Electronic Journal of Differential Equations, Vol. 2005(2005), No. 47, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ASYMPTOTIC PROPERTIES OF SOLUTIONS TO THREE-DIMENSIONAL FUNCTIONAL DIFFERENTIAL SYSTEMS OF NEUTRAL TYPE

EVA ŠPÁNIKOVÁ

Abstract

In this paper, we study the behavior of solutions to three-dimensional functional differential systems of neutral type. We find sufficient conditions for solutions to be oscillatory, and to decay to zero. The main results are presented in three theorems and illustrated with one example.

1. Introduction

We consider neutral functional differential systems

$$
\begin{align*}
& {\left[y_{1}(t)-a(t) y_{1}(g(t))\right]^{\prime}=p_{1}(t) y_{2}(t) } \\
& y_{2}^{\prime}(t)=p_{2}(t) y_{3}(t) \tag{1.1}\\
& y_{3}^{\prime}(t)=- p_{3}(t) f\left(y_{1}(h(t))\right), \quad t \geq t_{0}
\end{align*}
$$

The following conditions are assumed:
(a) $a:\left[t_{0}, \infty\right) \rightarrow(0, \infty]$ is a continuous function;
(b) $g:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function and $\lim _{t \rightarrow \infty} g(t)=$ ∞;
(c) $p_{i}:\left[t_{0}, \infty\right) \rightarrow[0, \infty), i=1,2,3$ are continuous functions; p_{3} not identically equal to zero in any neighbourhood of infinity, $\int^{\infty} p_{j}(t) d t=\infty, j=1,2$;
(d) $h:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous and increasing function and $\lim _{t \rightarrow \infty} h(t)=$ ∞;
(e) $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $u f(u)>0$ for $u \neq 0$ and $|f(u)| \geq K|u|$, where K is a positive constant.
For $t_{1} \geq t_{0}$, we define

$$
\widetilde{t}_{1}=\min \left\{t_{1}, g\left(t_{1}\right), h\left(t_{1}\right)\right\}
$$

A function $y=\left(y_{1}, y_{2}, y_{3}\right)$ is a solution of the system 1.1) if there exists a $t_{1} \geq$ t_{0} such that y is continuous on $\left[\widetilde{t}_{1}, \infty\right), y_{1}(t)-a(t) y_{1}(g(t)), y_{i}(t), i=2,3$ are continuously differentiable on $\left[t_{1}, \infty\right)$ and y satisfies 1.1] on $\left[t_{1}, \infty\right)$. Denote by W

[^0]the set of all solutions $y=\left(y_{1}, y_{2}, y_{3}\right)$ of the system which exist on some ray $\left[T_{y}, \infty\right) \subset\left[t_{0}, \infty\right)$ and satisfy
$$
\sup \left\{\sum_{i=1}^{3}\left|y_{i}(t)\right|: t \geq T\right\}>0 \quad \text { for any } T \geq T_{y}
$$

A solution $y \in W$ is considered to be non-oscillatory if there exists a $T_{y} \geq t_{0}$ such that every component is different from zero for $t \geq T_{y}$. Otherwise a solution $y \in W$ is said to be oscillatory.

The purpose of this article is to study asymptotic properties of solutions to the three-dimensional functional differential systems of neutral type 1.1) and also the special asymptotic properties of solutions whose first component is bounded. The asymptotic and oscillatory properties of solutions to differential systems with deviating arguments has been studied for example in the papers [1, 2, 4, 8, 10, 11].

For a $y_{1}(t)$, we define

$$
\begin{equation*}
z_{1}(t)=y_{1}(t)-a(t) y_{1}(g(t)) \tag{1.2}
\end{equation*}
$$

Denote

$$
\begin{gathered}
P_{1}(s, t)=\int_{t}^{s} p_{1}(x) d x, \quad P_{1,2}(s, t)=\int_{t}^{s} p_{1}(v) \int_{t}^{v} p_{2}(x) d x d v \\
P_{2}(s, t)=\int_{t}^{s} p_{2}(x) d x, \quad P_{2,1}(s, t)=\int_{t}^{s} p_{2}(v) \int_{t}^{v} p_{1}(x) d x d v, \quad s \geq t \geq t_{0}
\end{gathered}
$$

2. Classification of non-OSCILLATORY SOLUTIONS

Lemma 2.1 (6, Lemma 1]). Let $y \in W$ be a solution of (1.1) with $y_{1}(t) \neq 0$ on $\left[t_{1}, \infty\right), t_{1} \geq t_{0}$. Then y is non-oscillatory and $z_{1}(t), y_{2}(t), y_{3}(t)$ are monotone on some ray $[T, \infty), T \geq t_{1}$.

