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REGULARITY OF WEAK SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS NEAR THE SMOOTH

BOUNDARY

ZDENĚK SKALÁK

Abstract. Any weak solution u of the Navier-Stokes equations in a bounded
domain satisfying the Prodi-Serrin’s conditions locally near the smooth bound-

ary cannot have singular points there. This local-up-to-the-boundary bound-

edness of u in space-time implies the Hölder continuity of u up-to-the-boundary
in the space variables.

1. Introduction

Let Ω be a bounded domain in R3 with a smooth boundary ∂Ω, let T > 0 and
QT = Ω × (0, T ). We consider the Navier-Stokes initial-boundary value problem
describing the evolution of the velocity u = (u1, u2, u3) and the pressure φ in QT :

∂u

∂t
− ν∆u+ u · ∇u+∇φ = 0 in QT , (1.1)

∇ · u = 0 in QT , (1.2)

u = 0 on ∂Ω× (0, T ), (1.3)

u|t=0 = u0, (1.4)

where ν > 0 is the viscosity coefficient. The initial data u0 satisfy the compatibility
conditions u0|∂Ω = 0 and ∇ · u0 = 0 and for our purposes we can suppose without
loss of generality that u0 is sufficiently smooth. The existence of a weak solution
u ∈ L2(0, T ;W 1,2

0 (Ω)3) ∩ L∞(0, T ;L2
σ(Ω)) of (1.1)–(1.4) is well known (see e.g. [3]

or [14]). The associated pressure φ is a scalar function such that u and φ satisfy
the equation (1.1) in QT in the sense of distributions.

Let q > 1. Lq
σ(Ω) denotes the closure of {ϕ ∈ (C∞0 (Ω))3;∇ · ϕ = 0 in Ω} in

(Lq(Ω))3. There exists a continuous projection P q
σ from (Lq(Ω))3 onto Lq

σ(Ω). If ∆
denotes the Laplacian then the famous Stokes operator is defined as Aq = −P q

σ∆.
It is known that −Aq generates a bounded analytic semigroup in Lq

σ(Ω) (see e.g.
[5]).
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In the paper we use both scalar and vector functions and for the sake of simplicity
we denote by S any space S3 of vector functions with the exception of the notation in
Lemma 2.4. We use the standard notation for the Lebesgue spaces Lp(Ω) and their
norms ‖ · ‖p,Ω. The Sobolev spaces are denoted by W k,p(Ω). Sometimes we drop Ω
and write only Lp, ‖ ·‖p and W k,p. Further, if A = B× (t1, t2) then Lp,q or Lp,q(A)
denote the space Lq(t1, t2;Lp(B)) with the norm ‖ ·‖p,q,A or simply ‖ ·‖p,q. Lp,p(A)
is also denoted as Lp(A) or Lp. Cβ(Ω) is the space of Hölder continuous functions
on Ω with the norm ‖f‖Cβ(Ω) = supx∈Ω |f(x)|+supx,y∈Ω,x 6=y |f(x)−f(y)|/|x−y|β .

For (x0, t0) ∈ Ω× (0, T ) and r > 0 we will denote Br = Br(x0) the ball centered
at x0 with radius r, Dr = Dr(x0) = Br(x0) ∩Ω, Qr = Qr(x0, t0) = Dr(x0)× (t0 −
r2, t0 + r2).

A point (x0, t0) ∈ Ω × (0, T ) is called a regular point of a weak solution u if
u ∈ L∞(Qr) for some r > 0. Otherwise, (x0, t0) is called a singular point of u.

In his famous paper (see [9]) J.Serrin proved the following interior regularity
result. If Qr ⊂ QT for some (x0, t0) ∈ QT and r > 0 and a weak solution u of
(1.1)–(1.4) satisfies the Prodi-Serrin’s conditions in Qr, that is

u ∈ Lp,q(Qr),
3
p

+
2
q
< 1, p, q ∈ (1,∞), (1.5)

then u is necessarily a L∞ function on compact subsets of Qr and smooth in the
space variables. This result was extended by M.Struwe in [11] for the case of
p, q ∈ (1,∞), 3/p + 2/q ≤ 1. A local version up to the boundary of the Serrin-
Struwe’s results was proved by S.Takahashi. He showed in [12] and [13] that if
u ∈ Lp,q(Qr), where (x0, t0) ∈ ∂Ω × (0, T ), r > 0, p, q ∈ (1,∞) and 3/p + 2/q ≤ 1
then u ∈ L∞(Qr̃) for any r̃ ∈ (0, r) provided that Br ∩ ∂Ω is a part of a plane.

