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SOME PROPERTIES OF SOLUTIONS TO POLYNOMIAL
SYSTEMS OF DIFFERENTIAL EQUATIONS

DAVID C. CAROTHERS , G. EDGAR PARKER,

JAMES S. SOCHACKI, PAUL G. WARNE

Abstract. In [7] and [8], Parker and Sochacki considered iterative methods
for computing the power series solution to y′ = G ◦ y where G is a polynomial
from Rn to Rn, including truncations of Picard iteration. The authors demon-
strated that many ODE’s may be transformed into computationally feasible
polynomial problems of this type, and the methods generalize to a broad class
of initial value PDE’s. In this paper we show that the subset of the real an-
alytic functions A consisting of functions that are components of the solution
to polynomial differential equations is a proper subset of A and that it shares
the field and near-field structure of A, thus making it a proper sub-algebra.

Consequences of the algebraic structure are investigated. Using these results
we show that the Maclaurin or Taylor series can be generated algebraically for
a large class of functions. This finding can be used to generate efficient numer-

ical methods of arbitrary order (accuracy) for initial value ordinary differential

equations. Examples to indicate these techniques are presented. Future ad-
vances in numerical solutions to initial value ordinary differential equations

are indicated.

1. Introduction

G : Rn → Rn is an Rn-polynomial if each component of G is a polynomial
functional on Rn. A polynomial system is an autonomous initial value system of
differential equations of the form

y′ = G ◦ y, y(a) = b

for some Rn-polynomial G, a ∈ R, and b ∈ Rn. Let A be the set of real-analytic
functions. An element f ofA is said to be projectively polynomial if f is a component
of the solution to a polynomial system. We denote the collection of all projectively
polynomial functions by P. Pa will denote those elements of P with initial condition
at a ∈ R.

In [7] and [8], Parker and Sochacki showed that many differential equations
may be re-written as polynomial systems, and also gave efficient algorithms for
the numerical solution of these systems. In this paper, we further explore the
properties of solutions to such systems, and we begin by classifying elements of P
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according to the dimension of the polynomial system and degree of the underlying
polynomial for which they are components of the solution. We show in Theorem 1
that every element of P is the solution to a system of at most second-degree. In
Theorem 2, we show that there are real-analytic functions that are not elements of
P and establish that P shares the field and near-field structure of the real-analytic
functions, making it a proper subalgebra in both senses. In Theorem 3, we use
Gröbner basis techniques to show that membership of a particular function in P
is equivalent to that function being a solution to a single higher order polynomial
differential equation in a single variable. Example 5 will use this result to show how
a wide range of systems of differential equations may be “de-coupled” to produce
equivalent equations in a single variable.

Note that elementary facts about differential equations show that P contains the
functions sine, cosine, exponential, and polynomials. In [7] and [8], it was shown
that P is closed under addition, multiplication, and function composition. Theorem
4 below shows that local inverses of elements of P are also in P. Function r defined
by r(t) = 1

t is the solution to

r′ = −r2; r(1) = 1

and thus r ∈ P. If h(t) = tp for p ∈ R, we note that h and r are the solutions to
the system

h′ = phr

r′ = −r2

h(1) = 1, r(1) = 1

so that h ∈ P. Hence, P includes all algebraic combinations and local inverses of
the elementary functions. As an illustration of how large is the class of differential
equations that may be transformed into polynomial form, Theorem 5 will demon-
strate that if f ∈ P and y is a solution to the differential equation y′ = f ◦ y, then
y ∈ P.

Finally, in Theorem 6 we demonstrate cosets for P by ∗ and ◦ can intersect
only in elements of P except when represented by the respective identity elements.
Applications that are consequences of the algebraic structure are suggested.

We use the development discussed in the last paragraph to show that we can use
Cauchy’s theory for the analytic solution to an initial value ordinary differential
equation with analytic generator and Cauchy products to improve on the methods
presented in [7] and [8]. We give examples to show how the theory presented can
be used in a numerical or symbolic environment. As a matter of fact, one can build
a computing environment that does strictly polynomial arithmetic to any order of
accuracy desired. The need to have Maclaurin or Taylor polynomials stored in a
computer library is only necessary for the initial conditions since we can generate
the Maclaurin and Taylor polynomials for the solution to an initial value ordinary
differential equation with polynomial right hand side to any degree desired with
one algorithm.

2. P and Polynomial Degree

For f ∈ P, if f is a component of the solution to y′ = G ◦ y, y(a) = b, then
G will be called a generator for f . Pi,k ⊆ P will denote those elements having a
polynomial generator whose domain has dimension that is less than or equal to i
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and whose (polynomial) degree is less than or equal to k. Pk will denote ∪i∈NPi,k.
For f ∈ P, a particular system of differential equations for which f is a component
of the solution will be called a projection for f .

In [7] and [8] examples were given that indicate that lower degree, higher di-
mension projections may be more numerically robust than related lower dimension,
higher degree projections. In [7], a first degree projection was shown for each poly-
nomial, and P1 is thus dense in P. The following theorem shows that every element
of P has a second-degree projection.

Theorem 1. P = P2.

Proof. Suppose f ∈ P, and that f is the first component of a solution to

y′ = G ◦ y = G(y1, . . . , yn), y(a) = b.

