
π − ‖u0,λ‖∞

(cos ‖u0,λ‖∞ + 1)(1 + o(1)).

(3.6)
By (1.8) and Taylor expansion, for λ � 1

cos ‖u0,λ‖∞ = cos
(
π − 8(1 + o(1))e−

√
λ/2

)
= − cos

(
8(1 + o(1))e−

√
λ/2

)
= −1 + 32(1 + o(1))e−

√
λ.

(3.7)

By this, (1.8) and (3.6), for λ � 1

R(λ) =
8√
λ

(1 + o(1))e−
√

λ/2. (3.8)
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Next, we calculate S(λ). By (1.8), for λ � 1

S(λ) = −
√

2
λ

∫ 0

π−‖u0,λ‖∞

−t√
2 cos((π − t)/2)

dt

= −
√

1
λ

∫ π−‖u0,λ‖∞

0

t

sin(t/2)
dt

= − 4√
λ

∫ (π−‖u0,λ‖∞)/2

0

θ

sin θ
dθ

= − 4√
λ

π − ‖u0,λ‖∞
2

(1 + o(1))

= − 16√
λ

(1 + o(1))e−
√

λ/2.

By this, (3.5) and (3.8), we obtain our conclusion. Thus the proof is complete. �

Now (1.10) follows from (1.8), (3.1), (3.2) and Lemmas 3.1 and 3.2. Thus the
proof is complete.

4. Proof of Theorem 1.2

In this section, we consider (1.1)–(1.3) with (1.6). By (1.1), we have

(v′′λ(t) + λ(vλ(t)− v3
λ(t)))v′λ(t) = 0.

This implies that for t ∈ Ī

d

dt

(1
2
v′λ(t)2 +

1
2
λv2

λ(t)− 1
4
λv4

λ(t)
)

= 0.

This implies that for t ∈ Ī,

1
2
v′λ(t)2 +

1
2
λv2

λ(t)− 1
4
λv4

λ(t) ≡ constant =
1
2
λ‖vλ‖2∞ − 1

4
λ‖vλ‖4∞. (4.1)

We know that

v′λ(t) ≥ 0, 0 ≤ t ≤ 1/2, vλ(t) = vλ(1− t), t ∈ I. (4.2)

Therefore, by (4.1) and (4.2), for 0 ≤ t ≤ 1/2,

v′λ(t) =

√
λ{(‖vλ‖2∞ − vλ(t)2)− 1

2
(‖vλ‖4∞ − vλ(t)4)}. (4.3)

The following Lemma 4.1 implies (1.14) in Theorem 1.2.

Lemma 4.1. As λ →∞

‖vλ‖∞ = 1− 4e−
√

λ/
√

2− 8e−2
√

λ/
√

2− 24
√

2
√

λe−3
√

λ/
√

2 + o(
√

λe−3
√

λ/
√

2). (4.4)
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Proof. By (4.3),

1
2

=
∫ 1/2

0

dt =
∫ 1/2

0

v′λ(t)√
λ{(‖vλ‖2∞ − vλ(t)2)− 1

2 (‖vλ‖4∞ − vλ(t)4)}
dt

=
1√
λ

∫ ‖vλ‖∞

0

1√
(‖vλ‖2∞ − θ2)− 1

2 (‖vλ‖4∞ − θ4)
dθ (put θ = ‖vλ‖∞s)

=
1√
λ

√
2√

2− ‖vλ‖2∞

∫ 1

0

1√
(1− s2)(1− k2s2)

ds

=
1√
λ

√
2√

2− ‖vλ‖2∞
K(k),

(4.5)

where k = ‖vλ‖∞/
√

2− ‖vλ‖2∞ and

K(k) :=
∫ π/2

0

1√
1− k2 sin2 θ

dθ.

It is known (cf. [4, p.909, 8.113]) that as k → 1

K(k) = −1
2

log(1− k2) + 2 log 2− 1− k2

8
log(1− k2)

+
(1
2

log 2− 1
4
)
(1− k2)− 9

128
(1− k2)2 log(1− k2)

+ o
(
(1− k2)2 log(1− k2)

)
.

