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ON THE Ψ-STABILITY OF A NONLINEAR VOLTERRA
INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

Abstract. In this paper we prove sufficient conditions for Ψ-stability of the
zero solution of a nonlinear Volterra integro-differential system.

1. Introduction

Akinyele [1] introduced the notion of Ψ-stability of degree k with respect to
a function Ψ ∈ C(R+, R+), increasing and differentiable on R+ and such that
Ψ(t) ≥ 1 for t ≥ 0 and limt→∞Ψ(t) = b, b ∈ [1,∞). The fact that the function Ψ
is bounded does not enable a deeper analysis, of the asymptotic properties of the
solutions of a differential equations, than the notion of stability in sense Lyapunov.

Constantin [5] introduced the notions of degree of stability and degree of bound-
edness of solutions of an ordinary differential equation, with respect to a continuous
positive and nondecreasing function Ψ : R+ → R+. Some criteria for these notions
are proved there too.

Morchalo [13] introduced the notions of Ψ-stability, Ψ-uniform stability, and Ψ-
asymptotic stability of trivial solution of the nonlinear system x′ = f(t, x). Several
new and sufficient conditions for mentioned types of stability are proved for the
linear system x′ = A(t)x. Furthermore, sufficient conditions are given for the
uniform Lipschitz stability of the system x′ = f(t, x) + g(t, x). In this paper, the
function Ψ is a scalar continuous function.

The purpose of our paper is to prove sufficient conditions for Ψ-(uniform) sta-
bility of trivial solution of the nonlinear Volterra integro-differential system

x′ = A(t)x +
∫ t

0

F (t, s, x(s)) ds (1.1)

which can be seen as a perturbed system of

y′ = A(t)y (1.2)

We investigate conditions on the fundamental matrix Y (t) for the linear system
(1.2) and on the function F (t, s, x) under which the trivial solution of (1.1) or (1.2)
is Ψ-(uniformly) stable on R+. Here, Ψ is a matrix function whose introduction
permits us obtaining a mixed asymptotic behavior for the components of solutions.
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Recent works for stability of solutions of (1.1) have been given by Mahfoud [12]
who used Lyapunov functionals; Lakshmikantham and Rama Mohana Rao [11] who
used the comparison method; Hara, Yoneyama and Itoh [10] who used “variation of
parameters” formula; in other words, the solution of equation (1.1) with the initial
function ϕ on [0, t0] - namely x(t) = ϕ(t) for t ∈ [0, t0] - is written

x(t; t0, ϕ) = Y (t)Y −1(t0)ϕ(t0) +
∫ t

0

Y (t)Y −1(s)
∫ s

0

F (s, u, x(u; t0, ϕ)) du ds ;

and by Avramescu [2] who used the method of admissibility of a pair of subspaces
with respect to an operator.

2. Definitions, notation and hypotheses

Let Rn denote the Euclidean n-space. For x = (x1, x2, x3, . . . , xn)T in Rn, let
‖x‖ = max{|x1|, |x2|, . . . , |xn|} be the norm of x. For an n × n matrix A = (aij),
we define the norm |A| = sup‖x‖≤1 ‖Ax‖.

In the system (1.1) we assume that A is a continuous n×n matrix on R+ = [0,∞)
and F : D×Rn → Rn, D = {(t, s) ∈ R2 : 0 ≤ s ≤ t < ∞}, is a continuous n-vector
such that F (t, s, 0) = 0 for (t, s) ∈ D.

Let Ψi : R+ → (0,∞), i = 1, 2 . . . n, be continuous functions and

Ψ = diag[Ψ1,Ψ2, . . . Ψn].

Now, we give definitions of various types of Ψ-stability.

Definitions. The trivial solution of (1.1) is said to be Ψ-stable on R+ if for every
ε > 0 and every t0 in R+, there exists δ = δ(ε, t0) > 0 such that any solution x(t)
of (1.1) which satisfies the inequality ‖Ψ(t0)x(t0)‖ < δ, also satisfies the inequality
‖Ψ(t)x(t)‖ < ε for all t ≥ t0.

The trivial solution of (1.1) is said to be Ψ-uniformly stable on R+ if it is Ψ-stable
on R+ and the above δ is independent of t0.