If {G1, . . . , Gn} is the set of components of G, let Nj denote the largest power of
yj that appears in any of the polynomials {G1, . . . , Gn}. We make the substitution

vi1,...,in = yi1
1 yi2

2 . . . yin
n

with each 0 ≤ ij ≤ Nj and at least one of ij > 0.
Note that under this substitution y1 = v1,0,...,0, y2 = v0,1,0,...,0, and so on. Sub-

stituting into each of the original equations for y′j yields a first degree equation in
the variables {vi0,...,in}, in which the left side is v′i0,i1,...,in

with only one ij = 1 and
the remaining ij = 0.

This set of equations may be augmented with additional equations of at most
second degree to form a new polynomial system by adding an additional equation
for each of the remaining vi1,...,in

variables that does not correspond to one of the
original yj . For these variables, we have formally

v′i1,...,in
=

n∑
k=0

ikvi1,...,ik−1,...,iny′k.

Since each y′k may be replaced under the substitution by a linear combination of
the variables {vi0,...,in

}, each equation in the new system has degree at most two. f
is the first component (corresponding to v1,0,...,0) of a solution to this system. �

3. Characterization of P

Recall that Pa denotes those elements of P with initial condition at a ∈ R. In
[7], Pa is shown to be closed under addition and multiplication, and that f ◦g ∈ Pa

for g ∈ Pa and f ∈ Pg(a). For any fixed real number α, suppose that h is defined
by

h(t) =
1

t− α
, t > α.

Then h ∈ Pa for any a > α. This guarantees the local invertibility of any non-
zero element of P under multiplication. Thus P shares with A both its local field
properties under addition and multiplication and its local near-ring properties under
addition and function composition. First we show that P is a proper subset of A.

Theorem 2. A 6= P.
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Proof. We will find an analytic function u1 /∈ P by specifying values for u
(j)
1 (0),

|u(j)
1 (0)| ≤ 1 for the series expansion of u1 in such a way that u1 /∈ Pm,2 for any m.
It is possible to choose values for u

(j)
1 (0), 0 ≤ j ≤ 4, |u(j)

1 (0)| ≤ 1, so that any
function whose 4-th degree Maclaurin polynomial is∑

j≤4

u
(j)
1 (0)
j!

tj

is not in P1,2. To show this, note that u1 ∈ P1,2 implies that there are numbers
a0, a1, a2 so that

u′1 = a0 + a1u1 + a2u
2
1

Differentiate three times:

u′′1 = a1u
′
1 + 2a2u1u

′
1

u′′′1 = a1u
′′
1 + 2a2(u1u

′′
1 + u′21 )

u
(4)
1 = a1u

′′′
1 + 2a2(u1u

′′′
1 + 3u′1u

′′
1)

Any choice of values for u
(j)
1 (0), 0 ≤ j ≤ 4 yields a system of 4 (linear) equations

in the unknowns a0, a1, a2. It is of course possible to make this choice so that
the system of equations has no solution (e.g. u

(j)
1 (0) = 1 for j = 0, 1, 2, 3 and

u
(4)
1 (0) = 1

2 ). For any such function u1, there is no appropriate differential equation
which u1 satisfies, and we conclude u1 /∈ P1,2.

Now assume that for a particular value of K, values for u
(j)
1 (0), 0 ≤ j ≤ nK ,

|u(j)
1 (0)| ≤ 1, have been determined so that any function whose nK degree Maclaurin

polynomial is ∑
r≤nK

u
(r)
1 (0)
r!

tr

is not in PK,2. In order that u1 ∈ PK+1,2, it would be necessary that there exist real
analytic functions u2, . . . , uK+1 and numbers aijk, bij , ci with 0 ≤ i, j, k ≤ K + 1,
so that ui, 1 ≤ i ≤ K + 1 satisfy the system

u′i =
K+1∑
j=1

K+1∑
k=1

aijkujuk +
K+1∑
j=1

bijuj + ci.

Evaluate u′i at 0 to obtain
u′i(0) = Q1,i

where each Q1,i is a polynomial in the unknowns {aijk, bij , ci, u2(0), . . . , uK+1(0)}
(let M represent the number of these unknowns).

Differentiate each of the u′i, evaluate at 0, and replace each u′i(0), 2 ≤ i ≤ K + 1
with the corresponding Q1,i to obtain

u′′i (0) = Q2,i

where each Q2,i is a polynomial in the same set of M unknowns. Proceeding in
this way, we obtain a set of polynomial equations

u
(r)
i (0) = Qr,i , 1 ≤ r ≤ nK

for 1 ≤ i ≤ K + 1 (note that the left side of the equations with i = 1 are already
defined). We will consider solutions in the M unknowns to the equations whose left
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side is u
(j)
1 (0). These equations determine a (possibly empty) solution set S ⊆ CM .

Let dim(S) denote the dimension (as an algebraic variety) of S in CM . Note that
dim(S) < M .

Differentiate u
(nK)
1 . Evaluate at 0 and replace each u

(nK)
i (0), 2 ≤ i ≤ K + 1

with QnK ,i as before to obtain a polynomial equation in the M unknowns

u
(nK+1)
1 (0) = QnK+1,1

with u
(nK+1)
1 (0) not yet determined. For any choice of u

(nK+1)
1 (0), the system of

equations
u

(r)
1 (0) = Qr,1 , 1 ≤ j ≤ nK + 1

determines a solution set S∗ ⊆ S. u
(nK+1)
1 (0) may be chosen so that dim(S∗) <

dim(S) as follows: Divide S into (a finite number) of irreducible components (as in
[6]). Choose a point from each component, and find u

(nK+1)
1 (0) with |u(nK+1)

1 (0)| ≤
1 different from the values of QnK+1,1 at these points. For this u

(nK+1)
1 (0), the

intersection of S∗ with each component of S is strictly contained in each component,
and by [6], Theorem 2.15, we have dim(S∗) < dim(S).

