Electronic Journal of Differential Equations, Vol. 2005(2005), No. 56, pp. 1-14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE Ψ-STABILITY OF A NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL SYSTEM

AUREL DIAMANDESCU

Abstract

In this paper we prove sufficient conditions for Ψ-stability of the zero solution of a nonlinear Volterra integro-differential system.

1. Introduction

Akinyele [1] introduced the notion of Ψ-stability of degree k with respect to a function $\Psi \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$, increasing and differentiable on \mathbb{R}_{+}and such that $\Psi(t) \geq 1$ for $t \geq 0$ and $\lim _{t \rightarrow \infty} \Psi(t)=b, b \in[1, \infty)$. The fact that the function Ψ is bounded does not enable a deeper analysis, of the asymptotic properties of the solutions of a differential equations, than the notion of stability in sense Lyapunov.

Constantin [5] introduced the notions of degree of stability and degree of boundedness of solutions of an ordinary differential equation, with respect to a continuous positive and nondecreasing function $\Psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Some criteria for these notions are proved there too.

Morchalo 13 introduced the notions of Ψ-stability, Ψ-uniform stability, and Ψ asymptotic stability of trivial solution of the nonlinear system $x^{\prime}=f(t, x)$. Several new and sufficient conditions for mentioned types of stability are proved for the linear system $x^{\prime}=A(t) x$. Furthermore, sufficient conditions are given for the uniform Lipschitz stability of the system $x^{\prime}=f(t, x)+g(t, x)$. In this paper, the function Ψ is a scalar continuous function.

The purpose of our paper is to prove sufficient conditions for Ψ-(uniform) stability of trivial solution of the nonlinear Volterra integro-differential system

$$
\begin{equation*}
x^{\prime}=A(t) x+\int_{0}^{t} F(t, s, x(s)) d s \tag{1.1}
\end{equation*}
$$

which can be seen as a perturbed system of

$$
\begin{equation*}
y^{\prime}=A(t) y \tag{1.2}
\end{equation*}
$$

We investigate conditions on the fundamental matrix $Y(t)$ for the linear system (1.2) and on the function $F(t, s, x)$ under which the trivial solution of (1.1) or 1.2) is Ψ-(uniformly) stable on \mathbb{R}_{+}. Here, Ψ is a matrix function whose introduction permits us obtaining a mixed asymptotic behavior for the components of solutions.

[^0]Recent works for stability of solutions of (1.1) have been given by Mahfoud 12 who used Lyapunov functionals; Lakshmikantham and Rama Mohana Rao [11] who used the comparison method; Hara, Yoneyama and Itoh [10] who used "variation of parameters" formula; in other words, the solution of equation 1.1 with the initial function φ on $\left[0, t_{0}\right]$ - namely $x(t)=\varphi(t)$ for $\mathrm{t} \in\left[0, t_{0}\right]$ - is written

$$
x\left(t ; t_{0}, \varphi\right)=Y(t) Y^{-1}\left(t_{0}\right) \varphi\left(t_{0}\right)+\int_{0}^{t} Y(t) Y^{-1}(s) \int_{0}^{s} F\left(s, u, x\left(u ; t_{0}, \varphi\right)\right) d u d s
$$

and by Avramescu [2] who used the method of admissibility of a pair of subspaces with respect to an operator.

2. Definitions, notation and hypotheses

Let \mathbb{R}^{n} denote the Euclidean n-space. For $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)^{T}$ in \mathbb{R}^{n}, let $\|x\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$ be the norm of x. For an $n \times n$ matrix $A=\left(a_{i j}\right)$, we define the norm $|A|=\sup _{\|x\| \leq 1}\|A x\|$.

In the system (1.1) we assume that A is a continuous $n \times n$ matrix on $\mathbb{R}_{+}=[0, \infty)$ and $F: D \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, D=\left\{(t, s) \in \mathbb{R}^{2}: 0 \leq s \leq t<\infty\right\}$, is a continuous n-vector such that $F(t, s, 0)=0$ for $(t, s) \in D$.

Let $\Psi_{i}: \mathbb{R}_{+} \rightarrow(0, \infty), i=1,2 \ldots n$, be continuous functions and

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{n}\right]
$$

Now, we give definitions of various types of Ψ-stability.
Definitions. The trivial solution of (1.1) is said to be Ψ-stable on \mathbb{R}_{+}if for every $\varepsilon>0$ and every t_{0} in \mathbb{R}_{+}, there exists $\delta=\delta\left(\varepsilon, t_{0}\right)>0$ such that any solution $x(t)$ of (1.1) which satisfies the inequality $\left\|\Psi\left(t_{0}\right) x\left(t_{0}\right)\right\|<\delta$, also satisfies the inequality $\|\Psi(t) x(t)\|<\varepsilon$ for all $t \geq t_{0}$.

