
Electronic Journal of Differential Equations, Vol. 2005(2005), No. 39, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

LIE-GROUP ANALYSIS OF RADIATIVE AND MAGNETIC
FIELD EFFECTS ON FREE CONVECTION AND MASS

TRANSFER FLOW PAST A SEMI-INFINITE VERTICAL FLAT
PLATE

FOUAD S. IBRAHIM, MOHAMMAD A. MANSOUR, MOHAMMAD A. A. HAMAD

Abstract. In this paper, we discuss similarity reductions for problems of ra-

diative and magnetic field effects on free-convection and mass-transfer flow past
a semi-infinite vertical flat plate. Two cases are considered: Lie group anal-
ysis applied to uniform magnetic fields, and Scaling transformations applied

to non-uniform magnetic fields. In particular, we determine new similarity
reductions and find an analytical solution for the uniform magnetic field, by
using Lie group method. Numerical results are presented and discussed for

various values of the parameters governing the problem.

1. Introduction

The study of radiative and magnetic field effects have important applications in
physics and engineering. The classical method for finding similarity reduction of
PDEs is the Lie-group method of infinitesimal transformations [2, 3, 13, 14, 15, 16,
24, 25, 29]. Lakshmanan and Velan [20] studied Lie similarity reductions of cer-
tain (2+1)-dimensional nonlinear evolution equations. Group analysis of the Von
Karman-Howarth equation was presented by Khabirov and Unal [19]. Clarkson [5]
presented a new similarity reduction and Painleve analysis for the symmetric regu-
larized long wave and modified Benjamin-Bona-Mahoney equations. Yurusoy and
Pakdemirli [30] studied the group classification of the boundary layer equations
of a non-Newtonian fluid model, in which the shear stress is arbitrary function
of the velocity gradient. They used two different approaches for group classifica-
tion (i) the classical approach and (ii) equivalence transformations. Clarkson and
Kruskal [6] presented some new similarity reductions of the Boussinesq equation,
which arises in several physical applications including shallow water waves. A new
solution branch of similarity solutions were presented and discussed by Steinruck
[27]. Ibragimov [16] discussed the properties of a perturbed nonlinear wave equa-
tion by using a group of transformations and derived the principal Lie algebra and
its approximate equivalence transformation. The paper of Chupakhin [4] reviewed
the main statements of the theory of differential invariants of continuous groups.
Yurusoy [31] presented similarity solutions for the problem of the two-dimensional
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equations of motions for the slowly flowing second grade fluid with heat transfer.
Soh [26] classified similarity solutions of a boundary-value problem for a nonlinear
diffusion equation arising in the study of a charged power-law non-Newtonian fluid
through a time-dependent transverse magnetic field. Ibragimov and et al [17] found
for the equations the equivalence group generated by an infinitesimal Lie algebra
involving two arbitrary functions of the variable x. In the paper of Gandarias et
al [11], the complete Lie group classification of a non-linear wave equation was
obtained. Fakhar et al [10] employed Lie theory on the axisymmetric flow. Radia-
tive effects on magnetohydrodynamic natural convection flows saturated in porous
media were studied by Mansour and El-Shaer [21]. Elbashbeshy and Dimian [9]
studied effect of radiation on the flow and heat transfer over a wedge with variable
viscosity. Abo-Eldahab and El Gendy [1] studied radiation effect on convective
heat transfer in an electrically conducting fluid at a stretching surface with vari-
able viscosity and uniform free stream. Radiation and mass transfer effects on flow
of an incompressible viscous fluid past a moving vertical cylinder were presented
by Ganesan and Loganathan [12]. The unsteady flow past a moving plate in the
presence of free convection and radiation were studied by Mansour [22]. The effect
of suction/injection on the flow and heat transfer for a continuous moving plate
in a micropolar fluid in the presence of rendition was studied by El-Arabawy [8].
Ibrahim et al [18] studied radiative and thermal dispersion effects on non-Darcy
natural convection with lateral mass flux for a non-Newtonian fluid from a verti-
cal flat plate in a saturated porous medium. Dolapc and Pakdemirli [7] studied
approximate symmetries of creeping flow equations of a second grade fluid. The
purpose of this paper is to investigate the similarity reductions and to find similarity
representations of radiative and magnetic field effects on free convection and mass
transfer flow past a semi-infinite vertical flat plate, to study the effect of problem’s
parameters on the behavior of problem’s variables and to represent exact solutions
of the problem.