Remarks. 1. For Ψi = 1, i = 1, 2 . . . n, we obtain the notions of classical stability
and uniform-stability.

2. If in the definitions above, we replace Ψ with Ψk, k ∈ Z \ {0, 1}, we obtain
stability and uniform-stability of degree k with respect to a scalar function Ψ [5].

3. Ψ-stability of linear systems

The purpose of this section is to study conditions for Ψ-(uniform) stability of
trivial solution of linear systems. These conditions can be expressed in terms of a
fundamental matrix for (1.2).

Theorem 3.1. Let Y (t) be a fundamental matrix for (1.2). Then

(a) The trivial solution of (1.2) is Ψ-stable on R+ if and only if there exists a
positive constant K such that |Ψ(t)Y (t)| ≤ K for all t ≥ 0.

(b) The trivial solution of (1.2) is Ψ-uniformly stable on R+ if and only if there
exists a positive constant K such that |Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ≤ K for all
0 ≤ s ≤ t < ∞.
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Proof. The solution of (1.2) which takes the value y in Rn at a ≥ 0 is y(t) =
Y (t)Y −1(a)y for t ≥ 0.

Suppose first that the trivial solution of (1.2) is Ψ-stable on R+. Then, for ε = 1
and t0 = 0, there exists δ > 0 such that any solution y(t) of (1.2) which satisfies
the inequality ‖Ψ(0)y(0)‖ < δ, there exists and satisfies the inequality

‖Ψ(t)Y (t)(Ψ(0)Y (0))−1Ψ(0)y(0)‖ < 1 for t ≥ 0.

Let u ∈ Rn be such that ‖u‖ ≤ 1. If we take y(0) = δ
2Ψ−1(0)u, then we have

‖Ψ(0)y(0)‖ < δ. Hence, ‖Ψ(t)Y (t)(Ψ(0)Y (0))−1 δ
2u‖ < 1 for t ≥ 0. Therefore,

|Ψ(t)Y (t)(Ψ(0)Y (0))−1| ≤ 2/δ for t ≥ 0. Hence, |Ψ(t)Y (t)| ≤ K, a constant, for
t ≥ 0.

Suppose next that |Ψ(t)Y (t)| ≤ K for t ≥ 0. For ε > 0 and t0 ∈ R+, let
δ(ε, t0) = εK−1|(Ψ(t0)Y (t0))−1|−1. For ‖Ψ(t0)y(t0)‖ < δ and t ≥ t0, we have

‖Ψ(t)y(t)‖ = ‖Ψ(t)Y (t)(Ψ(t0)Y (t0)−1Ψ(t0)y(t0)‖ < ε.

Thus, the trivial solution of (1.2) is Ψ-stable on R+.
Part (b) is proved similarly and omit its proof. The proof is complete. �

Remarks. 1. It is easy to see that if |Ψ(t)| and |Ψ−1(t)| are bounded on R+, then
the Ψ-stability is equivalent with the classical stability.
2. Theorem 3.1 generalizes a similar result for classical stability [7].
3. In the same manner as in classical stability, we can speak about Ψ-(uniform)
stability of a linear system (1.2).

Example 3.2. Consider the linear system (1.2) with

A(t) =

1 −1 0
1 1 0
0 0 −2

 .

Then

Y (t) =

 et sin t et cos t 0
−et cos t et sin t 0

0 0 e−2t


is a fundamental matrix for the system (1.2). Because Y (t) is unbounded on R+,
it follows that the system (1.2) is not stable on R+. Consider

Ψ(t) =

e−t 0 0
0 e−t 0
0 0 e2t

 .

Then, for all 0 ≤ s ≤ t < ∞, we have

Ψ(t)Y (t)Y −1(s)Ψ−1(s) =

cos (t− s) − sin (t− s) 0
sin (t− s) cos (t− s) 0

0 0 1

 .

Thus, the system (1.2) is Ψ-uniformly stable on R+.
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Remark. The introduction of the matrix function Ψ permits us obtain a mixed
asymptotic behavior of the components of the solutions.

Theorem 3.3. Let Y (t) be a fundamental matrix for (1.2). If there exist a con-
tinuous function ϕ : R+ → (0,∞) and the constants p ≥ 1 and M > 0 which fulfil
one of the following conditions:

(i)
∫ t

0
ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)|p ds ≤ M , for all t ≥ 0

(ii)
∫ t

0
ϕ(s)|Y −1(s)Ψ−1(s)Ψ(t)Y (t)|p ds ≤ M , for all t ≥ 0,

then, the system (1.2) is Ψ-stable on R+.