The trivial solution of 1.1 is said to be Ψ-uniformly stable on \mathbb{R}_{+}if it is Ψ-stable on \mathbb{R}_{+}and the above δ is independent of t_{0}.

Remarks. 1. For $\Psi_{i}=1, i=1,2 \ldots n$, we obtain the notions of classical stability and uniform-stability.
2. If in the definitions above, we replace Ψ with $\Psi^{k}, k \in \mathbb{Z} \backslash\{0,1\}$, we obtain stability and uniform-stability of degree k with respect to a scalar function Ψ [5].

3. Ψ-StabiLity of Linear systems

The purpose of this section is to study conditions for Ψ-(uniform) stability of trivial solution of linear systems. These conditions can be expressed in terms of a fundamental matrix for (1.2).

Theorem 3.1. Let $Y(t)$ be a fundamental matrix for 1.2. Then
(a) The trivial solution of $(\sqrt[1.2]{ })$ is Ψ-stable on \mathbb{R}_{+}if and only if there exists a positive constant K such that $|\Psi(t) Y(t)| \leq K$ for all $t \geq 0$.
(b) The trivial solution of $\sqrt{1.2)}$ is Ψ-uniformly stable on \mathbb{R}_{+}if and only if there exists a positive constant K such that $\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| \leq K$ for all $0 \leq s \leq t<\infty$.

Proof. The solution of (1.2) which takes the value y in \mathbb{R}^{n} at $a \geq 0$ is $y(t)=$ $Y(t) Y^{-1}(a) y$ for $t \geq 0$.

Suppose first that the trivial solution of (1.2) is Ψ-stable on \mathbb{R}_{+}. Then, for $\varepsilon=1$ and $t_{0}=0$, there exists $\delta>0$ such that any solution $y(t)$ of 1.2 which satisfies the inequality $\|\Psi(0) y(0)\|<\delta$, there exists and satisfies the inequality

$$
\left\|\Psi(t) Y(t)(\Psi(0) Y(0))^{-1} \Psi(0) y(0)\right\|<1 \quad \text { for } t \geq 0
$$

Let $\mathrm{u} \in \mathbb{R}^{n}$ be such that $\|u\| \leq 1$. If we take $y(0)=\frac{\delta}{2} \Psi^{-1}(0) u$, then we have $\|\Psi(0) y(0)\|<\delta$. Hence, $\left\|\Psi(t) Y(t)(\Psi(0) Y(0))^{-1} \frac{\delta}{2} u\right\|<1$ for $t \geq 0$. Therefore, $\left|\Psi(t) Y(t)(\Psi(0) Y(0))^{-1}\right| \leq 2 / \delta$ for $t \geq 0$. Hence, $|\Psi(t) Y(t)| \leq K$, a constant, for $t \geq 0$.

Suppose next that $|\Psi(t) Y(t)| \leq K$ for $t \geq 0$. For $\varepsilon>0$ and $t_{0} \in \mathbb{R}_{+}$, let $\delta\left(\varepsilon, t_{0}\right)=\varepsilon K^{-1}\left|\left(\Psi\left(t_{0}\right) Y\left(t_{0}\right)\right)^{-1}\right|^{-1}$. For $\left\|\Psi\left(t_{0}\right) y\left(t_{0}\right)\right\|<\delta$ and $t \geq t_{0}$, we have

$$
\|\Psi(t) y(t)\|=\| \Psi(t) Y(t)\left(\Psi\left(t_{0}\right) Y\left(t_{0}\right)^{-1} \Psi\left(t_{0}\right) y\left(t_{0}\right) \|<\varepsilon\right.
$$

Thus, the trivial solution of $\sqrt{1.2}$ is Ψ-stable on \mathbb{R}_{+}.
Part (b) is proved similarly and omit its proof. The proof is complete.

Remarks. 1. It is easy to see that if $|\Psi(t)|$ and $\left|\Psi^{-1}(t)\right|$ are bounded on \mathbb{R}_{+}, then the Ψ-stability is equivalent with the classical stability.
2. Theorem 3.1 generalizes a similar result for classical stability [7].
3. In the same manner as in classical stability, we can speak about Ψ-(uniform) stability of a linear system (1.2).