In this paper we improve the Takahashi’s result in two directions. Firstly, we
show, that ∂Ω can be an arbitrary smooth boundary, that is Br ∩ ∂Ω needn’t be a
part of a plane. Secondly, we show that u is locally a Hölder continuous function
in the space variables up to the boundary in the neighborhood of the point x0.
Precisely, we prove the following theorem.

Theorem 1.1. Let u be an arbitrary weak solution of (1.1)–(1.4), (x0, t0) ∈ ∂Ω×
(0, T ), r > 0. We suppose that u ∈ Lp,q(Qr), where 2/q+3/p = 1 and p, q ∈ (1,∞).
Then

u ∈ L∞(t0 − r̃2, t0 + r̃2;Cβ(Dr̃)) (1.6)

for every β ∈ (0, 1) and r̃ ∈ (0, r).

In [7] Neustupa proved a similar result. He supposed that u ∈ Lq(t1, t2;Lp(U∗r ))
for some r > 0, 0 < t1 < t2 < T , p, q ∈ (1,∞) with 3/p + 2/q = 1, where
U∗r = {x ∈ Ω; dist(x, ∂Ω) < r}. He proved under this assumption that if u is
a weak solution of (1.1)–(1.4) satisfying the strong energy inequality then u ∈
L∞(t1 + ζ, t2 − ζ;W 2+δ,2(U∗ρ )) and ∂u/∂t,∇φ ∈ L∞(t1 + ζ, t2 − ζ;W δ,2(U∗ρ )) for
each δ ∈ [0, 1/2), ρ ∈ (0, r) and such ζ > 0 that t1 + ζ < t2 − ζ.

The proof of the Neustupa’s result was based on the fact (see [7], Lemma 1) that
∂u/∂t,∇φ and their space derivatives of an arbitrary order belong to Lα(t1+ζ, t2−
ζ;L∞(Ω2)) for each α ∈ [1, 2) and ζ ∈ (0, (t2 − t1)/2) if u ∈ Lq(t1, t2;Lp(Ω1)) for
some p, q ∈ (1,∞) with 3/p+2/q ≤ 1, where Ω1 and Ω2 are such sub-domains of Ω
that Ω2 ⊂ Ω1 ⊂ Ω. Using this result together with the cut-off function technique,
it was then possible to show that the right hand side h of the localized equations
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and its space derivatives of an arbitrary order belong to the space Lα(t1 + ζ, t2 −
ζ;L∞(Ω)) for each α ∈ [1, 2) (see [7, (6)]). This regularity of h produced better
regularity of u near the whole boundary ∂Ω which further improved the regularity
of φ and consequently of h. Repeating this procedure several times one of the main
results of [7] presented in the preceding paragraph was obtained.

We assume in Theorem 1.1 that u satisfies the Prodi-Serrin’s conditions only
in a space-time neighborhood of (x0, t0) ∈ ∂Ω × (0, T ). Thus, the cut-off function
technique does not produce in this case the right hand side h which is from the
space Lα(t1 + ζ, t2 − ζ;L∞(Ω2)), α ∈ [1, 2) and the procedure from [7] mentioned
in the preceding paragraph cannot be used. Instead, we use at the beginning the
regularity results of Giga,Sohr (see [5]). They lead, however, to worse regularity
results for u in Theorem 1.1 in comparison with the results from [7].

The local boundary regularity of u was also studied in [2], [8] and [6]. It was
proved in [2] that a suitable weak solution u is bounded locally near the boundary if
u ∈ Lp,q, 3/p+2/q = 1, p, q ∈ (1,∞) and the pressure φ is bounded at the boundary.
Moreover, better regularity of φ gives better local regularity of u. G.A.Seregin pre-
sented in [8] a condition for local Hölder continuity for suitable weak solutions near
the plane boundary which has the form of the famous Caffarelli-Kohn-Nirenberg
condition for boundedness of suitable weak solutions in a neighborhood of an in-
terior point of QT . Finally, in [6] K.Kang studied boundary regularity of weak
solutions in the half-space. He proved that a weak solution u which is locally in the
class Lp,q with 3/p+2/q = 1 and p, q ∈ (1,∞) near the boundary is Hölder contin-
uous up to the boundary. The main tool in the proof of this result is a pointwise
estimate for the fundamental solution of the Stokes system.