(4.6)

We put ξλ := 1− ‖vλ‖2∞. Then ξλ > 0 and ξλ → 0 as λ →∞ by (1.7). Then

1− k2 =
2(1− ‖vλ‖2∞)
2− ‖vλ‖2∞

=
2ξλ

1 + ξλ
. (4.7)

By this, the Taylor expansion, and (4.6),

K(k) = −1
2
(
log 2 + log ξλ − log(1 + ξλ)

)
+ 2 log 2− ξλ

4(1 + ξλ)
(
log 2 + log ξλ − log(1 + ξλ)

)
+

(1
2

log 2− 1
4
) 2ξλ

1 + ξλ
− 9

32
ξ2
λ

(1 + ξλ)2
(
log 2 + log ξλ − log(1 + ξλ)

)
+ o(ξ2

λ log ξλ)

= −1
2
(
log 2 + log ξλ − ξλ + O(ξ2

λ)
)

+ 2 log 2

− 1
4
ξλ(1− ξλ + O(ξ2

λ))
(
log 2 + log ξλ − ξλ + O(ξ2

λ)
)

+
(
log 2− 1

2
)
ξλ(1− ξλ + O(ξ2

λ))− 9
32

ξ2
λ log ξλ + o(ξ2

λ log ξλ)

= −1
2

log ξλ +
3
2

log 2− 1
4
ξλ log ξλ +

3 log 2
4

ξλ −
1
32

ξ2
λ log ξλ + o(ξ2

λ log ξλ).

(4.8)
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Furthermore, by Taylor expansion, for λ � 1,

1√
2− ‖vλ‖2∞

= (1 + ξλ)−1/2 = 1− 1
2
ξλ +

3
8
ξ2
λ + o(ξ2

λ).

This along with (4.5) and (4.8) implies that

√
λ

2
√

2
= −1

2
log ξλ +

3
2

log 2− 3
32

ξ2
λ log ξλ + o(ξ2

λ log ξλ). (4.9)

By this, for λ � 1, we have

√
λ√
2

= − log ξλ + log 8 + log(1 + o(1)) = log
8(1 + o(1))

ξλ
.

This implies that for λ � 1, ξλ = 8(1 + o(1))e−
√

λ/
√

2. Then for λ � 1,

− 3
32

ξ2
λ log ξλ = 3

√
2(1 + o(1))

√
λe−

√
2λ.

By this, (4.9) and Taylor expansion, for λ � 1

ξλ = 8e−
√

λ/
√

2 · e6
√

2(1+o(1))
√

λe−
√

2λ

= 8e−
√

λ/
√

2(1 + 6
√

2(1 + o(1))
√

λe−
√

2λ))

= 8e−
√

λ/
√

2 + 48
√

2(1 + o(1))
√

λe−3
√

λ/
√

2.

(4.10)

By this and Taylor expansion, for λ � 1,

‖vλ‖∞ =
√

1− ξλ

=
(
1− 8e−

√
λ/
√

2 − 48
√

2(1 + o(1))
√

λe−3
√

λ/
√

2)
)1/2

= 1 +
1
2

(
− 8e−

√
λ/
√

2 − 48
√

2(1 + o(1))
√

λe−3
√

λ/
√

2)
)

− 1
8
(−8e−

√
λ/
√

2 − 48
√

2(1 + o(1))
√

λe−3
√

λ/
√

2))2 + O(e−3
√

λ/
√

2).

By this, we obtain (4.4). �

The following implies (1.13) in Theorem 1.2.