2. Analysis

We consider the flow along the x-axis, which is taken along the vertical flat plate
in the upward direction, and the y-axis is taken normal to it as shown in Fig. 1.
The plane is maintained at a constant temperature Tw higher than the constant
temperature T∞ of the surrounding fluid and the concentration Cw bigger than the
constant concentration C∞. The fluid properties are assumed to be constant. The
governing equations for the problem under consideration can be written as

∂ū

∂x̄
+

∂v̄

∂ȳ
= 0 ,

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ν

∂2ū

∂ȳ2
+ gβ(T − T∞) + gβ∗(C − C∞)−

σB2
ȳ

ρ
ū ,

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
=

k0

ρcp

∂2T

∂ȳ2
− α

k0

∂qr

∂ȳ
,

ū
∂C

∂x̄
+ v̄

∂C

∂ȳ
= D

∂2C

∂ȳ2
,

(2.1)
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with the boundary conditions

ū = 0, v̄ = 0, T = Tw, C = Cw, as ȳ = 0,

ū = 0, T = T∞, C = C∞, as ȳ →∞.
(2.2)

where, ū and v̄ are velocity components; x̄ and ȳ are space coordinates;T is the
temperature; ν is the kinematic viscosity of the fluid; g is the acceleration due to
gravity; β is the coefficient of thermal expansion; β∗ is the coefficient of expansion
with concentration; σ is the electric conductivity; Bȳ is the magnetic field strength
in y direction; ρ is the density of the fluid; cp is the specific heat of the fluid; α
is thermal diffusivity; ko is the thermal conductivity of fluid; D is the diffusion
coefficient and qr is the local radiative heat flux. The radiative heat flux term is
simplified by using the Rosseland approximation (see Sparrow Cess [28]),

qr = −4σ0

3k∗
∂T 4

∂ȳ
, (2.3)

where, σ0 and k∗ are the Stefan-Boltzman constant and mean absorption coefficient
respectively.

We assume that the temperature differences within the flow are sufficiently small
such that T 4 may be expressed as a linear function of temperature. This is accom-
plished by expanding T 4 in a Taylor series about T∞ and neglecting higher-order
terms, thus

T 4 ∼= 4T 3
∞T − 3T 4

∞ (2.4)

the following dimensionless parameters are defined:

x =
x̄

L
, y =

ȳ

L
, u = ū logν,

v =
v̄ log

ν
, θ = T − T∞Tw − T∞, φ =

C − C∞
Cw − C∞

.
(2.5)

now we will study two cases:

Case 1: Non-uniform magnetic field. In this case the magnetic field strength
is

By =
B0

x
. (2.6)

then, by using the non-dimensional variables (2.5) and (2.3), (2.4), (2.6), the system
(2.1) becomes

∂u

∂x
+

∂v

∂y
= 0 ,

u
∂u

∂x
+ v

∂u

∂y
− ∂2u

∂y2
−Grθ −Gcφ +

M

x2
u = 0 ,

u
∂θ

∂x
+ v

∂θ

∂y
− 1

Pr
(1 + 4R)

∂2θ

∂y2
= 0 ,

u
∂φ

∂x
+ v

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 ,

(2.7)

where, M = σB2
0

ρν is the magnetic parameter; Gc = gβ∗(Cw−C∞)L3

ν2 is the mass

Grashof number; Gr = gβ∗(Tw−T∞)L3

ν2 is the temperature Grashof number; Pr =
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ρνcp

k0
is the Prandtl number; R = 4σ0T 3

∞
3k0k∗ is the radiation parameter and Sc = ν

D is
the Schmidt number. The boundary conditions (2.2) become

u = 0, v = 0, θ = 1, φ = 1, at y = 0,
u = 0, θ = 0, φ = 0, as y →∞.

(2.8)

In this case, the similarity solutions are obtained using the scaling transformations.
The magnetic force in x-direction is Fx = −σB2

yu . The system (2.1) and conditions
(2.8) are invariant under the scaling transformations. We scale all independent and
dependent variables as follows:

x∗ = λc1x, y∗ = λc2y, u∗ = λc3u,

v∗ = λc4v, θ∗ = λc5θ, φ∗ = λc6φ.

Substituting these variables in (2.7), we obtain the invariance conditions:

c2 = c1, c3 = −c1, c4 = −c1, c5 = −3c1, c6 = −3c1 .