Let $y \in W$ be a non-oscillatory solution of (1.1). From (1.1) and (c) it follows that the function $z_{1}(t)$ from $(1.2$ has to be eventually of constant sign, so that either

$$
\begin{equation*}
y_{1}(t) z_{1}(t)>0 \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{1}(t) z_{1}(t)<0 \tag{2.2}
\end{equation*}
$$

for sufficiently large t. Assume first that 2.1) holds. From [6, Lemma 4] it follows the statement in Lemma 2.2.

Lemma 2.2. Let $y=\left(y_{1}, y_{2}, y_{3}\right) \in W$ be a non-oscillatory solution of (1.1) on $\left[t_{1}, \infty\right)$ and that 2.1] holds. Then there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$ either

$$
\begin{align*}
& y_{1}(t) z_{1}(t)>0 \\
& y_{2}(t) z_{1}(t)<0 \tag{2.3}\\
& y_{3}(t) z_{1}(t)>0
\end{align*}
$$

or

$$
\begin{equation*}
y_{i}(t) z_{1}(t)>0, \quad i=1,2,3 \tag{2.4}
\end{equation*}
$$

Denote by N_{1}^{+}the set of non-oscillatory solutions of (1.1) satisfying 2.3), and by N_{3}^{+}the non-oscillatory solutions of (1.1) satisfying (2.4). Now assume that 2.2 holds. With the aid of the Kiguradze's Lemma is easy to prove Lemma 2.3.

Lemma 2.3. Let $y=\left(y_{1}, y_{2}, y_{3}\right) \in W$ be a non-oscillatory solution of (1.1) on $\left[t_{1}, \infty\right)$ and 2.2 holds. Then there exists a $t_{2} \geq t_{1}$ such that for $t \geq t_{2}$ either

$$
\begin{align*}
& y_{1}(t) z_{1}(t)<0 \\
& y_{2}(t) z_{1}(t)>0 \tag{2.5}\\
& y_{3}(t) z_{1}(t)<0
\end{align*}
$$

or

$$
\begin{gather*}
y_{1}(t) z_{1}(t)<0 \\
y_{i}(t) z_{1}(t)>0, \quad i=2,3 . \tag{2.6}
\end{gather*}
$$

Denote by N_{2}^{-}the sets of non-oscillatory solutions of 1.1 satisfying 2.5 , and by N_{3}^{-}the non-oscillatory solutions of 1.1 satisfying 2.6 . Denote by N the set of all non-oscillatory solutions of (1.1). Obviously by Lemmas 2.2 and 2.3 , we have

$$
\begin{equation*}
N=N_{1}^{+} \cup N_{3}^{+} \cup N_{2}^{-} \cup N_{3}^{-} . \tag{2.7}
\end{equation*}
$$

Lemma 2.4. Suppose that $a(t)$ is bounded on $\left[t_{2}, \infty\right)$ and $y \in W$ be a nonoscillatory solution of the system (1.1) with $y_{1}(t)$ bounded on $\left[t_{2}, \infty\right), t_{2} \geq t_{0}$. Then

$$
y \in N_{1}^{+} \cup N_{2}^{-}
$$

Proof. We must show that the set $N_{3}^{+} \cup N_{3}^{-}$is empty. Let $y \in W$ be a nonoscillatory solution of (1.1) with $y_{1}(t)$ bounded on $\left[t_{2}, \infty\right)$ and $y \in N_{3}^{+} \cup N_{3}^{-}$. Without loss of generality we suppose that $y_{1}(t)>0$ on $\left[t_{2}, \infty\right)$. Because $a(t)$ and $y_{1}(t)$ are bounded, $z_{1}(t)$ is bounded on $\left[t_{3}, \infty\right)$, where $t_{3} \geq t_{2}$ is sufficiently large. If $y \in N_{3}^{+} \cup N_{3}^{-}$then a function $\left|y_{2}(t)\right|$ is nondecreasing and