Example 3.2. Consider the linear system $\sqrt{1.2}$ with

$$
A(t)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Then

$$
Y(t)=\left(\begin{array}{ccc}
e^{t} \sin t & e^{t} \cos t & 0 \\
-e^{t} \cos t & e^{t} \sin t & 0 \\
0 & 0 & e^{-2 t}
\end{array}\right)
$$

is a fundamental matrix for the system (1.2). Because $Y(t)$ is unbounded on \mathbb{R}_{+}, it follows that the system (1.2) is not stable on \mathbb{R}_{+}. Consider

$$
\Psi(t)=\left(\begin{array}{ccc}
e^{-t} & 0 & 0 \\
0 & e^{-t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)
$$

Then, for all $0 \leq s \leq t<\infty$, we have

$$
\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)=\left(\begin{array}{ccc}
\cos (t-s) & -\sin (t-s) & 0 \\
\sin (t-s) & \cos (t-s) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus, the system $\left(\sqrt{1.2}\right.$ is Ψ-uniformly stable on \mathbb{R}_{+}.

Remark. The introduction of the matrix function Ψ permits us obtain a mixed asymptotic behavior of the components of the solutions.
Theorem 3.3. Let $Y(t)$ be a fundamental matrix for 1.2 . If there exist a continuous function $\varphi: \mathbb{R}_{+} \rightarrow(0, \infty)$ and the constants $p \geq 1$ and $M>0$ which fulfil one of the following conditions:
(i) $\int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right|^{p} d s \leq M$, for all $t \geq 0$
(ii) $\int_{0}^{t} \varphi(s)\left|Y^{-1}(s) \Psi^{-1}(s) \Psi(t) Y(t)\right|^{p} d s \leq M$, for all $t \geq 0$,
then, the system 1.2 is Ψ-stable on \mathbb{R}_{+}.
Proof. For the case (i), first, we consider $p=1$. Let $\mathrm{q}(\mathrm{t})=|\Psi(t) Y(t)|^{-1}$ for $t \geq 0$. From the identity

$$
\left(\int_{0}^{t} \varphi(s) q(s) d s\right) \Psi(t) Y(t)=\int_{0}^{t} \varphi(s) \Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) Y(s) q(s) d s
$$

it follows that

$$
\begin{aligned}
& \left(\int_{0}^{t} \varphi(s) q(s) d s\right)|\Psi(t) Y(t)| \\
& \leq \int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right||\Psi(s) Y(s)| q(s) d s
\end{aligned}
$$

Thus, the scalar function $h(t)=\int_{0}^{t} \varphi(s) q(s) d s$ satisfies the inequality

$$
h(t) q^{-1}(t) \leq M, \text { for } t \geq 0
$$

We have $h^{\prime}(t)=\varphi(t) q(t) \geq M^{-1} \varphi(t) h(t)$ for $t \geq 0$. It follows that

$$
h(t) \geq h\left(t_{1}\right) e^{M^{-1} \int_{t_{1}}^{t} \varphi(s) d s}, \quad \text { for } t \geq t_{1}>0
$$

and hence

$$
|\Psi(t) Y(t)|=q^{-1}(t) \leq M h^{-1}\left(t_{1}\right) e^{-M^{-1} \int_{t_{1}}^{t} \varphi(s) d s}, \quad \text { for } t \geq t_{1}>0
$$

Because $|\Psi(t) Y(t)|$ is a continuous function on $\left[0, t_{1}\right]$, it follows that there exists a positive constant K such that $|\Psi(t) Y(t)| \leq K$ for $t \geq 0$. Hence, the theorem follows immediately from the Theorem 3.1 .

Next, suppose that $p>1$. Let $r(t)=|\Psi(t) Y(t)|^{-p}$ for $t \geq 0$. In the same manner as above, we have

$$
\left(\int_{0}^{t} \varphi(s) r(s) d s\right)|\Psi(t) Y(t)| \leq \int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \| \Psi(s) Y(s)\right| r(s) d s
$$

Because $\varphi(s)|\Psi(s) Y(s)| r(s)=(\varphi(s))^{1 / p}(\varphi(s) r(s))^{1 / q}$, where $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\begin{aligned}
& \left(\int_{0}^{t} \varphi(s) r(s) d s\right)|\Psi(t) Y(t)| \\
& \leq \int_{0}^{t}(\varphi(s))^{1 / p}\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right|(\varphi(s) r(s))^{1 / q} d s
\end{aligned}
$$

Using the Hölder inequality, we obtain

$$
\begin{aligned}
& \left(\int_{0}^{t} \varphi(s) r(s) d s\right)|\Psi(t) Y(t)| \\
& \leq\left(\int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right|^{p} d s\right)^{1 / p}\left(\int_{0}^{t} \varphi(s) r(s) d s\right)^{1 / q}, \quad t \geq 0
\end{aligned}
$$

or

$$
\left(\int_{0}^{t} \varphi(s) r(s) d s\right)|\Psi(t) Y(t)| \leq M^{1 / p}\left(\int_{0}^{t} \varphi(s) r(s) d s\right)^{1 / q}, \quad t \geq 0
$$