These relations lead to the following differential equations (characteristic equations)
for similarity:

dx

x
=

dy

y
=

du

−u
=

dv

−v
=

dθ

−3θ
=

dφ

−3φ
.

From these equalities, we find the similarity transformations

η =
y

x
, u =

F1(η)
x

, v =
F2(η)

x
, θ =

F3(η)
x3

, φ =
F4(η)

x3
.

Substituting these values in (2.1), we obtain

F ′
2 − ηF ′

1 − F1 = 0,

F ′′
1 − (F2 − ηF1)F ′

1 + F 2
1 + GrF3 + GcF4 −MF1 = 0,

1
Pr

(1 + 4R)F ′′
3 − (F2 − ηF1)F ′

3 + 3F1F3 = 0,

1
Sc

F ′′
4 − (F2 − ηF1)F ′

4 + 3F1F4 = 0,

(2.9)

with boundary conditions

F1 = 0, F2 = 0, F3 = 1, F4 = 1, at η = 0
F1 = 0, F3 = 0, F4 = 0, as η → 0

(2.10)

Integrating the first equation in (2.9), we obtain F2 = ηF1. Then, system (2.9)
becomes

F ′′
1 + F 2

1 + GrF3 + GcF4 −MF1 = 0,

1
Pr

(1 + 4R)F ′′
3 + 3F1F3 = 0,

1
Sc

F ′′
4 + 3F1F4 = 0,

(2.11)

with boundary conditions (2.10).
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Case 2: Uniform magnetic field. In this case the magnetic field strength is
constant (By = B0). Symmetry group and similarity solutions for the derived
fundamental equations are obtained by employing Lie Group analysis. Lie algebra
corresponding to the symmetries are constructed. After that, a special solution of
the exact solution is obtained for a special symmetry. Then (2.7) becomes

∂u

∂x
+

∂v

∂y
= 0 ,

u
∂u

∂x
+ v

∂u

∂y
− ∂2u

∂y2
−Grθ −Gcφ + Mu = 0 ,

u
∂θ

∂x
+ v

∂θ

∂y
− 1

Pr
(1 + 4R)

∂2θ

∂y2
= 0 ,

u
∂φ

∂x
+ v

∂φ

∂y
− 1

Sc

∂2φ

∂y2
= 0 ,

(2.12)

These reduced equations, in two independent variables, can be further analyzed
for its symmetry properties by looking at its own invariance property under the
classical Lie group analysis. We introduce the vector field

X =ξ1(x, y, u, v, θ, φ)
∂

∂x
+ ξ2(x, y, u, v, θ, φ)

∂

∂y
+ µ1(x, y, u, v, θ, φ)

∂

∂u

+ µ2(x, y, u, v, θ, φ)
∂

∂v
+ µ3(x, y, u, v, θ, φ)

∂

∂θ
+ µ4(x, y, u, v, θ, φ)

∂

∂φ
.

(2.13)

At this point, we assume that

∆1 = u1 + v2,

∆2 = uu1 + vu2 − u22 −Grθ −Gcφ + Mu,

∆3 = uθ1 + vθ2 −
1
Pr

(1 + 4R)θ22,

∆4 = uφ1 + vφ2 −
1
Sc

φ22.

(2.14)

To determine the infinitesimals ξ1, ξ2, µ1, µ2, µ3, µ4, the second prolongation of the
operator (2.13) is applied to (2.14) and then substituted to the invariance criterion,
i.e.,

X(2)(∆j)|∆j=0 = 0, j = 1, 2, 3, 4 (2.15)

where X(2) stands for the second prolongation of the operator (2.13), which is
defined by:

X(2) =X + µ
(1)1
1

∂

∂u1
+ µ

(1)1
2

∂

∂u2
+ µ

(2)1
11

∂

∂u11
+ µ

(2)1
12

∂

∂u12
+ µ

(2)1
22

∂

∂u22

+ µ
(1)2
1

∂

∂v1
+ µ

(1)2
2

∂

∂v2
+ µ

(2)2
11

∂

∂v11
+ µ

(2)2
12

∂

∂v12
+ µ

(2)2
22

∂

∂v22

+ µ
(1)3
1

∂

∂θ1
+ µ

(1)3
2

∂

∂θ2
+ µ

(2)3
11

∂

∂θ11
+ µ

(2)3
12

∂

∂θ12
+ µ

(2)3
22

∂

∂θ22

+ µ
(1)4
1

∂

∂φ1
+ µ

(1)4
2

∂

∂φ2
+ µ

(2)4
11

∂

∂φ11
+ µ

(2)4
12

∂

∂φ12
+ µ

(2)4
22

∂

∂φ22
.
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The recursion relation for the higher order infinitesimals are