Continue as above, adding a sufficient number of additional polynomial equations

u
(r)
1 (0) = Qj,1 , j > nK + 1

where each new polynomial reduces the dimension of the solution set, to produce
choices for u

(nK+1)
1 (0), . . . , u(n(K+1))

1 (0) so that the resulting solution set in CM is
empty. Thus, for any function whose n(K+1) degree Maclaurin polynomial is∑

r≤n(K+1)

u
(r)
1 (0)
r!

tr

it is impossible that u1 ∈ PK+1,2. We may proceed as above to inductively construct
u1 so that u1 /∈ Pn,2 for any n, noting that |u(r)

1 (0)| ≤ 1 for all r guarantees the
convergence of the series. �

Next, we provide an alternative characterization of the elements of P. 1 One
consequence of the following theorem is the possibility of “de-coupling” any system
of differential equations that may be re-cast as a polynomial system, and writing a
single differential equation for each of the original variables. (See Example 5.)

Theorem 3. u ∈ P if and only if for some n there is a polynomial Q in n + 1
variables so that Q(u, u′, . . . , u(n)) = 0.

Proof. (⇒) If u is projectively polynomial, then there are functions v1, . . . , vn−1

and polynomials P0, . . . Pn−1 so that

u′ = P0(u, v1, . . . , vn−1),

v′j = Pj(u, v1, . . . , vn−1)

for j = 1, . . . , n − 1. Formally differentiate both sides of the first equation to find
u′′ and substitute for u′, . . . , v′n−1 in the right side to write u′′ as a polynomial
in terms of u, . . . , vn−1. Repeat this procedure several times on the result to find
u′′′, . . . , u(n), obtaining:

u(j) = P ∗
j (u, v1, . . . , vn−1)

1The authors thank Professor Carter Lyons for his contributions to this theorem.
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for j = 2, . . . , n. For convenience we will rename P0 = P ∗
1 and let

P ∗
0 (u, v1, . . . , vn−1) = u so that u(j) = P ∗

j (u, v1, . . . , vn−1) for j = 0, . . . , n.
For the moment we will treat the “u” and “v” functions as strictly algebraic

objects, and the above as polynomial equations in 2n + 1 variables:

{v1, . . . , vn−1, u, u(0), u′, . . . , u(n)}

We distinguish between u and u(0) (as algebraic objects), and will assume this order
of the variables in what follows. We seek a polynomial differential equation in the
last n + 1 variables

{u(0), u′, . . . , u(n)}
in which the equation is satisfied by all points given by a solution to the original
system of differential equations. To this end, we wish to algebraically manipulate
the above set of equations to eliminate the variables {v1, . . . , vn−1, u}. Let I denote
the ideal in the set of all polynomials in {v1, . . . , vn−1, u, u(0), u′, . . . , u(n)} generated
by the collection

{u(j) − P ∗
j , j = 0, . . . , n},

and let In be those elements of I that involve only the last n + 1 variables
{u(0), u′, . . . , u(n)}. In is referred to as the the nth elimination ideal. The equations
{u(j) = P ∗

j (u, v1, . . . , vn−1), j = 0, . . . , n} are a parameterization for an algebraic
variety V in Cn+1. Here the term variety denotes a collection of points in Cn+1

determined by a set of polynomial equations in {u(j)}. The points in Cn+1 with
coordinates u(j) determined by allowing the parameters {v1, . . . , vn−1, u} to vary in
Cn generate (in an alternate way) a variety for some set of polynomial equations
in {u(j)}, technically the smallest variety containing the points given by the pa-
rameterization, in case these points do not fill up the smallest variety containing
them. In the language of algebraic geometry, we seek an implicitization that will
provide the polynomial equations in {u(j)} alone defining V , with the parameters
eliminated. Applying Gröbner basis elimination techniques with a lexicographic
ordering determined by our order of the variables above, we conclude that In con-
tains non-zero elements. Specifically, by Chapter 3, Section 3, Theorem 1 of [3], if
G is a Gröbner basis for I, then In∩G is a Gröbner basis for In. The comments in
[3] following this theorem describe the specifics of the algorithm for eliminating the
variables {v1, . . . , vn−1, u}. A basis element Q ∈ In ∩G gives us the appropriate
differential equation Q(u(0), u′, . . . , u(n)) = 0 (and at this point we may for conve-
nience identify u(0) with u). In this way, the resulting Gröbner basis provides an
equation in {u(0), u′, . . . , u(n)} that includes in its solution set any solution to the
original (parameterized) equations {u(j) = P ∗

j (u, v1, . . . , vn−1)}
To prove (⇐), suppose that u is a solution to

Q(u, u′, . . . , u(n)) = 0

for some polynomial Q. We introduce new variables by letting

vj = u(j)

for j = 0, . . . , n, noting that u = v0. The above polynomial equation becomes

Q(v0, v1, . . . , vn) = 0.