Proof. For the case (i), first, we consider p = 1. Let q(t) = |Ψ(t)Y (t)|−1 for t ≥ 0.
From the identity(∫ t

0

ϕ(s)q(s) ds
)
Ψ(t)Y (t) =

∫ t

0

ϕ(s)Ψ(t)Y (t)Y −1(s)Ψ−1(s)Ψ(s)Y (s)q(s) ds,

it follows that (∫ t

0

ϕ(s)q(s) ds
)
|Ψ(t)Y (t)|

≤
∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)||Ψ(s)Y (s)|q(s) ds.

Thus, the scalar function h(t) =
∫ t

0
ϕ(s)q(s) ds satisfies the inequality

h(t)q−1(t) ≤ M,fort ≥ 0 .

We have h′(t) = ϕ(t)q(t) ≥ M−1ϕ(t)h(t) for t ≥ 0. It follows that

h(t) ≥ h(t1)e
M−1 R t

t1
ϕ(s) ds

, for t ≥ t1 > 0

and hence

|Ψ(t)Y (t)| = q−1(t) ≤ Mh−1(t1)e
−M−1 R t

t1
ϕ(s) ds

, for t ≥ t1 > 0 .

Because |Ψ(t)Y (t)| is a continuous function on [0, t1], it follows that there exists
a positive constant K such that |Ψ(t)Y (t)| ≤ K for t ≥ 0. Hence, the theorem
follows immediately from the Theorem 3.1.

Next, suppose that p > 1. Let r(t) = |Ψ(t)Y (t)|−p for t ≥ 0. In the same manner
as above, we have(∫ t

0

ϕ(s)r(s) ds
)
|Ψ(t)Y (t)| ≤

∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)||Ψ(s)Y (s)|r(s) ds.

Because ϕ(s)|Ψ(s)Y (s)|r(s) = (ϕ(s))1/p(ϕ(s)r(s))1/q, where 1
p + 1

q = 1, we have(∫ t

0

ϕ(s)r(s) ds
)
|Ψ(t)Y (t)|

≤
∫ t

0

(ϕ(s))1/p|Ψ(t)Y (t)Y −1(s)Ψ−1(s)|(ϕ(s)r(s))1/q ds .

Using the Hölder inequality, we obtain(∫ t

0

ϕ(s)r(s) ds
)
|Ψ(t)Y (t)|

≤
(∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)|p ds
)1/p(∫ t

0

ϕ(s)r(s) ds
)1/q

, t ≥ 0;
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or (∫ t

0

ϕ(s)r(s) ds
)
|Ψ(t)Y (t)| ≤ M1/p

(∫ t

0

ϕ(s)r(s) ds
)1/q

, t ≥ 0 .

Thus, the matrix Ψ(t)Y(t) satisfies the inequality

|Ψ(t)Y (t)| ≤ M1/p
(∫ t

0

ϕ(s)r(s) ds
)−1/p

, ∀t ≥ 0 .

Denoting Q(t) =
∫ t

0
ϕ(s)r(s) ds for t ≥ 0, we obtain

|Ψ(t)Y (t)| ≤ M
1
p (Q(t))−1/p, ∀t ≥ 0.

Because Q′(t) = ϕ(t)r(t) = ϕ(t)|Ψ(t)Y (t)|−p ≥ M−1ϕ(t)Q(t), we have

Q(t) ≥ Q(1)eM−1 R t
1 ϕ(s) ds

, t ≥ 1 .

It follows that

|Ψ(t)Y (t)| ≤ M1/p(Q(1))−1/pe−p−1M−1 R t
1 ϕ(s) ds, t ≥ 1.

Because |Ψ(t)Y (t)| is a continuous function on [0, 1], it follows that there exists a
positive constant K such that |Ψ(t)Y (t)| ≤ K for t ≥ 0. Hence, the theorem follows
immediately from the Theorem 3.1.