2. Auxiliary Lemmas

In this section we present a few lemmas which will be used in the proof of
Theorem 1.1. We consider the Stokes problem:

∂u

∂t
− ν∆u+∇φ = f in QT , (2.1)

∇ · u = 0 in QT , (2.2)

u = 0 on ∂Ω× (0, T ), (2.3)

u|t=0 = 0. (2.4)

It was proved in [5, Theorem 2.8], that if f ∈ Lβ,β′
, where β, β′ ∈ (1,∞), then

there exists a unique solution (u, φ) of (2.1) - (2.4) such that∥∥∂u
∂t

∥∥
β,β′ + ‖Aβu‖β,β′ + ‖∇φ‖β,β′ ≤ c‖f‖β,β′ , c = c(β, β′). (2.5)

Lemma 2.1. Let β, β′ ∈ (1,∞), γ ∈ [β,∞), γ′ ∈ [β′,∞) and

2
β′

+
3
β

=
2
γ′

+
3
γ

+ 1. (2.6)

Then for every f ∈ Lβ,β′
there exists a unique solution u of (2.1)–(2.4) such that

∇u ∈ Lγ,γ′ and

‖∇u‖γ,γ′ ≤ c‖f‖β,β′ , c = c(β, β′, γ, γ′). (2.7)
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Proof. Equation (2.1) can be written as

∂u

∂t
− ν∆u = f −∇φ,

where ‖f − ∇φ‖β,β′ ≤ c‖f‖β,β′ . Lemma 2.1 now follows immediately from the
following Lemma 2.2. �

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Consider the problem

∂u

∂t
− ν∆u = f in QT , (2.8)

u = 0 on ∂Ω× (0, T ), (2.9)

u|t=0 = 0. (2.10)

Then for every f ∈ Lβ,β′
there exists a unique solution u of (2.8)–(2.10) such that∥∥∂u

∂t

∥∥
β,β′ + ‖∇2u‖β,β′ ≤ c‖f‖β,β′ , c = c(β, β′). (2.11)

Moreover, ∇u ∈ Lγ,γ′ and

‖∇u‖γ,γ′ ≤ c‖f‖β,β′ , c = c(β, β′, γ, γ′). (2.12)

Proof. The existence of a unique solution u of (2.8)–(2.10) satisfying (2.11) follows
from [5, Theorem 2.1]. We will prove that u satisfies also (2.12).

Let us suppose at first that Ω is a half space, i.e. Ω = R3
+, where R3

+ = {x =
(x1, x2, x3) ∈ R3;x3 > 0}. We extend f to the whole space R3 in such a way
that f(x1, x2, x3) = −f(x1, x2,−x3) for any x = (x1, x2, x3) ∈ R3 and denote the
extended function by f . Then the unique solution u of (2.8) - (2.10) can be written
as

u(x, t) =
∫ t

0

∫
R3
K(x− ξ, t− τ)f(ξ, τ)dξdτ, (2.13)

where

K(x, t) =
1

23π3/2t3/2
e−

|x|2
4t , x ∈ R3, t > 0.

It is possible to compute that

‖∇K(·, t)‖s,R3 = ct−2+ 3
2s (2.14)

for any s ∈ [1,∞), where c depends only on s. Let u0 ∈ Lβ(R3). If we define

v(x, t) =
∫

R3
K(x− y, t)u0(y)dy,

then

∇v(x, t) =
∫

R3
∇K(x− y, t)u0(y)dy.

There exists s ∈ [1,∞) such that 1/γ = 1/s + 1/β − 1. According to [3, estimate
(9.2), p. 85] and (2.14), we have

‖∇v(·, t)‖γ,R3 ≤ ct−
1
2−

3
2 ( 1

β−
1
γ )‖u0‖β,R3 , c = c(β, γ). (2.15)

It follows from (2.13) that

‖∇u(·, t)‖γ,R3 ≤
∫ t

0

‖
∫

R3
∇K(x− ξ, t− τ)f(ξ, τ)dξ‖γ,R3dτ
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and using (2.15), we get