Lemma 4.2. As λ →∞

‖vλ‖1 = 1− 2
√

2 log 2√
λ

− 12e−
√

2λ + o(e−
√

2λ). (4.11)
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Proof. By (4.3), for λ � 1

‖vλ‖1 = 2
∫ 1/2

0

vλ(t) dt

= 2
∫ 1/2

0

vλ(t)v′λ(t)√
λ{(‖vλ‖2∞ − vλ(t)2)− 1

2 (‖vλ‖4∞ − vλ(t)4)}
dt

=
2√
λ

∫ ‖vλ‖∞

0

θ√
‖vλ‖2∞ − θ2 − 1

2 (‖vλ‖4∞ − θ4)
dθ

=
2‖vλ‖∞√

λ

∫ 1

0

s√
(1− s2)− 1

2‖vλ‖2∞(1− s4)
ds

=
‖vλ‖∞√

λ

√
2√

2− ‖vλ‖2∞

∫ 1

0

1
(
√

1− t)(1− k2t)
dt

=

√
2
λ

k

∫ 1

0

1√
(1− t)(1− k2t)

dt.

(4.12)

By putting s =
√

(1− k2t)/(1− t), we obtain easily∫ 1

0

1√
(1− t)(1− k2t)

dt =
1
k

log
(1 + k

1− k

)
.

This along with (4.12) implies that

‖vλ‖1 =

√
2
λ

log
1 + k

1− k
=

√
2
λ

log
(1 + k)2

1− k2
=

√
2
λ

(2 log(1+k)−log(1−k2)). (4.13)

By (4.7), (4.10) and Taylor expansion, for λ � 1

log(1− k2) = log
2ξλ

1 + ξλ

= log 2 + log ξλ − log(1 + ξλ)

= 4 log 2−
√

λ

2
+ 6

√
2
√

λe−
√

2λ −
(
ξλ + O(ξ2

λ)
)

= 4 log 2−
√

λ

2
− 8e−

√
λ/2 + 6

√
2
√

λe−
√

2λ + o(
√

λe−
√

2λ).

(4.14)

By Lemma 4.1, (4.10) and Taylor expansion, for λ � 1,

k =
‖vλ‖∞√

2− ‖vλ‖∞
= ‖vλ‖∞(1 + ξλ)−1/2

= ‖vλ‖∞
(
1− 1

2
ξλ +

3
8
ξ2
λ(1 + o(1))

)
= (1− 4e−

√
λ/2 − 8e−2

√
λ/2(1 + o(1)))(1− 4e−

√
λ/2 + 24e−2

√
λ/2(1 + o(1)))

= 1− 8e−
√

λ/2 + 32e−2
√

λ/2(1 + o(1)).
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By this and Taylor expansion, for λ � 1,

log(1 + k) = log(2− (1− k)) = log 2− 1
2
(1− k)− 1

8
(1− k)2 + o((1− k)2)

= log 2− 4e−
√

λ/2 + 8(1 + o(1))e−2
√

λ/2.

By this and (4.14), we obtain

log
(1 + k

1− k

)
= −2 log 2 +

√
λ

2
− 6

√
2(1 + o(1))

√
λe−

√
2λ.

By this and (4.13) and (4.14), we obtain (4.11). Thus the proof is complete. �

5. Appendix

We show that ‖uλ‖∞ < π for completeness. By (2.1),

−u′′λ(1/2) = λ sin ‖uλ‖∞ − g(‖uλ‖∞) ≥ 0.

This along with (A1) implies that there exists a non-negative integer k such that

2kπ < ‖uλ‖∞ < (2k + 1)π. (5.1)

Assume that k ≥ 1. Then by (2.1), there exists a unique tλ ∈ (0, 1/2) such that
uλ(tλ) = ‖uλ‖∞ − 2kπ. Then by (2.2),

1
2
u′λ(tλ)2 − λ cos uλ(tλ)−G(uλ(tλ))

=
1
2
u′λ(tλ)2 − λ cos ‖uλ‖∞ −G(‖uλ‖∞ − 2kπ)

= −λ cos ‖uλ‖∞ −G(‖uλ‖∞).

(5.2)

Since G(u) is strictly increasing for u ≥ 0 by (A1), by (5.2), we obtain
1
2
u′λ(tλ)2 = G(‖uλ‖∞ − 2kπ)−G(‖uλ‖∞) < 0.

This is a contradiction. Thus k = 0 in (5.1) and we get our assertion.
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