Thus, the matrix $\Psi(\mathrm{t}) \mathrm{Y}(\mathrm{t})$ satisfies the inequality

$$
|\Psi(t) Y(t)| \leq M^{1 / p}\left(\int_{0}^{t} \varphi(s) r(s) d s\right)^{-1 / p}, \quad \forall t \geq 0
$$

Denoting $Q(t)=\int_{0}^{t} \varphi(s) r(s) d s$ for $t \geq 0$, we obtain

$$
|\Psi(t) Y(t)| \leq M^{\frac{1}{p}}(Q(t))^{-1 / p}, \quad \forall t \geq 0
$$

Because $Q^{\prime}(t)=\varphi(t) r(t)=\varphi(t)|\Psi(t) Y(t)|^{-p} \geq M^{-1} \varphi(t) Q(t)$, we have

$$
Q(t) \geq Q(1) e^{M^{-1} \int_{1}^{t} \varphi(s) d s}, \quad t \geq 1
$$

It follows that

$$
|\Psi(t) Y(t)| \leq M^{1 / p}(Q(1))^{-1 / p} e^{-p^{-1} M^{-1} \int_{1}^{t} \varphi(s) d s}, \quad t \geq 1
$$

Because $|\Psi(t) Y(t)|$ is a continuous function on $[0,1]$, it follows that there exists a positive constant K such that $|\Psi(t) Y(t)| \leq K$ for $t \geq 0$. Hence, the theorem follows immediately from the Theorem 3.1 .

For case (ii), the proof is similar and we omit it. The proof is complete.
Remarks. 1. The function φ can serve to weaken the required hypotheses on the fundamental matrix Y.
2. Theorem 3.3 generalizes a result of Dannan and Elaydi 8.
3. In the conditions of the Theorem, the linear system 1.2 can not be Ψ-uniformly stable on \mathbb{R}_{+}. This is shown in [9, Example 2].

Finally, we consider various Ψ-stability problems connected with the linear system

$$
\begin{equation*}
x^{\prime}=(A(t)+B(t)) x \tag{3.1}
\end{equation*}
$$

as a perturbed system of 1.2). We seek conditions under which the Ψ-(uniform) stability of 1.2 implies the Ψ-(uniform) stability of (3.1).

Theorem 3.4. Suppose that B is a continuous $n \times n$ matrix function for $t \geq 0$. If the linear system 1.2 is Ψ-uniformly stable on \mathbb{R}_{+}and

$$
\int_{0}^{\infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right| d t<+\infty
$$

then the linear system 3.1 is also Ψ-uniformly stable on \mathbb{R}_{+}.
Proof. Let $Y(t)$ be a fundamental matrix for the homogeneous system 1.2 . Because the system 1.2 is Ψ-uniformly stable on \mathbb{R}_{+}, there exists a positive constant K such that

$$
\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| \leq K \quad \text { for } 0 \leq s \leq t<+\infty
$$

The solution of (3.1) with initial condition $x\left(t_{0}\right)=x_{0}$ is unique and defined for all $t \geq 0$. Then it is also a solution of the problem

$$
x^{\prime}=A(t) x+B(t) x, x\left(t_{0}\right)=x_{0}
$$

Therefore, by the variation of constants formula,

$$
x(t)=Y(t) Y^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} Y(t) Y^{-1}(s) B(s) x(s) d s
$$

or, for $t, t_{0} \geq 0$,

$$
\begin{aligned}
\Psi(t) x(t)= & \Psi(t) Y(t) Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) x_{0} \\
& +\int_{t_{0}}^{t} \Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) B(s) \Psi^{-1}(s) \Psi(s) x(s) d s
\end{aligned}
$$

From the above conditions, it results that

$$
\|\Psi(t) x(t)\| \leq K\left\|\Psi\left(t_{0}\right) x\left(t_{0}\right)\right\|+K \int_{t_{0}}^{t}\left|\Psi(s) B(s) \Psi^{-1}(s)\right|\|\Psi(s) x(s)\| d s
$$

for $t \geq t_{0} \geq 0$. Therefore, by Gronwall's inequality,

$$
\|\Psi(t) x(t)\| \leq K\left\|\Psi\left(t_{0}\right) x\left(t_{0}\right)\right\| e^{K \int_{t_{0}}^{t}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s}, \quad \text { for } t \geq t_{0}
$$

Thus, putting $L=\int_{0}^{\infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right| d t$, we have

$$
\|\Psi(t) x(t)\| \leq K\left\|\Psi\left(t_{0}\right) x\left(t_{0}\right)\right\| e^{K L}, \quad \text { for all } t \geq t_{0} \geq 0
$$

This inequality shows that the system (3.1) is Ψ-uniformly stable on \mathbb{R}_{+}. The proof is complete.