‖∇u(·, t)‖γ,R3 ≤ c

∫ t

0

(t− τ)−
1
2−

3
2 ( 1

β−
1
γ )‖f(·, τ)‖β,R3dτ. (2.16)

Applying now the Hardy-Littlewood-Sobolev inequality to (2.16) we get

‖∇u‖γ,γ′,R3×(0,T ) ≤ c‖f‖β,β′,R3×(0,T ), c = c(β, β′, γ, γ′)

and the inequality (2.12) for the case Ω = R3
+, that is

‖∇u‖γ,γ′,R3
+×(0,T ) ≤ c‖f‖β,β′,R3

+×(0,T ),

follows immediately.
Let Ω be a smooth bounded domain in R3. Let x0 ∈ ∂Ω be chosen arbitrarily.

Let us choose a local system of coordinates with the origin at x0 and with the axis
x3 perpendicular to ∂Ω and pointing into Ω. Thus, the axes x1 and x2 form the
tangent plane to ∂Ω at the point x0. Let us define for ε > 0

Ωε
x0

= {x = (x1, x2, x3) ∈ R3;
√
x2

1 + x2
2 < ε ∧ ϕ(x1, x2) < x3 < ϕ(x1, x2) + ε},

(2.17)
where the function ϕ describes locally the boundary ∂Ω near the point x0. Let
ψ ∈ C∞(Ω) be a cut-off function such that ψ(x) = 1 if x ∈ Ωε/2

x0 , ψ(x) = 0 if
x ∈ Ω \ Ωε

x0
and ψ(x) ∈ [0, 1] for every x ∈ Ω.

If we put v = ψu then v solves the system

∂v

∂t
− ν∆v = h in QT , (2.18)

v = 0 on ∂Ω× (0, T ), (2.19)

v|t=0 = 0, (2.20)

where h = ψf − 2ν∇ψ · ∇u− ν∆ψu and it follows from (2.11) that

‖h‖β,β′ ≤ c‖f‖β,β′ . (2.21)

Let
Φε

x0
= {x = (x1, x2, x3) ∈ R3;x2

1 + x2
2 < ε ∧ 0 < x3 < ε}

The following equations describe the transformation between Φε
x0

and Ωε
x0

:

x′1 = x1, x
′
2 = x2, x

′
3 = x3 − ϕ(x1, x2). (2.22)

If we define v′ on Φε
x0

by the equation

v′(x′1, x
′
2, x

′
3) = v(x1, x2, x3), (2.23)

then v′ satisfies the equation

∂v′

∂t
− ν∆′v′ = h− ∂2v

∂x2
3

[( ∂ϕ
∂x1

)2 +
( ∂ϕ
∂x2

)2]− 2
∂ϕ

∂x1

∂2v

∂x1∂x3

− 2
∂ϕ

∂x2

∂2v

∂x2∂x3
− ∂v

∂x3

(∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

)
in R3

+ × (0, T )
(2.24)

and the boundary and initial conditions

v′ = 0 on ∂R3
+ × (0, T ), (2.25)

v′|t=0 = 0. (2.26)
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We denote the right hand side of (2.24) by H. v′ is a solution of (2.8) - (2.10) for
Ω = R3

+ with the right hand side H instead of f and according to the first half of
this proof (2.12) holds, that is

‖∇′v′‖γ,γ′ ≤ c‖H‖β,β′ . (2.27)

Since v ∈ Lβ′
(0, T,W 2,β(Ω)) and ‖v‖Lβ′ (0,T,W 2,β(Ω)) ≤ c‖f‖β,β′ - see (2.11), it

follows from (2.21), the smoothness of ϕ and the substitution theorem that

‖H‖β,β′ ≤ c‖f‖β,β′ . (2.28)

Further, the smoothness of the transformation (2.22) gives the inequality

‖∇v‖γ,γ′ ≤ c‖∇′v′‖γ,γ′ . (2.29)

Summing up (2.29), (2.27) and (2.28) we have

‖∇v‖γ,γ′ ≤ c‖f‖β,β′

and thus
‖∇u‖

γ,γ′,Ω
ε/2
x0

≤ c‖f‖β,β′ . (2.30)

The estimate (2.30) can also be proved in the same way for the sets Ωε
I = {x ∈

Ω; dist(x, ∂Ω) > ε}, where ε is an arbitrary positive number. To conclude the proof,
it is now sufficient to realize, that there exist n ∈ N , points xi