$$
\left|y_{2}(t)\right| \geq M, \quad 0<M=\text { const. for } t \geq t_{3}
$$

Integrating the first equation of (1.1) from s to t and using the last inequality we get

$$
\begin{equation*}
\left|z_{1}(t)\right|-\left|z_{1}(s)\right| \geq M \int_{s}^{t} p_{1}(u) d u, \quad t>s \geq t_{3} \tag{2.8}
\end{equation*}
$$

From (2.8) and (c) we have $\lim _{t \rightarrow \infty}\left|z_{1}(t)\right|=\infty$. This contradicts the fact that $z_{1}(t)$ is bounded and $N_{3}^{+} \cup N_{3}^{-}=\emptyset$. The proof is complete.

Lemma 2.5 ([3, Lemma 2.2]). In addition to the conditions (a) and (b) suppose that

$$
1 \leq a(t) \quad \text { for } t \geq t_{0}
$$

Let $y_{1}(t)$ be a continuous non-oscillatory solution of the functional inequality

$$
y_{1}(t)\left[y_{1}(t)-a(t) y_{1}(g(t))\right]>0
$$

defined in a neighbourhood of infinity. Suppose that $g(t)>t$ for $t \geq t_{0}$. Then $y_{1}(t)$ is bounded. If, moreover,

$$
1<\lambda_{\star} \leq a(t), \quad t \geq t_{0}
$$

for some positive constant λ_{\star}, then $\lim _{t \rightarrow \infty} y_{1}(t)=0$.
Lemma 2.6 (9, Lemma 4]). Assume that $q:\left[t_{0}, \infty\right) \rightarrow[0, \infty)$ and $\delta:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions, $\lim _{t \rightarrow \infty} \delta(t)=\infty, \delta(t)>t$ for $t \geq t_{0}$, and

$$
\liminf _{t \rightarrow \infty} \int_{t}^{\delta(t)} q(s) d s>\frac{1}{e}
$$

Then the functional inequality

$$
x^{\prime}(t)-q(t) x(\delta(t)) \geq 0, \quad t \geq t_{0}
$$

has no eventually positive solution, and

$$
x^{\prime}(t)-q(t) x(\delta(t)) \leq 0, \quad t \leq t_{0}
$$

has no eventually negative solution.

3. Oscillation theorems

Theorem 3.1. Suppose that

$$
\begin{gather*}
a(t) \text { is bounded for } t \geq t_{0} \tag{3.1}\\
g(t)<h(t)<t<\alpha(t) \quad \text { for } t \geq t_{0} \tag{3.2}
\end{gather*}
$$

where $\alpha:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ is a continuous function,

$$
\begin{gather*}
\limsup _{t \rightarrow \infty} \int_{t}^{h^{-1}(t)} K P_{2,1}(u, t) p_{3}(u) d u>1 \tag{3.3}\\
\liminf _{t \rightarrow \infty} \int_{t}^{g^{-1}(h(t))} p_{1}(v) \int_{v}^{\alpha(v)} \frac{K P_{2}(u, v) p_{3}(u) d u d v}{a\left(g^{-1}(h(u))\right)}>\frac{1}{e} \tag{3.4}
\end{gather*}
$$

where $g^{-1}(t)$ is the inverse function of $g(t)$. Then every solution $y=\left(y_{1}, y_{2}, y_{3}\right) \in$ W of 1.1 with $y_{1}(t)$ bounded is oscillatory.
Proof. Let $y \in W$ be a non-oscillatory solution of 1.1 with $y_{1}(t)$ bounded. From Lemma 2.4 we have $y \in N_{1}^{+} \cup N_{2}^{-}$on $\left[t_{2}, \infty\right)$. Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
I) Let $y \in N_{1}^{+}$on $\left[t_{2}, \infty\right)$. In this case

$$
\begin{equation*}
y_{1}(t)>0, \quad z_{1}(t)>0, \quad y_{2}(t)<0, \quad y_{3}(t)>0 \quad \text { for } t \geq t_{2} \tag{3.5}
\end{equation*}
$$