For case (ii), the proof is similar and we omit it. The proof is complete. �

Remarks. 1. The function ϕ can serve to weaken the required hypotheses on the
fundamental matrix Y .
2. Theorem 3.3 generalizes a result of Dannan and Elaydi [8].
3. In the conditions of the Theorem, the linear system (1.2) can not be Ψ-uniformly
stable on R+. This is shown in [9, Example 2].

Finally, we consider various Ψ-stability problems connected with the linear sys-
tem

x′ = (A(t) + B(t))x (3.1)
as a perturbed system of (1.2). We seek conditions under which the Ψ-(uniform)
stability of (1.2) implies the Ψ-(uniform) stability of (3.1).

Theorem 3.4. Suppose that B is a continuous n×n matrix function for t ≥ 0. If
the linear system (1.2) is Ψ-uniformly stable on R+ and∫ ∞

0

|Ψ(t)B(t)Ψ−1(t)| dt < +∞,

then the linear system (3.1) is also Ψ-uniformly stable on R+.

Proof. Let Y (t) be a fundamental matrix for the homogeneous system (1.2). Be-
cause the system (1.2) is Ψ-uniformly stable on R+, there exists a positive constant
K such that

|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ≤ K for 0 ≤ s ≤ t < +∞.

The solution of (3.1) with initial condition x(t0) = x0 is unique and defined for all
t ≥ 0. Then it is also a solution of the problem

x′ = A(t)x + B(t)x, x(t0) = x0.

Therefore, by the variation of constants formula,

x(t) = Y (t)Y −1(t0)x0 +
∫ t

t0

Y (t)Y −1(s)B(s)x(s) ds
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or, for t, t0 ≥ 0,

Ψ(t)x(t) = Ψ(t)Y (t)Y −1(t0)Ψ−1(t0)Ψ(t0)x0

+
∫ t

t0

Ψ(t)Y (t)Y −1(s)Ψ−1(s)Ψ(s)B(s)Ψ−1(s)Ψ(s)x(s) ds .

From the above conditions, it results that

‖Ψ(t)x(t)‖ ≤ K‖Ψ(t0)x(t0)‖+ K

∫ t

t0

|Ψ(s)B(s)Ψ−1(s)|‖Ψ(s)x(s)‖ ds,

for t ≥ t0 ≥ 0. Therefore, by Gronwall’s inequality,

‖Ψ(t)x(t)‖ ≤ K‖Ψ(t0)x(t0)‖e
K

R t
t0
|Ψ(s)B(s)Ψ−1(s)| ds

, for t ≥ t0 .

Thus, putting L =
∫∞
0
|Ψ(t)B(t)Ψ−1(t)| dt, we have

‖Ψ(t)x(t)‖ ≤ K‖Ψ(t0)x(t0)‖e
KL, for all t ≥ t0 ≥ 0.

This inequality shows that the system (3.1) is Ψ-uniformly stable on R+. The proof
is complete. �

Remark. The above theorem generalizes a results of Caligo [3], Conti [6] in con-
nection with uniform stability.

If the linear system (1.2) is only Ψ-stable, then the linear system (3.1) can not
be Ψ-stable. This is shown by the next example transformed after an example due
to Perron [14].

Example 3.5. Let a ∈ R be such that 1 ≤ 2a < 1 + e−π and let

A(t) =
(
−a 0
0 sin ln(t + 1) + cos ln(t + 1)− 2a

)
Then

Y (t) =
(

e−a(t+1) 0
0 e(t+1)[sin ln(t+1)−2a]

)
.

is a fundamental matrix for the homogeneous system (1.2).

Let Ψ(t) =
(

ea(t+1) 0
0 1

)
. We have

Ψ(t)Y (t) =
(

1 0
0 e(t+1)[sin ln(t+1)−2a]

)
.