0 ∈ ∂Ω, i = 1, 2, 3, · · ·n
and positive numbers ε, εi, i = 1, 2, 3, · · · , n such that

Ω ⊂ ∪n
i=1Ω

εi/2

xi
0
∪ Ω2ε

I .

and use (2.30). �

Another proof of Lemma 2.1. Let the assumptions of Lemma 2.1 be satisfied and
(u, φ) be a unique solution of (2.1) - (2.4) satisfying the inequality (2.5). We use
the integral representation of u(·, t) by means of the semigroup e−Aβt:

u(·, t) =
∫ t

0

e−Aβ(t−τ)(u′ +Aβu)dτ. (2.31)

If α ∈ [0, 1] then

‖Aα
βu(·, t)‖β ≤

∫ t

0

1
(t− τ)α

(‖u′‖β + ‖Aβu‖β)dτ. (2.32)

Let us take α ∈ [1/2, 1] such that 1 + 1/γ′ = α + 1/β′. The Hardy-Littlewood-
Sobolev inequality gives that

‖Aα
βu‖β,γ′ ≤ c(‖u′‖β,β′ + ‖Aβu‖β,β′). (2.33)

It further follows from [10] that

‖Aα
βu‖β ≥ c‖A1/2

γ u‖γ . (2.34)

Let us show now that

the space D(Aη
m) is continuously embedded into the space W 2η,m, (2.35)

if m > 1 and η ∈ (0, 1). It is known that D(Aη
m) = D(Bη

m)∩Lm
σ , where Bm = −∆

is the Laplace operator with zero boundary condition in Lm (see [4], Theorem 3). It
follows from Theorem 1.15.3. in [15], p.103, that D(Bη

m) is the complex interpola-
tion space [Lm, D(Bm)]η, thus D(Bη

m) = [Lm,W 2,m∩W 1,m
0 ]η. Since W 2,m∩W 1,m

0

is continuously embedded into W 2,m, it follows from [1], 2.4.(3), that D(Bη
m) is
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continuously embedded into [Lm,W 2,m]η = W 2η,m and (2.35) is proved. The last
equality follows from [15, Theorem 4.3.1/2, p.315].

The following inequality is a special case of (2.35):

‖A1/2
γ u‖γ ≥ c‖∇u‖γ . (2.36)

The inequality (2.7) now follows from (2.33), (2.34), (2.36) and (2.5) and the proof
of Lemma 2.1 is completed. �

Lemma 2.3. Let 2/q+3/p = 1, p, q ∈ (1,∞), b ∈ Lp,q, 2/θ′+3/θ = 3, p/(p−1) <
θ < 3, θ′ > 2, 1/α = 1/θ − 1/3 and v ∈ L2,∞, ∇v ∈ L2,2, v ∈ Lα,θ′ , ∇v ∈ Lθ,θ′ .
Let r, r′, l, l′ ∈ (1,∞), 1/r = 1/l − 1/p, 1/r′ = 1/l′ − 1/q, r ≥ θ, r′ ≥ θ′ and
h ∈ Ll,l′ . Suppose further that the function v is a weak solution of the linearized
Navier-Stokes system, that is∫ T

0

∫
Ω

(
− ∂ϕ

∂t
−∆ϕ

)
· v dx dt =

∫ T

0

∫
Ω

(h− b · ∇v) · ϕdx dt, (2.37)

∇ · v = 0 in QT , (2.38)

v = 0 on ∂Ω× (0, T ) (2.39)

for every ϕ ∈ C∞0 ([0, T )×Ω), ∇·ϕ = 0. There exists a positive constant ε = ε(l, l′, p)
such that if ‖b‖p,q < ε then

∇v ∈ Lr,r′ and ‖∇v‖r,r′ ≤ c‖h‖l,l′ , (2.40)

∇v ∈ Lm,l′ and ‖∇v‖m,l′ ≤ c‖h‖l,l′ , if l ∈ (1, 3) and
1
m

=
1
l
− 1

3
, (2.41)

∇φ, ∂v
∂t

∈ Ll,l′ and ‖∇φ‖l,l′ ,
∥∥∂v
∂t

∥∥
l,l′

≤ c‖h‖l,l′ , (2.42)

where φ is the pressure associated to v.

Proof. This lemma was proved in [12, Proposition 4.1, Theorem 4.1] for Ω = R3
+.