Note that for each i, ∂Q
∂vi

is a polynomial in the collection {vj}, as are the second
partials. We introduce one additional variable w corresponding to 1/ ∂Q

∂vn
. The
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desired polynomial system is then

v′j = vj+1, j = 0, . . . , n− 1

v′n = −w

n−1∑
j=0

∂Q

∂vj
vj+1

w′ = −w2(
n−1∑
j=0

∂2Q

∂vj∂vn
vj+1 +

∂2Q

∂v2
n

(−w
n−1∑
j=0

∂Q

∂vj
vj+1)).

�

The following theorem shows that P is a local sub-near-field of A by showing
that local inverses under composition of elements of P are elements of P.

Theorem 4. Suppose f ∈ Pa, f ′(a) 6= 0 and f−1 is a local inverse for f in a
neighborhood of a. Then f−1 ∈ Pf(a).

Proof. Let f ∈ Pa with local inverse f−1 in a neighborhood of a. There is an open
interval U over which f has a non-zero derivative. Since f ∈ Pa, we have f ∈ Pa

n,2

for some n by Theorem 1. For convenience, we let f1 = f , and note that there are
functions fi, 2 ≤ i ≤ n and numbers aijk, bij , ci with 1 ≤ i, j, k ≤ n, so that

f ′i =
n∑

j=1

n∑
k=1

aijkfjfk +
n∑

j=1

bijfj + ci.

Note that if we differentiate the above and replace every resulting occurrence of
f ′j , f

′
k in the right side with a corresponding polynomial in fj , fk, we may note that

f ′′i is a polynomial in the original functions. If t is an element of the range of f
restricted to U , then

f ′ ◦ f−1(t)(f−1)′(t) = 1

or equivalently

(f−1)′(t) =
1

f ′ ◦ f−1(t)
.

Also note that

(
1

f ′ ◦ f−1
)′ = −(

1
f ′ ◦ f−1

)2((f ′′ ◦ f−1)(f−1)′) = −(
1

f ′ ◦ f−1
)3(f ′′ ◦ f−1).

In the last expression, it is possible to replace (f ′′ ◦ f−1) with a polynomial in the
collection {fi ◦ f−1}.

We now consider a system of polynomial equations in f−1
1 , 1

f ′◦f−1
1

, and {fi ◦

f−1, 1 ≤ i ≤ n}. From the above, we see that (f−1)′ and 1
f ′◦f−1

1

′ may be expressed
as polynomials in this collection of functions. In addition,

(fi ◦ f−1)′ = (f ′i ◦ f−1)(f−1)′

may be expressed as a polynomial in this collection of functions by replacing f ′i
with

∑n
j=1

∑n
k=1 aijkfjfk +

∑n
j=1 bijfj + ci �

The above theorem guarantees that P, like A, is a local near-field for + and
◦. In Section 5, we will see that reasonably tractable projections can occur when
considering certain inverse problems.
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A result of Cauchy ([2], p. 169, Corollary 2) shows that if G is real-analytic then
the solution to

y′ = G ◦ y

must also be real-analytic on some open interval containing its initial condition.
Note that a computation similar to that in the proof of the preceding theorem
shows that if f is real-analytic, f ′ is not 0 on an open interval and g is the local
inverse of f then

f ′(t) =
1

g′(f(t))
.

That is, the converse of Cauchy’s theorem is true. 2

¿From classical analysis if f is a real-analytic function, y0 is interior to interval
of convergence of f , and y is a solution to

y′ = f ◦ y; y(0) = y0

then y is also real analytic. The following theorem shows that an analogous state-
ment is also true with “real analytic” replaced by “projectively polynomial,” demon-
strating something of the range of non-polynomial differential equations that may
be transformed into polynomial systems.

Theorem 5. Suppose that f ∈ Py0 . If y is a solution to

y′ = f ◦ y; y(0) = y0

then y ∈ P0.

Proof. Since f ∈ Py0 we may assume there are n Rn-polynomials Qj so that that
f is the first component (setting f1 = f) of the solution to the system

f ′j = Qj(f1, . . . , fn); fj(y0) = bj , j = 1, . . . , n.

Thus

(fj ◦ y)′ = (f ′j ◦ y)y′

= (Qj(f1, . . . , fn) ◦ y)(f1 ◦ y)

= Qj(f1 ◦ y, . . . , fn ◦ y)(f1 ◦ y).

The above along with the original equation y′ = f1 ◦ y provides a polynomial
system for which the components of the solution are y and fj ◦ y, j = 1, . . . , n.
Hence y ∈ P0. �

4. The intersecting coset property

The previous section establishes that P is a proper sub-algebra of A both as
a local field by + and ∗ and as a local near-field by + and ◦. In this section
we examine consequences of the fact that P − {0} under ∗ and the non-constant
elements of P under ◦ are local groups.

Theorem 6. Suppose that f ∈ C1 is defined in a neighborhood of a ∈ R and that
Pf(a) ◦ f ∩ f ∗ Pa 6= {kf |k ∈ R}. Then f ∈ P.