Because |Ψ(t)Y (t)| is bounded on R+, it follows that the system (1.2) is Ψ-stable
on R+. For 0 ≤ s ≤ t ¡ ∞, we have

|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| =
(

1 0
0 ef(t)−f(s)

)
,

where f(t) = (t + 1) sin ln(t + 1)− 2at.
It is easy to see that limn→∞[f(tneα− 1)− f(tn− 1)] = ∞, where tn = e(8n+1) π

4

and α = arccos 1+e−π
√

2
. Thus, |Ψ(t)Y (t)Y −1(s)Ψ−1(s)| is not bounded for 0 ≤ s ≤

t < ∞. From Theorem 1, it follows that the system (1.2) is not Ψ-uniformly stable
on R+.
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If we take

B(t) =
(

0 0
e−a(t+1) 0

)
,

then

Y1(t) =
(

e−a(t+1) 0
e(t+1)[sin ln(t+1)−2a]

∫ t+1

1
e−s sin ln s ds e(t+1)[sin ln( t+1)−2a]

)
is a fundamental matrix for the perturbed system (3.1). We have

Ψ(t)Y 1(t) =
(

1 0
e(t+1)[sin ln(t+1)−2a]

∫ t+1

1
e−s sin ln s ds e(t+1)[sin ln( t+1)−2a]

)
.

Let α ∈ (0, π/2) be such that cos α > (2a−1)eπ. Let tn = e(2n− 1
2 )π for n = 1, 2 . . . .

For tn ≤ s ≤ tneα we have s cos α ≤ −s sin ln s ≤ s and hence

etneπ(sin ln tneπ−2a)

∫ tneπ

1

e−s sin ln s ds

> etneπ(sin ln tneπ−2a)

∫ tneα

tn

e−s sin ln s ds

> etneπ(1−2a)

∫ tneα

tn

es cos α ds

= etn[(1−2a)eπ+cos α]
(
etn(eα−1) cos α −1

)
cos−1 α →∞

This shows that |Ψ(t)Y1(t)| is unbounded on R+. It follows that the equation (3.1)
is not Ψ-stable on R+. Finally, we have

∫∞
0
|Ψ(s)B(s)Ψ−1(s)| ds < +∞.

Also, the Theorem 3 is no longer true if we require that Ψ(t)B(t)Ψ−1(t) → 0 as
t →∞, instead of the condition∫ ∞

0

|Ψ(s)B(s)Ψ−1(s)| ds < +∞.

This is shown by the next example, adapted from an example in Cesari [4].

Example 3.6. Consider the system (1.2) with

A(t) =
(

0 1
−1 − 2

t+1

)
.

Then

Y (t) =

(
sin(t+1)

t+1
cos(t+1)

t+1
(t+1) cos(t+1)−sin(t+1)

(t+1)2
− (t+1) sin(t+1)+cos(t+1)

(t+1)2

)
.

is a fundamental matrix for the homogeneous system (1.2).

Let Ψ(t) =
(

t + 1 0
0 t + 1

)
. We have

Ψ(t)Y (t)Y −1(s)Ψ−1(s)

=

(
(s+1) cos(t−s)+sin(t−s)

s+1 sin (t− s)
(t−s) cos(t−s)−(ts+t+s+2) sin(t−s)

(t+1)(s+1)
(t+1) cos(t−s)−sin(t−s)

t+1

)
,

for 0 ≤ s ≤ t < ∞. It is easy to see that the system (1.2) is Ψ-uniformly stable on
R+.
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Now, we consider the system (3.1) with

B(t) =
(

0 0
0 2

t+1

)
.

Then

Ỹ (t) =
(

sin t cos t
cos t − sin t

)
.

is a fundamental matrix for the perturbed system (3.1). We have

Ψ(t)Ỹ (t) = (t + 1)
(

sin t cos t
cos t − sin t

)
.

It follows that the system (3.1) is not Ψ-(uniformly) stable on R+. Finally, we have∫ ∞

0

|Ψ(s)B(s)Ψ−1(s)| ds = +∞ and lim
t→∞

|Ψ(t)B(t)Ψ−1(t)| = 0.

Theorem 3.7. Suppose that:
(1) There exist a continuous function ϕ : R+ → (0,∞) and a positive constant

M such that the fundamental matrix Y (t) of the system (1.2) satisfies the
condition∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ds ≤ M, ∀t ≥ 0

(2) B(t) is a continuous n× n matrix function on R+ such that

sup
t≥0

ϕ−1(t)|Ψ(t)B(t)Ψ−1(t)|

is a sufficiently small number.
Then the linear system (3.1) is Ψ-stable on R+.

Proof. From the first assumption of theorem it follows that there exists a positive
constant N such that

|Ψ(t)Y (t)| ≤ N, ∀t ≥ 0.