If Ω is a bounded domain with a smooth boundary, the proof proceeds in the same
way and so we present only the main steps of it.

We suppose without loss of generality that h ∈ C∞0 (QT ). Let further bk ∈
C∞0 (QT ) such that bk → b in Lp,q if k →∞. By [12], Theorem 4.1 and the citation
there, there exists a smooth solution (vk, φk) of the problem

∂vk

∂t
− ν∆k + bk · ∇vk +∇φk = h in QT , (2.43)

∇ · vk = 0 in QT , (2.44)

vk = 0 on ∂Ω× (0, T ), (2.45)

vk|t=0 = 0. (2.46)

If we choose lθ and l′θ so that 1/lθ = 1/θ+1/p and 1/l′θ = 1/θ′+1/q then 1 < lθ ≤ l,
1 < l′θ ≤ l′ and h ∈ Llθ,l′θ . By the application of Lemma 2.1 to the system (2.43) -
(2.46) we get

‖∇vk‖θ,θ′ ≤ c‖h− bk · ∇vk‖lθ,l′θ
≤ c(‖h‖lθ,l′θ

+ ‖bk‖p,q‖∇vk‖θ,θ′), (2.47)

where c is independent of k. If ‖b‖p,q is sufficiently small, we get from (2.47) that
‖∇vk‖θ,θ′ ≤ c‖h‖lθ,l′θ

, ‖vk‖α,θ′ ≤ c‖h‖lθ,l′θ
and consequently, from the sequence
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{vk}k∈N we can select a subsequence which we denote again {vk}k∈N such that

∇vk → ∇ṽ weakly in Lθ,θ′ , (2.48)

vk → ṽ weakly in Lα,θ′ . (2.49)

Using (2.48) and (2.49) it is possible to show that ṽ satisfies the equations (2.37) -
(2.39). It implies that ṽ = v.

Applying again Lemma 2.1 to the system (2.43) - (2.46) we get

‖∇vk‖r,r′ ≤ c‖h− bk · ∇vk‖l,l′ ≤ c(‖h‖l,l′ + ‖bk‖p,q‖∇vk‖r,r′)

and thus

‖∇vk‖r,r′ ≤ c‖h‖l,l′ . (2.50)

It follows from (2.48) and (2.50) that (again after selecting a subsequence) ∇vk →
∇v weakly in Lr,r′ which gives (2.40).
v and its associated pressure φ satisfy the equations (2.43) - (2.46) (with bk

replaced by b) and according to [5], Theorem 2.8 and (2.40) we have∥∥∂v
∂t

∥∥
l,l′

+ ‖∇2v‖l,l′ + ‖∇φ‖l,l′ ≤ c‖h− b · ∇v‖l,l′ ≤ c‖h‖l,l′ . (2.51)

Inequality (2.42) is an immediate consequence of (2.51) and (2.41) follows from
(2.51) and the fact that ‖∇v‖m,l′ ≤ c‖∇2v‖l,l′ if l and m are given by (2.41). The
proof is complete. �

For the proof of the following lemma see e.g. [3, Theorem 3.2, Chap.III.3].

Lemma 2.4. Let D be a bounded Lipschitz domain in R3, Γ be an open subset of
∂D, r ∈ (1,∞), j ∈ N ∪ {0}. There exists a bounded linear operator K = Kj,r :
W j,r

0 (D) →W j+1,r
0 (D)3 such that

(i) ∇ ·Kg = g for all g ∈W j,r
0 (D) such that

∫
D
gdx = 0

(ii) ‖∇j+1Kg‖r ≤ c‖∇jg‖r for all g ∈W j,r
0 (D), c = c(j, r,D)

(iii) suppKg ⊂ D ∪ Γ if supp g ⊂ D ∪ Γ.

In this lemma, W j,r
0 (D) is the completion of C∞0 (D) with respect to the standard

norm of the space W j,r(D). It is possible to show that Kj,r(g) = Kl,s(g) if g ∈
W j,r

0 (D)∩W l,s
0 (D), where r, s ∈ (1,∞) and j, l ∈ N ∪ {0} and so in the rest of the

paper the operator Kj,r is denoted only by K.