µ(m)k
α = Dα[µm −

2∑
i=1

ξiχ
m
i ] +

2∑
i=1

ξiχ
m
αi

where, (m = 1, 2, 3, 4), (α = 1, 2, 11, 12, 22), and χ1, χ2, χ3, χ4 stand for u, v, θ, φ
respectively,

χm
i =

∂χm

∂xi
, χm

αi =
∂χm

α

∂xi
, i = 1, 2

x1 = x, x2 = y,

Dα =
D

Dα
=

∂

∂xα
+ χm

i

∂

∂χm
+ χm

ij

∂

∂χm
j

. i, j = 1, 2

Equations (2.15) furnish a set of constraints in the form of linear partial differential
equations, which enable us to obtain the coefficients ξ1, ξ2, µ1, µ2, µ3, µ4. The
system of linear partial differential equations is

µ
(1)1
1 + µ

(1)2
2 = 0,

(M + u1)µ1 + u2µ
2 −Grµ

3 −Gcµ
4 + uµ

(1)1
1 + vµ

(1)1
2 − µ

(2)1
22 = 0,

θ1µ
1 + θ2µ

2 + uµ
(1)3
1 + vµ

(1)3
2 − 1

Pr
(1 + 4R)µ(2)3

22 = 0,

φ1µ
1 + φ2µ

2 + uµ
(1)4
1 + vµ

(1)4
2 − 1

Sc
µ

(2)4
22 = 0.

(2.16)

where

µ
(1)1
1 =

∂µ1

∂x1
+ u1

∂µ1

∂u
− (u1

∂ξ1

∂x1
+ u2

∂ξ2

∂x1
) ,

µ
(1)1
2 =

∂µ1

∂x2
+ u2

∂µ1

∂u
− (u1

∂ξ1

∂x2
+ u2

∂ξ2

∂x2
) ,

µ
(1)2
2 =

∂µ2

∂x2
+ v2

∂µ2

∂v
− (v1

∂ξ1

∂x2
+ v2

∂ξ2

∂x2
) ,

µ
(1)3
1 =

∂µ3

∂x1
+ θ1

∂µ3

∂θ
− (θ1

∂ξ1

∂x1
+ θ2

∂ξ2

∂x1
) ,

µ
(1)3
2 =

∂µ3

∂x2
+ θ2

∂µ3

∂θ
− (θ1

∂ξ1

∂x2
+ θ2

∂ξ2

∂x2
) ,

µ
(1)4
1 =

∂µ4

∂x1
+ φ1

∂µ4

∂φ
− (φ1

∂ξ1

∂x1
+ φ2

∂ξ2

∂x1
) ,

µ
(1)4
2 =

∂µ4

∂x2
+ φ2

∂µ4

∂φ
− (φ1

∂ξ1

∂x2
+ φ2

∂ξ2

∂x2
) ,

µ
(2)1
22 =

∂µ
(1)1
2

∂x2
+ u2

∂µ
(1)1
2

∂u
+ u21

∂µ
(1)1
2

∂u1
+ u22

∂µ
(1)1
2

∂u2
− (u21

∂ξ1

∂x2
+ u22

∂ξ2

∂x2
) ,

µ
(2)3
22 =

∂µ
(1)3
2

∂x2
+ θ2

∂µ
(1)3
2

∂θ
+ θ21

∂µ
(1)3
2

∂θ1
+ θ22

∂µ
(1)3
2

∂θ2
− (θ21

∂ξ1

∂x2
+ θ22

∂ξ2

∂x2
) ,

µ
(2)4
22 =

∂µ
(1)4
2

∂x2
+ φ2

∂µ
(1)4
2

∂φ
+ φ21

∂µ
(1)4
2

∂φ1
+ φ22

∂µ
(1)4
2

∂φ2
− (φ21

∂ξ1

∂x2
+ φ22

∂ξ2

∂x2
) .
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Substituting the above expressions in (2.16), we obtain

ξ1 = 2C1x + C2y + C3u + C4v + h1(θ, φ),

ξ2 = C5x + C6y + C7v + h2(u, θ, φ),

µ1 = C1u + C2v + C8,

µ2 = C5u + C9v + C10,

µ3 = C1θ + h3(x, y, u, v, φ),

µ4 = C1φ + h4(x, y, u, v, φ).