The solution of (3.1) with initial condition x(t0) = x0 is unique and defined for all
t ≥ 0. Then it is also a solution of the problem

x′ = A(t)x + B(t)x, x(t0) = x0.

Therefore, by the variation of constants formula,

x(t) = Y (t)Y −1(t0)x0 +
∫ t

t0

Y (t)Y −1(s)B(s)x(s) ds, t ≥ 0 .

Hence,

‖Ψ(t)x(t)‖ ≤ ‖Ψ(t)Y (t)Y −1(t0)Ψ−1(t0)Ψ(t0)x0‖

+
∫ t

t0

‖Ψ(t)Y (t)Y −1(s)Ψ−1(s)Ψ(s)B(s)Ψ−1(s)Ψ(s)x(s)‖ ds,

for all t ≥ t0. If we put

b = sup
t≥0

ϕ−1(t)|Ψ(t)B(t)Ψ−1(t)| < M−1,

then, for T > t0 and t ∈ [t0, T ], we have

‖Ψ(t)x(t)‖ ≤ |Ψ(t)Y (t)||Y −1(t0)Ψ−1(t0)|‖Ψ(t0)x0‖+ Mb sup
t0≤t≤T

‖Ψ(t)x(t)‖.
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Therefore,

sup
t0≤t≤T

‖Ψ(t)x(t)‖ ≤ (1−Mb)−1
N |Y −1(t0)Ψ−1(t0)|‖Ψ(t0)x0‖.

It follows that the system (3.1) is Ψ-stable on R+. The proof is complete. �

Remark. We can show that the conclusion of Theorem 4 is valid if the condition

sup
t≥0

ϕ−1(t)|Ψ(t)B(t)Ψ−1(t)| < M−1

is replaced with the condition

lim
t→∞

ϕ−1(t)|Ψ(t)B(t)Ψ−1(t)| = 0 .

Theorem 3.7 is no longer true if we require that the system (1.2) be Ψ-(uniformly)
stable on R+ instead of the condition∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ds ≤ M, ∀t ≥ 0 .

This is shown by the next example.

Example 3.8. Consider the system (1.2) with A(t) = O2. Then, a fundamental
matrix for the system (1.2) is Y (t) = I2. Consider

Ψ(t) =
(

1 0
0 1

t+1

)
.

Because

Ψ(t)Y (t)Y −1(s)Ψ−1(s) =
(

1 0
0 s+1

t+1

)
is bounded for 0 ≤ s ≤ t < +∞, it follows that the system (1.2) is Ψ-uniformly
stable on R+. If we take

B(t) =
(

0 0
0 a√

t+1

)
,

where a > 0, then

Ỹ (t) =
(

1 0
0 e2a

√
t+1

)
.

is a fundamental matrix for the perturbed system (3.1). Because

Ψ(t)Ỹ (t) =

(
1 0
0 e2a

√
t+1

t+1

)

is unbounded on R+, it follows that the perturbed system (3.1) is not Ψ-stable on
R+.

Finally, we have supt≥0 |Ψ(t)B(t)Ψ−1(t)| = a and limt→∞ |Ψ(t)B(t)Ψ−1(t)| = 0.
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4. Ψ-stability of the nonlinear system (1.1)

The purpose of this section is to study the Ψ-(uniform) stability of trivial solution
of (1.1). Now, we state a hypothesis which we shall use in various places.

(H0) For all t0 ≥ 0, x0 ∈ Rn and ρ > 0, if ‖Ψ(t0)x0‖ < ρ, then there exists a
unique solution x(t) on R+ of (1.1) such that x(t0) = x0 and ‖Ψ(t)x(t)‖ ≤ ρ
for all t in [0, t0].

This is a natural hypothesis in studying Ψ-stability of system (1.1). In [10], this
hypothesis is tacitly used in particular case Ψ = In.

Theorem 4.1. Assume that Hypothesis (H0) is satisfied. Assume that there exist
a continuous function ϕ : R+ → (0,∞) and a positive constant M such that the
fundamental matrix Y (t) of the system (1.2) satisfies the condition∫ t

0

ϕ(s)|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ds ≤ M, ∀t ≥ 0.

Also assume that function F satisfies the condition

‖Ψ(t)F (t, s, x)‖ ≤ f(t, s)‖Ψ(s)x‖,

for 0 ≤ s ≤ t < ∞ and for all x in Rn, where f is a continuous nonnegative
function on D such that

sup
t≥0

∫ t

0

f(t, s)
ϕ(t)

ds <
1
M

.