Integrating $\int_{t}^{s} P_{2,1}(u, t) y_{3}^{\prime}(u) d u$ by parts with $f(u)=P_{2,1}(u, t), g(u)=y_{3}(u)$, and one gets

$$
\int_{t}^{s} P_{2,1}(u, t) y_{3}^{\prime}(u) d u=P_{2,1}(s, t) y_{3}(s)-\int_{t}^{s} P_{1}(u, t) y_{2}^{\prime}(u) d u
$$

Integrating by parts again with $f(u)=P_{1}(u, t), g(u)=y_{2}(u)$, we have

$$
\begin{equation*}
\int_{t}^{s} P_{2,1}(u, t) y_{3}^{\prime}(u) d u=P_{2,1}(s, t) y_{3}(s)-P_{1}(s, t) y_{2}(s)+z_{1}(s)-z_{1}(t) \tag{3.6}
\end{equation*}
$$

This equation implies

$$
\begin{equation*}
z_{1}(t)=z_{1}(s)-P_{1}(s, t) y_{2}(s)+P_{2,1}(s, t) y_{3}(s)-\int_{t}^{s} P_{2,1}(u, t) y_{3}^{\prime}(u) d u \tag{3.7}
\end{equation*}
$$

for $s>t \geq t_{2}$. From (3.7) in regard to (3.5, (e) and the third equation of (1.1), we get

$$
\begin{equation*}
z_{1}(t) \geq \int_{t}^{s} K P_{2,1}(u, t) p_{3}(u) y_{1}(h(u)) d u, \quad s>t \geq t_{2} \tag{3.8}
\end{equation*}
$$

Since $z_{1}(t) \leq y_{1}(t)$ for $t \geq t_{2}$, it follows that

$$
\begin{equation*}
z_{1}(h(t)) \leq y_{1}(h(t)) \quad \text { for } \quad t \geq t_{3} \tag{3.9}
\end{equation*}
$$

where $t_{3} \geq t_{2}$ is sufficiently large. Combining (3.8) and (3.9) we have

$$
z_{1}(t) \geq \int_{t}^{s} K P_{2,1}(u, t) p_{3}(u) z_{1}(h(u)) d u, \quad s>t \geq t_{3}
$$

Putting $s=h^{-1}(t)$ and using the monotonicity of $z_{1}(h(u))$ from the previous inequality we obtain

$$
\begin{gathered}
z_{1}(t) \geq z_{1}(t) \int_{t}^{h^{-1}(t)} K P_{2,1}(u, t) p_{3}(u) d u, \quad t \geq t_{3} \\
1 \geq \int_{t}^{h^{-1}(t)} K P_{2,1}(u, t) p_{3}(u) d u, \quad t \geq t_{3}
\end{gathered}
$$

which contradicts (3.3) and $N_{1}^{+}=\emptyset$.
(II) Let $y \in N_{2}^{-}$on $\left[t_{2}, \infty\right)$. In this case

$$
\begin{equation*}
y_{1}(t)>0, \quad z_{1}(t)<0, \quad y_{2}(t)<0, \quad y_{3}(t)>0 \quad \text { for } \quad t \geq t_{2} \tag{3.10}
\end{equation*}
$$

Integrating $\int_{t}^{s} P_{2}(u, t) y_{3}^{\prime}(u) d u$ by parts we derive the integral identity

$$
\begin{equation*}
y_{2}(t)=y_{2}(s)-P_{2}(s, t) y_{3}(s)+\int_{t}^{s} P_{2}(u, t) y_{3}^{\prime}(u) d u, \quad s>t \geq t_{2} \tag{3.11}
\end{equation*}
$$

From 3.11 with regard to (3.10, (e) and the third equation of 1.1 we get

$$
\begin{equation*}
y_{2}(t) \leq-\int_{t}^{s} K P_{2}(u, t) p_{3}(u) y_{1}(h(u)) d u, \quad s>t \geq t_{2} \tag{3.12}
\end{equation*}
$$