3. Similarity generators and group-invariant solution

We will consider the following special case: Let ξ1 = ξ1(x), ξ2 = ξ2(y), µ1 =
µ1(u), µ2 = µ2(v), µ3 = µ3(θ) and µ4 = µ4(φ), then we obtain

ξ1 = 2A1x + A2, ξ2 = A3y + A4, µ1 = A1u + A5,

µ2 = A6v + A7, µ3 = A1θ + A8, µ4 = A1φ + A9.

where A1, A2, . . . , A9 are constants. Then for this special case we can find the
infinitesimal generators X1, X2, . . . , X9 as follows:

X1 = 2x
∂

∂x
+ u

∂

∂u
+ θ

∂

∂θ
+ φ

∂

∂φ
, X2 =

∂

∂x
, X3 = y

∂

∂y
,

X4 =
∂

∂y
, X5 =

∂

∂u
, X6 = v

∂

∂v
, X7 =

∂

∂v
, X8 =

∂

∂θ
, X9 =

∂

∂φ
.

(3.1)

Commutator relations between these generators have been calculated according to
the formula

[Xi, Xj ] = Xi(Xj)−Xj(Xi)

and the results of such calculations are shown in Table 1.

Table 1. Commutator Table

X1 X2 X3 X4 X5 X6 X7 X8 X9

X1 0 −2X2 0 0 −X5 0 0 −X8 −X9

X2 2X2 0 0 0 0 0 0 0 0
X3 0 0 0 −X4 0 0 0 0 0
X4 0 0 X4 0 0 0 0 0 0
X5 X5 0 0 0 0 0 0 0 0
X6 0 0 0 0 0 0 −X7 0 0
X7 0 0 0 0 0 X7 0 0 0
X8 X8 0 0 0 0 0 0 0 0
X9 X9 0 0 0 0 0 0 0 0

From Table 1, it can be seen that the commutator relations of the operator (X4

with X3), (X5, X8, X9 with X1) and (X7 with X6) result again in itself. Therefore,
it is the ideal of the equivalence algebra L. The commutator relations between X2

with X1 involves only X2. Therefore, it is the sub algebra of L.
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The one-parameter local groups Gi, (i = 1, 2, , . . . , 9) associated with the gener-
ators (3.1) are obtained as follows:

G1 : (x, y, , u, v, θ, φ) → (e2εx, y, eεu, v, eεθ, eεφ),

G2 : (x, y, , u, v, θ, φ) → (x + ε, y, u, v, θ, φ),

G3 : (x, y, , u, v, θ, φ) → (x, eεy, u, v, θ, φ),

G4 : (x, y, , u, v, θ, φ) → (x, y + ε, u, v, θ, φ),

G5 : (x, y, , u, v, θ, φ) → (x, y, u + ε, v, θ, φ),

G6 : (x, y, , u, v, θ, φ) → (x, y, u, eεv, θ, φ),

G7 : (x, y, , u, v, θ, φ) → (x, y, u, v + ε, θ, φ),

G8 : (x, y, , u, v, θ, φ) → (x, y, u, v, θ + ε, φ),

G9 : (x, y, , u, v, θ, φ) → (x, y, u, v, θ, φ + ε).

4. Reductions to ordinary differential equations and solutions

Now we look for the similarity solutions with respect to the generator

X2 + X4 =
∂

∂x
+

∂

∂y
. (4.1)

The group representing translation symmetry for this generator is

G : (x, y, , u, v, θ, φ) → (x + ε, y + ε, u, v, θ, φ) , (4.2)

where ε is the infinitesimal Lie group parameter. The similarity transformations of
this group are

η = x− y, u = F1(η), v = F2(η), θ = F3(η), φ = F4(η). (4.3)

Substituting these expression in (2.12), we obtain a system of non-linear ordinary
differential equations:

F ′
1 − F ′

2 = 0,

F ′′
1 + (F2 − F1)F ′

1 + GrF3 + GcF4 −MF1 = 0,

1
Pr

(1 + 4R)F ′′
3 + (F2 − F1)F ′

3 = 0,

1
Sc

F ′′
4 + (F2 − F1)F ′

4 = 0.

Integration of this system, we obtain the special solutions of the equations (2.12)
as follows:

u = B1e
−S4η + B2e

−S5η + E1e
−k1η + E2e

−k2η + E3,

v = u−B5,

θ = B3 −
B4

k1
e−k1η,

θ = B6 −
B7

k2
e−k2η.