Then, the trivial solution of the system (1.1) is Ψ-stable on R+.

Proof. From the second assumption of the theorem, it follows that there exists a
positive constant N such that

|Ψ(t)Y (t)| ≤ N, for all t ≥ 0 .

From the third assumption of the theorem, there exists q such that∫ t

0

f(t, s)
ϕ(t)

ds ≤ q <
1
M

, for all t ≥ 0 .

For a given ε > 0 and t0 ≥ 0, we choose

δ = min{ε

2
,

(1− qM)ε
2N |Y −1(t0)Ψ−1(t0)|

}.

Let x0 ∈ Rn be such that ‖Ψ(t0)x0‖ < δ.
From the first assumption of the theorem , there exists a unique solution x(t) on

R+ of the system (1.1) such that x(t0) = x0 and ‖Ψ(t)x(t)‖ ≤ δ for all t ∈ [0, t0].
Suppose that there exists τ > t0 such that

‖Ψ(τ)x(τ)‖ = ε and ‖Ψ(t)x(t)‖ < ε for t ∈ [t0, τ).



EJDE-2005/56 ON THE Ψ-STABILITY 11

By the classical formula of variation of constants, we have

‖Ψ(τ)x(τ)‖ ≤ ‖Ψ(τ)Y (τ)Y −1(t0)Ψ−1(t0)Ψ(t0)x0‖

+
∫ τ

t0

|Ψ(τ)Y (τ)Y −1(s)Ψ−1(s)|
∫ s

0

‖Ψ(s)F (s, u, x(u))‖ du ds

≤ N |Y −1(t0)Ψ−1(t0)|δ

+
∫ τ

t0

ϕ(s)|Ψ(τ)Y (τ)Y −1(s)Ψ−1(s)|
∫ s

0

f(s, u)
ϕ(s)

‖Ψ(u)x(u)‖ du ds

≤ N |Y −1(t0)Ψ−1(t0)|δ

+ ε

∫ τ

t0

ϕ(s)|Ψ(τ)Y (τ)Y −1(s)Ψ−1(s)|
∫ s

0

f(s, u)
ϕ(s)

du ds

≤ N |Y −1(t0)Ψ−1(t0)|δ + εq

∫ τ

t0

ϕ(s)|Ψ(τ)Y (τ)Y −1(s)Ψ−1(s)| ds

≤ N |Y −1(t0)Ψ−1(t0)|δ + εqM

< ε(1− qM)+εqM = ε,

which is a contradiction. Therefore, the trivial solution of system (1.1) is Ψ-stable
on R+. The proof is complete. �

Corollary 4.2. Suppose that g and h are continuous nonnegative functions on R+

such that

sup
t≥0

g(t)
ϕ(t)

∫ t

0

h(s) ds <
1
M

.

Then in Theorem 4.1 we can consider f(t, s) = g(t)h(s).

Corollary 4.3. Suppose that k is a continuous nonnegative function on R+ such
that

sup
t≥0

1
ϕ(t)

∫ t

0

k(u) du <
1
M

.

Then in Theorem 4.1 we can consider f(t, s) = k(t− s).

Corollary 4.4. If in Theorem 4.1, the third condition is replaced by the condition:
The function F satisfies: For all ε > 0 there exists δ(ε) > 0 such that for all xin

Bδ(ε) = {x ∈ Cc : sup
t≥0

‖Ψ(t)x(t)‖ ≤ δ(ε)}

we have

‖Ψ(t)F (t, s, x(s))‖ ≤ εf(t, s)‖Ψ(s)x(s)‖ for0 ≤ s ≤ t < +∞,

where f is a continuous nonnegative function on D such that

sup
t≥0

∫ t

0

f(t, s)
ϕ(t)

ds < +∞,

then the trivial solution of system (1.1) is Ψ-stable on R+.

The proof of the above corollary is similar to that of Theorem 4.1.