Because $z_{1}(t)>-a(t) y_{1}(g(t))$ for $t \geq t_{2}$ it follows

$$
\begin{align*}
& z_{1}\left(g^{-1}(h(t))\right)>-a\left(g^{-1}(h(t))\right) y_{1}(h(t)) \\
& -y_{1}(h(t))<\frac{z_{1}\left(g^{-1}(h(t))\right)}{a\left(g^{-1}(h(t))\right)} \quad \text { for } t \geq t_{2} \tag{3.13}
\end{align*}
$$

Combining (3.12) and (3.13), we have

$$
y_{2}(t) \leq \int_{t}^{s} \frac{K P_{2}(u, t) p_{3}(u) z_{1}\left(g^{-1}(h(u))\right) d u}{a\left(g^{-1}(h(u))\right)}, \quad s>t \geq t_{2}
$$

Multiplying the last inequality by $p_{1}(t)$, using the first equation of 1.1 and the monotonicity of $z_{1}\left(g^{-1}(h(t))\right)$ we get

$$
z_{1}^{\prime}(t) \leq\left[p_{1}(t) \int_{t}^{s} \frac{K P_{2}(u, t) p_{3}(u) d u}{a\left(g^{-1}(h(u))\right)}\right] z_{1}\left(g^{-1}(h(t))\right), \quad s>t \geq t_{2}
$$

Let $s=\alpha(t)$ and so

$$
z_{1}^{\prime}(t)-\left[p_{1}(t) \int_{t}^{\alpha(t)} \frac{K P_{2}(u, t) p_{3}(u) d u}{a\left(g^{-1}(h(u))\right)}\right] z_{1}\left(g^{-1}(h(t))\right) \leq 0, \quad t \geq t_{2}
$$

By Lemma 2.6 and condition (3.4), the last inequality has no eventually negative solution, which is a contradiction and $N_{2}^{-}=\emptyset$. The proof is complete.

Theorem 3.2. Suppose that

$$
\begin{gather*}
1<\lambda_{\star} \leq a(t) \leq c, \quad \text { for } t \geq t_{0} \text { and some constants } \lambda_{\star}, c \tag{3.14}\\
t<g(t)<h(t) \text { for } t \geq t_{0} \tag{3.15}\\
t<\alpha(t), \quad \text { where } \alpha:\left[t_{0}, \infty\right) \rightarrow \mathbb{R} \text { is a continuous function } \tag{3.16}
\end{gather*}
$$

and (3.4) holds. Then for every non-oscillatory solution, $y \in W$ of (1.1) with $y_{1}(t)$ bounded, we have $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2,3$.

Proof. Let $y \in W$ be a non-oscillatory solution of (1.1) with $y_{1}(t)$ bounded. From Lemma 2.4 we have $y \in N_{1}^{+} \cup N_{2}^{-}$on $\left[t_{2}, \infty\right)$. Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
(I) Let $y \in N_{1}^{+}$on $\left[t_{2}, \infty\right)$. In this case 3.5 holds. By Lemma 2.5 it follows that $\lim _{t \rightarrow \infty} y_{1}(t)=0$. We prove that $\lim _{t \rightarrow \infty} y_{2}(t)=\lim _{t \rightarrow \infty} y_{3}(t)=0$ indirectly.

Let $\lim _{t \rightarrow \infty} y_{2}(t)=-S, 0<S=$ const. Then

$$
\begin{equation*}
y_{2}(t) \leq-S, \quad t \geq t_{2} . \tag{3.17}
\end{equation*}
$$

Integrating the first equation of (1.1) from t_{2} to t and using (3.17) we get

$$
\begin{equation*}
z_{1}(t)-z_{1}\left(t_{2}\right) \leq-S \int_{t_{2}}^{t} p_{1}(s) d s, \quad t \geq t_{2} \tag{3.18}
\end{equation*}
$$

From this inequality and (c) we have $\lim _{t \rightarrow \infty} z_{1}(t)=-\infty$ which contradicts $z_{1}(t)>$ 0 for $t \geq t_{2}$ and so $\lim _{t \rightarrow \infty} y_{2}(t)=0$.