2The authors thank Professor Peter Lax for his insight on this observation.
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Proof. Since constant functions are elements of P, suppose that f is not a constant
function and that g ∈ Pf(a) and h ∈ Pa satisfy the following equation

g ◦ f = h ∗ f,

with h not a constant function. Since g ∈ Pf(a), there are functions gj , 2 ≤ j ≤ n
defined in a neighborhood of f(a) (and we let g1 = g for convenience) so that each
g′i may be written as a polynomial expression in the collection {gj}. Since h ∈ Pa,
we may similarly find a collection hj , 2 ≤ j ≤ m defined in a neighborhood of a
(letting h = h1) satisfying a similar system of polynomial differential equations.

We restrict attention to an interval containing a that is in the common domain
for f and the collections {gj ◦ f} and {hj}. Because g ◦ f = h ∗ f , we have

(g′ ◦ f)f ′ = h′f + hf ′.

If g′ ◦ f − h is not identically zero, let U be an open interval on which g′ ◦ f − h is
non-zero. Then for t ∈ U we have

f ′(t) =
h′(t)f(t)

g′ ◦ f(t)− h(t)
.

Consider a system of polynomial equations involving f , 1
g′◦f−h , {gj ◦ f, 1 ≤ j ≤ n},

and {hj , 1 ≤ j ≤ m}. The above shows that

f ′ = h′1f
1

g′ ◦ f − h

and we may express f ′ as a polynomial in this collection by replacing h′1 with the
corresponding polynomial in the hj . Also

(
1

g′ ◦ f − h
)′ = −(

1
g′ ◦ f − h

)2(((g′′ ◦ f) ∗ f ′)− h′).

Since g′ = g′1, g′ may be written as a polynomial in the collection {gj}. Differenti-
ating both sides and replacing each g′j on the right side with a polynomial in the
collection {gj}, we see that g′′ may be written as a polynomial in the collection
{gj}. h′ = h′1 may be written as a polynomial in the collection of {hj}. Thus, the
above equation shows that ( 1

g′◦f−h )′ may be written as a polynomial in f , 1
g′◦f−h ,

{gj ◦ f |1 ≤ j ≤ n}, and {hj |1 ≤ j ≤ m}. Finally, since

(gi ◦ f)′ = (g′i ◦ f) ∗ f ′

we note again that g′i may be replaced by a polynomial in the collection {gj}, so
that g′i may also be written as a polynomial in f , 1

g′◦f−h , {gj ◦ f, 1 ≤ j ≤ n}, and
{hj , 1 ≤ j ≤ m}.

The above shows that f ∈ P as long as (g′ ◦ f) − h is not identically 0 (and
note that f ∈ Pa in case the interval U contains a). Otherwise, since in this case
g′ ◦ f = h we have f = (g′)−1 ◦ h and thus f ∈ Pa, as long g′ is not constant. But
g′ constant would imply that h is constant in the original relation g ◦ f = h∗ f . �

5. Examples

Example 1. Consider the question of finding a solution to the polynomial equation∑n
k=0 aktk = 0, an 6= 0. Let f be the polynomial function defined by

f(t) =
n∑

k=0

aktk.
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¿From the proof of Theorem 4 we conclude

(f−1)′ =
1

f ′ ◦ f−1

and

(
1

f ′ ◦ f−1
)′ = −(

1
f ′ ◦ f−1

)3(f ′′ ◦ f−1).

Thus, any local inverse for f is a solution to the system

x′ = y

y′ = −y3
n∑

k=2

k(k − 1)xk−2

with the particular local inverse determined by the initial conditions. If f ′(p) 6= 0
and we use the initial conditions x(f(p)) = 0 and y(f(p)) = 1

f ′(p) , then computation
of x(0) solves the polynomial equation. Notice that the application of the methods
of [7] to this system provides an alternative to the classical power series methods
discussed in [1]. We have a qualitative guarantee associated with this computation;
we will find the zero of f in the portion of the domain containing p over which f
is invertible, if there is such a point, or else the second component will increase
or decrease without limit. One may compare this with Newton’s method, where
conditions on the geometry of the graph of the function modelling the equation
are necessary to guarantee the convergence to a particular zero of the equation
and failure of the iteration is no guarantee of non-existence of a zero within the
component of the initial guess.

According to Theorem 1 of this paper, if we have an algorithm to generate the
Maclaurin polynomial for the solution to the initial value problem

y′ = Q ◦ y, y(0) = a

where Q is linear or quadratic on Rn, and a ∈ Rn. Then we can generate the
Maclaurin polynomial for the solution to any initial value ordinary differential equa-
tion (IVODE) with a polynomial right hand side. From Theorem 1 of [7] we know
that the Picard iterates contain the Maclaurin polynomial for the solution to the
initial value ordinary differential equation, and the proof in that paper shows that
only that part of the iterate which is the Maclaurin polynomial need be carried
forward to continue the process. In what follows, we show that we can further
modify the Picard iteration process so that the Picard iterates generate the terms
of the Maclaurin polynomial algebraically.

We illustrate the process in R1, taking Q(y) = A + By + Cy2 and y(0) = α.
Start the Picard process with

P1(t) = α = M1(t)

and then define

Pk+1(t) = α +
∫ t

0

Q(Pk(s))ds = α +
∫ t

0

(A + BPk(s) + CPk(s)2)ds.