3. Proof of Theorem 1.1

In this section, we assume that the hypotheses of Theorem 1.1 are satisfied and
φ is the associated pressure to u. We can suppose without loss of generality that
‖u‖p,q,Qr

is sufficiently small - see ε from Lemma 2.3. Let r̃ ∈ (0, r). Let us localize
the problem (1.1) - (1.4) in a standard way: Let ψ ∈ C∞(QT ) be a cut-off function
such that ψ(x, t) = 0 if (x, t) ∈ QT \Q2r/3+r̃/3, ψ(x, t) = 1 if (x, t) ∈ Qr/3+2r̃/3 and
ψ(x, t) ∈ [0, 1] for every (x, t) ∈ QT . We put w = K(∇ · (ψu)), v = ψu− w. Then
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v satisfies the following system of equations:

∂v

∂t
− ν∆v + u · ∇v +∇(ψφ) = −ν∆ψu− 2ν∇ψ · ∇u+ u · ∇ψu− φ∇ψ

− ∂w

∂t
+ ν∆w − u · ∇w − ∂ψ

∂t
u in QT ,

(3.1)

∇ · v = 0 in QT , (3.2)

v = 0 on ∂Ω× (0, T ), (3.3)

v|t=0 = 0. (3.4)

We denote the right hand side of (3.1) by h and show at first that

h ∈ Ll,l′ , for every l′ ∈ (1, 2), l ∈ (3/2, 3) such that
2
l′

+
3
l

= 3. (3.5)

We will use the global estimates for u and φ derived in [5, Theorem 3.1]:∥∥∂u
∂t

∥∥
q,s

+ ‖∇2u‖q,s + ‖∇φ‖q,s <∞, s ∈ (1, 2), q ∈ (1, 3/2),
2
s

+
3
q

= 4, (3.6)

‖∇u‖h,ρ <∞, h ∈ (1, 3), ρ ∈ (1,∞),
2
ρ

+
3
h

= 3, (3.7)

‖u‖h∗,ρ <∞, h∗ ∈ (3/2,∞), ρ ∈ (1,∞),
2
ρ

+
3
h∗

= 2, (3.8)

‖φ‖r,s <∞, r ∈ (3/2, 3), s ∈ (1, 2),
2
s

+
3
r

= 3. (3.9)

It is supposed in (3.9) that
∫
Ω
φ(x, t)dx = 0 for every t ∈ (0, T ). Thus, let l, l′ satisfy

the conditions from (3.5). We have immediately from (3.9) that φ∇ψ ∈ Ll,l′ . It
follows further from Lemma 2.4 that∥∥∂w

∂t

∥∥
l,l′

=
∥∥ ∂
∂t

(K(∇ψ · u))
∥∥

l,l′
=

∥∥K( ∂
∂t

(∇ψ · u)
)∥∥

l,l′
≤ c

∥∥ ∂
∂t

(∇ψ · u)
∥∥

q,l′
,

where 1/q = 1/l + 1/3. Since 2/l′ + 3/q = 4, we have ∂w/∂t ∈ Ll,l′ by (3.6).
Similarly, ν∆w ∈ Ll,l′ , as follows from Lemma 2.4 and (3.7). Finally,

‖u · ∇w‖l,l′ ≤ ‖u‖p,q‖∇w‖ pl
p−l , ql′

q−l′

and since

‖∇w‖ pl
p−l

= ‖∇K(∇ψ · u)‖ pl
p−l

≤ c‖∇ψ · u‖ pl
p−l

≤ c‖u‖ pl
p−l

,

we have

‖u · ∇w‖l,l′ ≤ ‖u‖p,q‖u‖ pl
p−l , ql′

q−l′
.

Thus, u · ∇w ∈ Ll,l′ as a consequence of 3(p − l)/pl + 2(q − l′)/ql′ = 3/l + 2/l′ −
(3/p+ 2/q) = 2 and (3.8). The remaining terms of h belong obviously to the space
Ll,l′ and (3.5) is proved.