12 A. DIAMANDESCU EJDE-2005/56

Theorem 4.5. Assume hypothesis (H0) is satisfied. Assume the function F satis-
fies

‖Ψ(t)F (t, s, x)‖ ≤ f(t, s)‖Ψ(s)x‖, for 0 ≤ s ≤ t < ∞

and for every x ∈ Rn, where f is a continuous nonnegative function on D such that

M =
∫ ∞

0

∫ t

0

f(t, s) ds dt <∞.

Also assume the fundamental matrix Y (t) of the system (1.2) is such that

|Ψ(t)Y (t)Y −1(s)Ψ−1(s)| ≤ K

for all 0 ≤ s ≤ t < +∞, where K is a positive constant. Then, the trivial solution
of (1.1) is Ψ-uniformly stable on R+.

Proof. Let ε > 0 and δ(ε) = 0.5εK−1(1 + M)−1e−KM . Let t0 ≥ 0 and x0 ∈ Rn

be such that ‖Ψ(t0)x0‖ < δ(ε). There exists a unique solution x(t) on R+ of (1.1)
such that x(t0) = x0 and ‖Ψ(t)x(t)‖ ≤ δ(ε) for all t ∈ [0, t0]. For t ≥ t0, we have

‖Ψ(t)x(t)‖

= ‖Ψ(t)Y (t)Y −1(t0)Ψ−1(t0)Ψ(t0)x0

+
∫ t

t0

Ψ(t)Y (t)Y −1(s)Ψ−1(s)
∫ s

0

Ψ(s)F (s, u, x(u)) du ds‖

≤ K‖Ψ(t0)x0‖+ K

∫ t

t0

∫ s

0

f(s, u)‖Ψ(u)x(u)‖ du ds = K‖Ψ(t0)x0‖

+ K

∫ t

t0

∫ t0

0

f(s, u)‖Ψ(u)x(u)‖ du ds + K

∫ t

t0

∫ s

t0

f(s, u)‖Ψ(u)x(u)‖ du ds

≤ Kδ(ε)(1 + M) + K

∫ t

t0

∫ s

t0

f(s, u)‖Ψ(u)x(u)‖ du ds.

It is easy to see that the function Q(t) =
∫ t

t0

∫ s

t0
f(s, u)‖Ψ(u)x(u)‖ du ds is continu-

ously differentiable and increasing on [t0,∞). For t ≥ t0, we have

Q′(t) =
∫ t

t0

f(t, u)‖Ψ(u)x(u)‖ du

≤
∫ t

t0

f(t, u)[Kδ(ε)(1 + M) + KQ(u)] du

= Kδ(ε)(1 + M)
∫ t

t0

f(t, u) du + K

∫ t

t0

f(t, u)Q(u) du.
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Then [
Q(t) exp

(
−K

∫ t

t0

∫ s

t0

f(s, u) du ds
)]′

= exp
(
−K

∫ t

t0

∫ s

t0

f(s, u) du ds
)[

Q′(t)−KQ(t)
∫ t

t0

f(t, u) du
]

≤ exp
(
−K

∫ t

t0

∫ s

t0

f(s, u) du ds
)

×
[
Kδ(ε)(1 + M)

∫ t

t0

f(t, u) du + K

∫ t

t0

f(t, u)(Q(u)−Q(t)) du
]

≤ exp
(
−K

∫ t

t0

∫ s

t0

f(s, u) du ds
)[

Kδ(ε)(1 + M)
∫ t

t0

f(t, u) du
]

=
[
− δ(ε)(1 + M)e−K

R t
t0

R s
t0

f(s,u) du ds]′
.

Integrating from t0 to t (t ≥ t0), we have

Q(t)e−K
R t

t0

R s
t0

f(s,u) du ds ≤ δ(ε)(1 + M)
[
1− e

−K
R t

t0

R s
t0

f(s,u) du ds
]
.

We deduce that

‖Ψ(t)x(t)‖ ≤ δ(ε)K(1 + M)eKM
< ε, for all t ≥ t0.

This proves that the trivial solution of (1.1) is Ψ-uniformly stable on R+. The
proof is complete. �

Corollary 4.6. Suppose that g and h are continuous nonnegative functions on R+

such that ∫ ∞

0

g(t)
∫ t

0

h(s) ds dt < +∞.

Then in Theorem 4.5 we can consider f(t, s) = g(t)h(s).

Remark. Theorem 4.5 generalizes a result of Hara, Yoneyama and Itoh [10].
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