Let $\lim _{t \rightarrow \infty} y_{3}(t)=P, 0<P=$ const. Then

$$
\begin{equation*}
y_{3}(t) \geq P, \quad t \geq t_{2} \tag{3.19}
\end{equation*}
$$

Integrating the second equation of (1.1) from t_{2} to t and using (3.19) we get

$$
\begin{equation*}
y_{2}(t)-y_{2}\left(t_{2}\right) \geq P \int_{t_{2}}^{t} p_{2}(s) d s, \quad t \geq t_{2} \tag{3.20}
\end{equation*}
$$

From (3.20) and (c) we have $\lim _{t \rightarrow \infty} y_{2}(t)=\infty$ and that contradicts $y_{2}(t)<0$ for $t \geq t_{2}$ and so $\lim _{t \rightarrow \infty} y_{3}(t)=0$.
(II) Let $y \in N_{2}^{-}$on $\left[t_{2}, \infty\right)$. Analogously as in the case (II) of the proof of Theorem 3.1 we can show that $N_{2}^{-}=\emptyset$. The proof is complete.

Example. Consider the system

$$
\begin{gather*}
{\left[y_{1}(t)-2 y_{1}(3 t)\right]^{\prime}=t y_{2}(t)} \\
y_{2}^{\prime}(t)=t y_{3}(t) \tag{3.21}\\
y_{3}^{\prime}(t)=-45 t^{-5} y_{1}(9 t), \quad t \geq t_{0}>0
\end{gather*}
$$

In this example $a(t)=2, g(t)=3 t, h(t)=9 t, p_{1}(t)=p_{2}(t)=t, p_{3}(t)=45 t^{-5}$, $f(t)=t, K=1, P_{2}(u, v)=\frac{1}{2}\left(u^{2}-v^{2}\right)$. We chose $\alpha(t)=2 t$ and calculate the condition (3.4) as follows

$$
\liminf _{t \rightarrow \infty} \frac{45}{4} \int_{t}^{3 t} v \int_{v}^{2 v}\left(u^{2}-v^{2}\right) u^{-5} d u d v=\frac{405}{256} \ln 3
$$

All conditions of Theorem 3.2 are satisfied. Then for every non-oscillatory solution $y \in W$ of 3.21 with $y_{1}(t)$ bounded, it holds

$$
\lim _{t \rightarrow \infty} y_{1}(t)=\lim _{t \rightarrow \infty} y_{2}(t)=\lim _{t \rightarrow \infty} y_{3}(t)=0
$$

For instance functions

$$
y_{1}(t)=\frac{1}{t}, \quad y_{2}(t)=\frac{-1}{3 t^{3}}, \quad y_{3}(t)=\frac{1}{t^{5}}, \quad t \geq t_{0}
$$

are such a kind of solutions.

Theorem 3.3. Suppose that

$$
\begin{gather*}
1<\lambda_{\star} \leq a(t), \quad t \geq t_{0} \text { for some constant } \lambda_{\star} \tag{3.22}\\
\limsup _{t \rightarrow \infty} \int_{h^{-1}(g(t))}^{t} \frac{K P_{1,2}(t, u) p_{3}(u) d u}{a\left(g^{-1}(h(u))\right)}>1 \tag{3.23}
\end{gather*}
$$

and (3.4), (3.15) and (3.16) hold. Then for every non-oscillatory solution $y \in W$ of 1.1), it holds $\lim _{t \rightarrow \infty} y_{i}(t)=0, i=1,2,3$.

Proof. Let $y \in W$ be a non-oscillatory solution of (1.1). From (2.7) we have $y \in$ $N_{1}^{+} \cup N_{3}^{+} \cup N_{2}^{-} \cup N_{3}^{-}$on $\left[t_{2}, \infty\right)$. Without loss of generality we may suppose that $y_{1}(t)$ is positive for $t \geq t_{2}$.
(I) Let $y \in N_{1}^{+}$on $\left[t_{2}, \infty\right)$. In this case 3.5 holds. By Lemma 2.5 it follows that $\lim _{t \rightarrow \infty} y_{1}(t)=0$. We prove, that $\lim _{t \rightarrow \infty} y_{2}(t)=\lim _{t \rightarrow \infty} y_{3}(t)=0$ indirectly analogously as in the case (I) of the proof of Theorem 3.2 .
(II) Let $y \in N_{3}^{+}$on $\left[t_{2}, \infty\right)$. In this case

$$
\begin{equation*}
y_{1}(t)>0, \quad z_{1}(t)>0, \quad y_{2}(t)>0, \quad y_{3}(t)>0 \quad \text { for } t \geq t_{2} . \tag{3.24}
\end{equation*}
$$