This integral equation is equivalent to

P ′
k+1(t) = A + BPk(t) + CPk(t)2 = Q(Pk(t)) y(0) = α.
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In [7] we showed that

Pk(t) = Mk(t) +
2k−1∑
n=k

bntn,

where

Mk+1(t) =
k∑

n=0

antn

is the degree k Maclaurin polynomial for the solution y to the initial value ordinary
differential equation. One can use the integral equation or differential equation for
Pk+1(t) to solve for ak and bk. Since a0 = α and a1 = Q(α), this only needs to be
done for k ≥ 2. Using Cauchy products this leads to

P ′
k+1 =

k∑
n=1

nantn−1 +
2k+1−1∑
n=k+1

nbntn−1

=
k−1∑
n=0

(n + 1)an+1t
n +

2k+1−1∑
n=k+1

nbntn−1

= A + B
2k−1∑
n=0

bntn + C
2k−1∑
n=0

bntn
2k−1∑
n=0

bntn

= A + B
2k−1∑
n=0

bntn + C
2k−1∑
j=0

2k−1∑
n=0

bjbntn+j

= A + B

2k−1∑
n=0

bntn + C

2(2k−1)∑
n=0

dntn,

where bn = an for n ≤ k and dn =
∑n

j=0 bjbn−j for 0 ≤ n ≤ 2k − 1 and

dn =
∑2k−1

j=n−2k+1 bjbn−j for 2k ≤ n ≤ 2(2k − 1). By equating like powers it is
straightforward to show that

kak = Bak−1 + C
k−1∑
j=0

ajak−1−j .

That is,

Mk+1(t) = Mk(t) +
(Bak−1 + C

∑k−1
j=0 ajak−1−j)

k
tk.

That is, we can obtain the Maclaurin polynomial algebraically. This is easily ex-
tended to any polynomial ODE or system of polynomial ODE’s. Therefore, for
ODE’s with polynomial right hand side the Maclaurin coefficients of the solution
can be obtained algebraically with the same algorithm. This algorithm we call the
Algebraic-Maclaurin algorithm. The Cauchy result [2, p. 169, Corollary 2] men-
tioned after the proof of Theorem 4 shows that this algorithm gives the analytic
solution to the initial value ordinary differential equation. One can also generate
a formula for the b′ns for n > k using the above results. In a future paper, we ex-
ploit this to give convergence rates and error estimates for polynomial differential
equations. It is also easy to see that one can modify the above algorithm to work
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for any polynomial system. In the examples below we do this in our numerical
environments.

We now present three examples using the Algebraic-Maclaurin algorithm. Since
this algorithm is totally algebraic, we can generate as many Maclaurin coefficients
as wanted at any time step in the algorithm. Therefore, we have a method that
can change the order (degree) of accuracy on the ’fly’. We compare numerical
results from this method with numerical results from the fourth order Runge-Kutta
method.
Example 2. Consider the initial value ordinary differential equation (I):

u′ = −ur; u(0) = α. (5.1)

If we let x1 = u, x2 = ur and x3 = x−1
1 , we obtain (II):

x′1 = −x2; x1(0) = α

x′2 = −rx2
2x3; x2(0) = αr

x′3 = x2x
2
3; x3(0) = α−1.

(5.2)

If we let x4 = x2x3, we obtain (III):

x′1 = −x2; x1(0) = α

x′2 = −rx2x4; x2(0) = αr

x′3 = x3x4; x3(0) = α−1

x′4 = (1− r)x2
4; x4(0) = αr−1.

(5.3)

Noticing from this that we do not need the x3 equation, we obtain (IV):

x′1 = −x1x4; x1(0) = α

x′4 = (1− r)x2
4; x4(0) = αr−1.

(5.4)

Since the solution for the original initial value ordinary differential equation can be
obtained from this last IVODE, x1 is in P2,2. We compare the solutions to (5.1)–
(5.4) using the fourth order Runge-Kutta scheme and the Algebraic-Maclaurin algo-
rithm to generate the fourth, fifth and sixth order (degree) Maclaurin polynomials
for (5.2)–(5.4). Of course, the Maclaurin polynomial for u is the same in (5.1)–(5.4).
However, in a numeric environment we update in t using numerical values which
leads to different numerical values for each method.

In the table below is the error of the results of a simulation with a time step of
0.0625 using fourth order Runge-Kutta on the systems (5.1)–(5.4) and the fourth,
fifth and sixth order Maclaurin polynomial on (5.2)–(5.4) using the algorithm above
with r = 3/2 and x(0) = 1.25. The computing times were essentially the same.
(See Example 4 below where computing times are relevant.) The errors are in
comparison with the exact solution given by Maple using 30 digits of accuracy.
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Time R-K on I R-K on II R-K on III R-K on IV
0.125 7.03864E-08 6.44809E − 07 2.6543E-07 2.36975E-08

Maclaurin on II Maclaurin on III Maclaurin on IV
Fourth Order 5.8797E-07 5.83925E-07 6.42737E-07
Fifth Order 2.30942E-08 2.29035E-08 2.58348E-08
Sixth Order 8.87643E-10 8.78999E-10 1.01714E-09

Time R-K on I R-K on II R-K on III R-K on IV
1.25 7.57602E-08 1.54213E-07 4.93023E-07 3.19551E-08

Maclaurin on II Maclaurin on III Maclaurin on IV
Fourth Order 1.95583E-08 1.51518E-06 8.53911E-07
Fifth Order 1.03188E-08 7.762E-08 3.02237E-08
Sixth Order 7.6610E-10 3.61642E-09 1.06356E-09

It is interesting to note that the fourth and fifth order Maclaurin polynomials are
similar to the fourth order Runge-Kutta results, but that the sixth order Maclaurin
polynomials give noticeable improvement without much labor. It is also interesting
to note that the fourth order Runge-Kutta method performs best on (IV) while the
same is not true for the Maclaurin polynomials. One of the reasons is that different
Maclaurin polynomials are used to update the Maclaurin polynomial for u in (5.2),
(5.3) and (5.4). In a future paper we analyze which polynomial projections give
the ’best’ numerical results.