(4.4)
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where, B1, B2, . . . , B7 are constants of integrations, and

k1 =
a1Pr

1 + 4R
, k2 = a1Sc,

S1 =
B4Gr

k1
, S2 =

B7M

k2
, S3 = B3Gr + B6M,

E1 =
64
S18

(S6 − S10 −M2S1), E2 =
64
S18

(S7 − S11 −M2S2),

E3 =
64
S18

(S8 + S9 + S15 − S12 − S13 − S14 −M2S3).

Here,

S4 =
1
2
(a1 +

√
a2
1 − 4M, S5 = −1

2
(−a1 +

√
a2
1 − 4M,

S6 = a1k2MS1 log(e), S7 = a1k1MS2 log(e),

S8 =
S3S7

S2
, S9 =

S3S6

S1
, S10 = k2

2MS1[log(e)]2,

S11 = k2
1MS2[log(e)]2, S12 = a2

1k1k2S3[log(e)]2,

S13 =
S3S11

S2
, S14 =

S3S10

S1
,

S15 = a1k1k2S3[log(e)]3, S16 =
k2S15

k1
,

S17 = k2
1k

2
2S3[log(e)]4, S18 = −64S4S5S19S20,

S19 = [S4 − k1[log(e)]][−S5 + k1[log(e)]],

S20 = [S4 − k2[log(e)]][−S5 + k2[log(e)]].

5. Discussion

The system of equations (2.11) with the boundary conditions (2.10) are solved
numerically by the Runge-Kutta method with Shooting Techniques. Results are
obtained for various values of the parameters governing the problem. Figures 2-6
display the results for velocity, temperature and concentration profiles for different
values of the parameters associated with the governing problem. We observe that
the velocity increases as M and Gr increase as shown in Figs. 2(a) and 4(a). In
Fig. 6(a), we note that at R = 0 the velocity curve is higher than the other velocity
curves, and at R 6= 0 the velocity increases as R increases. It is noticed that the
velocity profiles not change as the Prandtl number Pr changes (see Fig. 3(a)). Fig.
5(a) shows that the velocity profiles slowly decrease as Gc increases until maximum
velocity then increase far away the plate. Figures 2(b), 3(b), 4(b), 5(b) and 6(b)
show the temperature profiles, there is no change in the temperature with different
values of Gc in fig. 5(b), but in fig. 6(b) for R 6= 0 the temperature increases
as R decreases. Figures 2(c), 3(c), 4(c), 5(c) and 6(c) display the results of the
concentration profiles, we observe that in Fig. 2(c) the concentration increases as
M increases but in Fig. 6(c) it increases as R decreases.

Also, in this work we have presented similarity reductions, which are Lie point
transformation, since the infinitesimals ξ1, ξ2, µ

1, µ2, µ3, µ4 depend only on the
independent variables x, y and the dependent variables u, v, θ, φ, but not on the
derivatives of the dependent variables (if the transformations also depend on the
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derivative of the dependent variables, then the associated symmetries are known as
Lie-Backlund symmetries).

Explicit solutions of the boundary layer equations (2.12) are presented in (4.4).

Acknowledgement. The authors are grateful to the EJDE editor, for his encour-
agement during the review of the original manuscript.
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Figures

Figure 1 shows the coordinate system and the flow model.
Figures 2a-2c show the effect of the magnetic parameter M on: (a) F1, (b) F3 and
(c)F4, with Pr = 0.733, Gr = 0.1, Gc = 0.1, Sc = 0.1 and R = 0.
Figures 3a-3c show the effect of Prandtl number Pr on: (a) F1, (b) F3 and (c) F4,
with M = 1, Gr = 0.01, Gc = 0.01, Sc = 1 and R = 1.
Figures 4a-4c show the effect of Grashof number Gr on: (a) F1, (b) F3 and (c) F4,
with M = 1, Pr = .733, Gc = 0.01, Sc = 1 and R = 1.
Figures 5a-5c show the effect of mass Grashof number Gc on: ((a) F1, (b) F3 and
(c) F4, with M = 1, Gr = 0.01, Pr = 0.733, Sc = 1 and R = 1.
Figures 6a-6c show the effect of Radiation parameter R on: (a) F1, (b) F3 and (c)
F4, with M = 0.1, Gr = 0.1, Gc = 0.1, Sc = 0.1 and Pr = 0.733.
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                 Fig1.:  Coordinate system and flow model 
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