In this case,

$$
y_{2}(t) \geq M, \quad 0<M=\text { const. for } t \geq t_{2} .
$$

Integrating the first equation of (1.1) from s to t and using the last inequality we get

$$
\begin{equation*}
z_{1}(t)-z_{1}(s) \geq M \int_{s}^{t} p_{1}(u) d u, \quad t>s \geq t_{2} \tag{3.25}
\end{equation*}
$$

From 3.25 and (c) we have $\lim _{t \rightarrow \infty} z_{1}(t)=\infty$ and the function $z_{1}(t)$ is unbounded. From (1.2), 3.15, 3.22 we have

$$
y_{1}(t)>a(t) y_{1}(g(t))>y_{1}(g(t))
$$

which implies that $y_{1}(t)$ is bounded, but $z_{1}(t)<y_{1}(t)$ which is a contradiction. $N_{3}^{+}=\emptyset$.
(III) Let $y \in N_{2}^{-}$on $\left[t_{2}, \infty\right)$. Analogously as in the case (II) of the proof of Theorem 3.1 we can show that $N_{2}^{-}=\emptyset$.
(IV) Let $y \in N_{3}^{-}$on $\left[t_{2}, \infty\right)$. In this case

$$
\begin{equation*}
y_{1}(t)>0, \quad z_{1}(t)<0, \quad y_{2}(t)<0, \quad y_{3}(t)<0 \quad \text { for } t \geq t_{2} . \tag{3.26}
\end{equation*}
$$

By interchanging the order of integrating in $P_{1,2}(t, u)$, we have

$$
\int_{s}^{t} P_{1,2}(t, u) y_{3}^{\prime}(u) d u=\int_{s}^{t}\left(\int_{u}^{t} p_{2}(x) \int_{x}^{t} p_{1}(v) d v d x\right) y_{3}^{\prime}(u) d u
$$

and integrating $\int_{s}^{t} P_{1,2}(t, u) y_{3}^{\prime}(u) d u$ by parts with $f(u)=\int_{u}^{t} p_{2}(x) \int_{x}^{t} p_{1}(v) d v d x$, $g(u)=y_{3}(u)$, we get

$$
\int_{s}^{t} P_{1,2}(t, u) y_{3}^{\prime}(u) d u=-P_{1,2}(t, s) y_{3}(s)+\int_{s}^{t} P_{1}(t, u) y_{2}^{\prime}(u) d u
$$

Integrating by parts again with $f(u)=P_{1}(t, u), g(u)=y_{2}(u)$, one gets

$$
\int_{s}^{t} P_{1,2}(t, u) y_{3}^{\prime}(u) d u=-P_{1,2}(t, s) y_{3}(s)-P_{1}(t, s) y_{2}(s)-z_{1}(s)+z_{1}(t)
$$

From the equation about, we derive the integral identity

$$
\begin{equation*}
z_{1}(t)=z_{1}(s)+P_{1}(t, s) y_{2}(s)+P_{1,2}(t, s) y_{3}(s)+\int_{s}^{t} P_{1,2}(t, u) y_{3}^{\prime}(u) d u \tag{3.27}
\end{equation*}
$$

for $t>s \geq t_{2}$. From (3.27) in regard to (3.26), (e) and the third equation of 1.1) we get

$$
\begin{equation*}
-z_{1}(t) \geq \int_{s}^{t} K P_{1,2}(t, u) p_{3}(u) y_{1}(h(u)) d u, \quad t>s \geq t_{2} \tag{3.28}
\end{equation*}
$$