Lemma 3.1. Let us consider the equations (3.1)–(3.4). Let l′ ∈ (2q/(q+2), 2) and
l ∈ (3/2, 3p/(p + 3)), that is m < p for m such that 1/m = 1/l − 1/3. If h ∈ Ll,l′

and ψφ ∈ Ll,l′ , then h ∈ Lm,l′ and ψφ ∈ Lm,l′ .
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Proof. Let us define r, r′ as in Lemma 2.3. Then r > 3/2 and r′ > 2. There exist
θ, θ′ such that p/(p − 1) < θ < 3/2, 2 < θ′ < r′ and 2/θ′ + 3/θ = 3. It follows
from (3.7) that ∇v ∈ Lθ,θ′ and v ∈ Lα,θ, where 1/α = 1/θ − 1/3. Further, v is a
solution of (2.37) - (2.39) with u instead of b and with h being the right hand side
of (3.1). Thus, the assumptions of Lemma 2.3 are obviously satisfied and we get
by (2.40)–(2.42) that

‖∇v‖r,r′ , ‖∇(ψφ)‖l,l′ , ‖∇v‖m,l′ ,
∥∥∂v
∂t

∥∥
l,l′

≤ c‖h‖l,l′ . (3.10)

Now, one can show that h ∈ Lm,l′ using (3.10), the assumption ψφ ∈ Ll,l′ from
Lemma 3.1 and Lemma 2.4. It is possible to proceed in the same way as was done
in the paragraph preceding Lemma 3.1 and during the process we can possibly
diminish, if necessary, without loss of generality the support of the cut-off function
ψ. �

Now, we use twice Lemma 3.1. According to (3.5) and (3.9) we have that h, φ ∈
Ll,l′ , where l, l′ satisfy the assumptions of Lemma 3.1 and 2/l′ + 3/l = 3. By the
first application of Lemma 3.1 we get that h, ψφ ∈ Lm,l′ , where 1/m = 1/l − 1/3,
m ∈ (3, p) and 2/l′ + 3/m = 2. Consequently, h, ψφ ∈ Ll,l′ , where l, l′ satisfy
the assumptions from Lemma 3.1 and 2/l′ + 3/l < 3. By the second application
of Lemma 3.1 we get that h ∈ Lm,l′ and 2/l′ + 3/m < 2. Lemma 2.3, (2.40)
now produces that ∇v ∈ Lr,r′ , where 1/r = 1/m − 1/p and 1/r′ = 1/l′ − 1/q.
Consequently,

‖u · ∇v‖m,l′ ≤ ‖u‖p,q‖∇v‖ pm
p−m

ql′
q−l′

≤ c‖∇v‖r,r′ <∞

and v satisfies the equation
∂v

∂t
− ν∆v +∇(ψφ) = h− u · ∇v in QT (3.11)

and equations (3.2) - (3.4), where

h− u · ∇v ∈ Lm,l′ for every m, l′ such that
2
l′

+
3
m
< 2, l′ ∈ (1, 2),m ∈ (3, p).

(3.12)
Using the integral representation of v(·, t) by means of the semigroup e−Amt, we
have

v(·, t) =
∫ t

0

e−Am(t−τ)Pm
σ (h− u · ∇v)dτ. (3.13)

Let α < 1/2. We can choose l′ such that αl′/(l′ − 1) < 1 and obtain the estimate

‖Aα
mv(·, t)‖m ≤

∫ t

0

‖Aα
me

−Am(t−τ)Pm
σ (h− u · ∇v)‖mdτ

≤
∫ t

0

‖h− u · ∇v‖m

(t− τ)α
dτ

≤
( ∫ t

0

dτ

(t− τ)αl′/(l′−1)

) l′−1
l′ ‖h− u · ∇v‖m,l′ ≤ c.

(3.14)

The space D(Aα
m) is continuously embedded into the space W 2α,m - see (2.35). It

further follows from in [15, Theorem 4.6.1(e), p.327] that

the space W 2α,m is continuously embedded into the Hölder space Cβ(Ω), (3.15)
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if β = 2α− 3/m > 0. By the suitable choice of α and m we can have β as close to
1− 3/p as possible and so it follows from (2.35), (3.15), (3.14) and (3.12) that

v ∈ L∞(0, T, Cβ(Ω)) for every β ∈ (0, 1− 3/p). (3.16)

Thus, v ∈ L∞(QT ) and consequently,

u ∈ L∞(Qr/3+2r̃/3). (3.17)

We can now use this last information on local regularity of u, go through this section
once again and get that

h− u · ∇v ∈ Lm,l′ for every l′ ∈ (1, 2),m ∈ (3,∞). (3.18)

Using (2.35), (3.15), (3.14) and (3.12) we obtain that

v ∈ L∞(0, T, Cβ(Ω)) for every β ∈ (0, 1) (3.19)

and (1.6) follows immediately. The proof of Theorem 1.1 is completed.
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