In the next example we show a projection that gives an interesting way to obtain
an analytic solution and then we use that system to generate numerical results.
Example 3. Consider (I):

x′ = sinx; x(0) = α. (5.5)

We let x2 = sinx and x3 = cos x to obtain (II):

x′ = x2; x(0) = α

x′2 = x2x3; x2(0) = sin(α)

x′3 = −x2
2; x3(0) = cos(α).

(5.6)

Note that in this system one does not have to use the Maclaurin polynomial for
the sine function and that the above algorithm will generate the coefficients of the
Maclaurin polynomial for x without knowing the one for sine. We give numerical
results for these two systems using fourth order Runge-Kutta and fourth, fifth and
sixth order Maclaurin polynomials, but first we show that using the polynomial
system it is easy to generate the solution to the original initial value ordinary
differential equation.

Using the equation for x′2 and x′3 it is seen that x2
2 + x2

3 = 1 so that x′3 = x2
3 − 1

whose solution is

x3 =
1− e2t+2B

1 + e2t+2B
.

¿From this we obtain

x2 =
2et+B

1 + e2t+2B

and since x′ = x2, we finally have

x = 2arctan et+B − 2 arctanB + α,
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where B =
√

1−cos(α)
1+cos(α) . We use this exact solution to compare to our numerical

results.
In the table below is the error of the results of a simulation with a time step of

0.0625 using fourth order Runge-Kutta on the systems (5.5)–(5.6) and the fifth order
Maclaurin polynomial on (5.6) using the algorithm above for the initial condition
x(0) = 31π

32 . The computing times were essentially the same. The errors are in
comparison with the exact solution given by Maple using 30 digits of accuracy.

Time Order R-K on I R-K on II Maclaurin on II
0.125 4 1.443658E − 09 1.35448E-09 1.21177E-09

5 7.6911E-12
6 6.14E-14

2 4 3.6696E-09 3.56877E-09 4.52047E-09
5 6.74697E-11
6 1.1585E-12

In these results it is seen that the polynomial system gives the best results and
that increasing the degree improves the results significantly.

It is well documented that (rational polynomial) Pade’ approximants are valuable
in approximating analytic functions. Pade’ approximants are particularly robust
when approximating a wide class of singular functions. However, very little is found
in the literature regarding the use of Pade approximants in the numerical solution
of differential systems. This is especially true regarding algorithms that operate in
a non-symbolic environment. One contributing factor to this is likely the upfront
cost of generating the Taylor coefficients of the solution of the system, which are re-
quired to create the Pade’ approximants. For a given degree, the Taylor coefficients
would typically be generated by symbolically differentiating the right hand side
of the system multiple times, which characteristically results in computationally
complex expressions that need to be evaluated numerous times throughout the so-
lution procedure. Also, if higher degree approximations are desired, the numerical
algorithm must be recoded to include the additional expressions first derived sym-
bolically from computing higher order derivatives of the right hand side. As shown
in the examples above and documented in [7] and [8], the Algebraic-Maclaurin algo-
rithm generates the Taylor coefficients of the solution of the system in a remarkably
computationally friendly manner. With this method, generating higher (or lower)
degree approximations requires nothing more than a reassignment of a parameter
in a running program, which as mentioned above, gives the user “on the fly” control
over the order of the numerical algorithm. The Algebraic-Maclaurin method serves
as an excellent vehicle to numerically generate Pade’ approximants to the solution
of differential systems, and we refer to this method as the Algebraic-Maclaurin-Pade
(AMP) method.

Consider the following second order nonlinear initial value problem, which can
occur in physical examples. A similar equation arises in the N-body problem, which
has been recently studied in [9] using the results of [7] and [8].
Example 4. (I):

x′′(t) = x3/2 x(0) = 1, x′(0) = 2/
√

5. (5.7)
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For this equation, the explicit solution is

x(t) =
1

(1− 1
2
√

5
t)4

.

Note the singularity in the solution at t = 2
√

5. On letting x1 = x, x2 = x′

x3 = x1/2, and x4 = 1
x3

, we obtain (II):

x′1 = x2; x1(0) = 1

x′2 = x3
3; x2(0) = 2/

√
5

x′3 =
1
2
x4x2; x3(0) = 1

x′4 = −1
2
x3

4x2; x4(0) = 1.

(5.8)

We compare numerical solutions of (5.7) and (5.8) using the fourth order Runge-
Kutta scheme on (5.7), and both the above outlined Algebraic-Maclaurin and AMP
methods to generate various order Maclaurin and Rational polynomial approxi-
mations for (II). The fourth order Runge-Kutta approximation for (I) and the
Maclaurin and Rational polynomial approximations of the first component of (II)
are contrasted against the explicit solution. Of course, the Algebraic-Maclaurin
approximation matches results from employing a standard Taylor/Maclaurin se-
ries numerical method. We present results for relative error and approximate
CPU cost for t “close” to the singularity. If t = 4.4721 the exact solution gives
x(4.4721) = 2.393 . . . E + 20. The table below gives the relative error at several
orders and number of steps on the interval [0, 4.4721].