Since $z_{1}(t) \geq-a(t) y_{1}(g(t))$ for $t \geq t_{2}$ it follows that

$$
y_{1}(g(t)) \geq \frac{z_{1}(t)}{-a(t)} \quad \text { for } t \geq t_{2}
$$

From the above inequality we have

$$
\begin{equation*}
y_{1}(h(t)) \geq \frac{z_{1}\left(g^{-1}(h(t))\right)}{-a\left(g^{-1}(h(t))\right)}, \quad t \geq t_{2} \tag{3.29}
\end{equation*}
$$

Combining (3.28) and 3.29 we have

$$
-z_{1}(t) \geq \int_{s}^{t} \frac{-K P_{1,2}(t, u) p_{3}(u) z_{1}\left(g^{-1}(h(u))\right) d u}{a\left(g^{-1}(h(u))\right)}, \quad t>s \geq t_{2}
$$

Putting $s=h^{-1}(g(t))$ and using the monotonicity of $z_{1}\left(g^{-1}(h(u))\right)$ from the last inequality we get

$$
-z_{1}(t) \geq-z_{1}(t) \int_{h^{-1}(g(t))}^{t} \frac{K P_{1,2}(t, u) p_{3}(u) d u}{a\left(g^{-1}(h(u))\right)}, \quad t \geq t_{3}
$$

where $t_{3} \geq t_{2}$ is sufficiently large and

$$
1 \geq \int_{h^{-1}(g(t))}^{t} \frac{K P_{1,2}(t, u) p_{3}(u) d u}{a\left(g^{-1}(h(u))\right)}, \quad t \geq t_{3}
$$

which contradicts (3.23) and $N_{3}^{-}=\emptyset$. The proof is complete.

References

[1] I. Foltynska and J. Werbowski: On the oscillatory behaviour of solutions of system of differential equations with deviating arguments, Colloquia Math. Soc. J. B. 30, Qualitative theory of Diff. Eq. Szegéd, (1979), 243-256.
[2] A. F. Ivanov and P. Marušiak: Oscillatory properties of systems of neutral differential equations, Hiroshima Math. J. 24 (1994), 423-434.
[3] J. Jaroš and T. Kusano: On a class of first order nonlinear functional differential equations of neutral type, Czechoslovak Math. J. 40, (115) (1990), 475-490.
[4] Y. Kitamura and T. Kusano: On the oscillation of a class of nonlinear differential systems with deviating argument, J. Math. Annal. and Appl.66, (1978), 20-36.
[5] P. Marušiak: Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type, Hiroshima Math. J. 20 (1990) 197-208.
[6] P. Marušiak: Oscillatory properties of functional differential systems of neutral type, Czechoslovak Math. J. 43, (118) (1993), 649-662.
[7] B. Mihalíková: A note on the asymptotic properties of systems of neutral differential equations, Proceedings of the International Scientific Conference of Mathematics, University of Žilina, (2000), 133-139.
[8] B. Mihalíková: Asymptotic behaviour of solutions of two-dimensional neutral differential systems, Czechoslovak Math. J. 53, (128) (2003), 735-741.
[9] R. Olach: Oscillation of differential equation of neutral type, Hirosh. Math. J. 25 (1995), 1-10.
[10] E. Špániková : Oscillatory properties of the solutions of three-dimensional differential systems of neutral type, Czechoslovak Math. J. 50, (125) (2000), 879-887.
[11] E. Špániková and H. Šamajová: Asymptotic behaviour of the nonoscillatory solutions of differential systems of neutral type, $2^{\text {nd }}$ International Conference APLIMAT 2003, Bratislava, (2003), 671-676.

Eva ŠpÁniková
Department of Appl. Mathematics, University of Žilina, J. M. Hurbana 15, 01026 Žilina, Slovakia

E-mail address: eva.spanikova@fstroj.utc.sk

[^0]: 2000 Mathematics Subject Classification. 34K25, 34K40.
 Key words and phrases. Differential system of neutral type; asymptotic properties of solutions. (C) 2005 Texas State University - San Marcos.

 Submitted February 12, 2005. Published April 27, 2005.
 Supported by grant VEGA No. 2/3205/23 of Scientific Grant Agency of Ministry of Education of Slovak Republic and Slovak Academy of Sciences.