Method Order Steps Relative Error CPU (secs)
R-K 4 1.E + 05 5.4751E-01 3.00E-01
R-K 4 1.E + 07 2.0309E-07 3.02E+01
R-K 4 1.E + 08 2.3338E-08 3.03E+02

Algebraic-Maclaurin 4 1.E + 05 6.4479E-01 1.15E+00
Algebraic-Maclaurin 32 1.E + 05 2.4705E-06 3.58E+01
Algebraic-Maclaurin 64 1.E + 05 3.7209E-09 1.36E+02

AMP 16 1.E + 03 2.2709E-08 2.80E-01
AMP 36 1.E + 03 4.1217E-10 1.51E+00

Here R-K represents the fourth order Runge-Kutta method, and AMP represents
results from the Algebraic-Maclaurin-Pade method. Notice the only parameter that
can be changed in the fourth order Runge-Kutta method is the number of steps,
but both the Maclaurin, generated by the Algebraic-Maclaurin algorithm, and the
AMP method have parameters for both the order and the number of steps. In the
results above we have kept the number of steps constant merely to emphasize the
impact of the change of order. The results indicate that even though the AMP
algorithm is computationally more expensive per step, the increased accuracy, with
a considerably longer step size, results in significant improvement in overall CPU
costs. It is worth noting that the AMP results above are from an algorithm that uses
full Gaussian elimination with scaled partial pivoting to generate Pade’ coefficients
from known Maclaurin coefficients. There will be a further significant reduction
in CPU costs when a numerically stable algorithm which uses a continued frac-
tion technique is developed and replaces the less efficient full Gaussian elimination
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portion of the AMP algorithm. We could also have posed this IVODE in P9,2 by
making the projection x5 = x2

3, x6 = x2
4, x7 = x2x4, x8 = x2x6 and x9 = x3x5.

Example 5. The proof of Theorem 3 provides an algorithm for “de-coupling”
any system of differential equations that may be recast as a polynomial system.
From Theorem 5 and previous examples, this includes a very wide class of systems
of differential equations constructed from elementary functions. E.g. consider the
system in x and y

x′ = y + exy

y′ = x + 2exy.

To rewrite this in polynomial form, we introduce a new variable u, identifying u
with exy. The system then becomes

x′ = y + u

y′ = x + 2u

u′ = u(x2 + 2xu + y2 + yu)

We compute x′′ and x′′′ in terms of x, y, and u as in the proof of Theorem 3, and
write corresponding polynomials x(j) − P ∗

j (x, y, u) for j = 0, 1, 2, 3.
Using the polynomial computer algebra system Singular ([5]), we apply elimi-

nation techniques to obtain the appropriate Gröbner basis polynomial for the fol-
lowing single (polynomial) differential equation in x alone:

4x7x′ + x6x′
2 + 4x5x′

3 + 2x4x′
4 − 4x3x′

5 + x2x′
6 − 4xx′

7 + 5x7x′′

− 4x6x′x′′ + 9x5x′
2
x′′ − 4x4x′

3
x′′ + 3x3x′

4
x′′ + 4x2x′

5
x′′ − xx′

6
x′′

+ 4x′
7
x′′ − 5x6x′′

2 − 10x4x′
2
x′′

2 − 5x2x′
4
x′′

2 − 20x5x′ + 16x4x′
2

+ 26x3x′
3 − 12x2x′

4 − 18xx′
5 + 4x′

6 − 20x5x′′ + 69x4x′x′′ + 4x3x′
2
x′′

− 74x2x′
3
x′′ + 24xx′

4
x′′ + 17x′

5
x′′ + 60x4x′′

2 − 72x3x′x′′
2 − 16x2x′

2
x′′

2

+ 40xx′
3
x′′

2 − 12x′
4
x′′

2 − 40x3x′′
3 + 18x2x′x′′

3 − 8xx′
2
x′′

3 + 2x′
3
x′′

3

+ 4x5x′′′ + 6x3x′
2
x′′′ − 4x2x′

3
x′′′ + 2xx′

4
x′′′ − 4x′

5
x′′′ + x4x′′x′′′

+ 4x3x′x′′x′′′ + 4xx′
3
x′′x′′′ − x′

4
x′′x′′′ + 32x3x′ − 28x2x′

2 − 20xx′
3

+ 17x′
4 + 20x3x′′ − 48x2x′x′′ + 18xx′

2
x′′ + 4x′

3
x′′ − 19x2x′′

2 + 4xx′x′′
2

+ 14x′
2
x′′

2 − 2xx′′
3 − 8x′x′′

3 + x′′
4 − 16x3x′′′ + 24x2x′x′′′ + 8xx′

2
x′′′

− 18x′
3
x′′′ + 32x2x′′x′′′ − 30xx′x′′x′′′ + 12x′

2
x′′x′′′ + 4xx′′

2
x′′′

− 2x′x′′
2
x′′′ + 4x2x′′′

2 − 4xx′x′′′
2 + x′

2
x′′′

2 − 16xx′ + 16x′
2 − 4x′x′′

+ 16xx′′′ − 16x′x′′′ + 4x′′x′′′ = 0

In an upcoming paper we consider error estimates, convergence rates, and other
implementation issues.
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