Remark. The above theorem generalizes a results of Caligo 3], Conti 6] in connection with uniform stability.

If the linear system $\sqrt{1.2}$ is only Ψ-stable, then the linear system (3.1) can not be Ψ-stable. This is shown by the next example transformed after an example due to Perron [14].

Example 3.5. Let $a \in \mathbb{R}$ be such that $1 \leq 2 a<1+e^{-\pi}$ and let

$$
A(t)=\left(\begin{array}{cc}
-a & 0 \\
0 & \sin \ln (t+1)+\cos \ln (t+1)-2 a
\end{array}\right)
$$

Then

$$
Y(t)=\left(\begin{array}{cc}
e^{-a(t+1)} & 0 \\
0 & e^{(t+1)[\sin \ln (t+1)-2 a]}
\end{array}\right)
$$

is a fundamental matrix for the homogeneous system 1.2 .
Let $\Psi(t)=\left(\begin{array}{cc}e^{a(t+1)} & 0 \\ 0 & 1\end{array}\right)$. We have

$$
\Psi(t) Y(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{(t+1)[\sin \ln (t+1)-2 a]}
\end{array}\right)
$$

Because $|\Psi(t) Y(t)|$ is bounded on \mathbb{R}_{+}, it follows that the system 1.2 is Ψ-stable on \mathbb{R}_{+}. For $0 \leq \mathrm{s} \leq \mathrm{t} ; \infty$, we have

$$
\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right|=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{f(t)-f(s)}
\end{array}\right)
$$

where $f(t)=(t+1) \sin \ln (t+1)-2 a t$.
It is easy to see that $\lim _{n \rightarrow \infty}\left[f\left(t_{n} e^{\alpha}-1\right)-f\left(t_{n}-1\right)\right]=\infty$, where $t_{n}=e^{(8 n+1) \frac{\pi}{4}}$ and $\alpha=\arccos \frac{1+e^{-\pi}}{\sqrt{2}}$. Thus, $\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right|$ is not bounded for $0 \leq s \leq$ $t<\infty$. From Theorem 1, it follows that the system $\sqrt{1.2}$ is not Ψ-uniformly stable on \mathbb{R}_{+}.

If we take

$$
B(t)=\left(\begin{array}{cc}
0 & 0 \\
e^{-a(t+1)} & 0
\end{array}\right)
$$

then

$$
Y_{1}(t)=\left(\begin{array}{cc}
e^{-a(t+1)} & 0 \\
e^{(t+1)[\sin \ln (t+1)-2 a]} \int_{1}^{t+1} e^{-s \sin \ln s} d s & e^{(t+1)[\sin \ln (t+1)-2 a]}
\end{array}\right)
$$

is a fundamental matrix for the perturbed system (3.1). We have

$$
\Psi(t) Y_{1}(t)=\left(\begin{array}{cc}
1 & 0 \\
e^{(t+1)[\sin \ln (t+1)-2 a]} \int_{1}^{t+1} e^{-s \sin \ln s} d s & e^{(t+1)[\sin \ln (t+1)-2 a]}
\end{array}\right)
$$

Let $\alpha \in(0, \pi / 2)$ be such that $\cos \alpha>(2 a-1) e^{\pi}$. Let $t_{n}=e^{\left(2 n-\frac{1}{2}\right) \pi}$ for $n=1,2 \ldots$ For $t_{n} \leq s \leq t_{n} e^{\alpha}$ we have $s \cos \alpha \leq-s \sin \ln s \leq s$ and hence

$$
\begin{aligned}
& e^{t_{n} e^{\pi}\left(\sin \ln t_{n} e^{\pi}-2 a\right)} \int_{1}^{t_{n} e^{\pi}} e^{-s \sin \ln s} d s \\
& >e^{t_{n} e^{\pi}\left(\sin \ln t_{n} e^{\pi}-2 a\right)} \int_{t_{n}}^{t_{n} e^{\alpha}} e^{-s \sin \ln s} d s \\
& >e^{t_{n} e^{\pi}(1-2 a)} \int_{t_{n}}^{t_{n} e^{\alpha}} e^{s \cos \alpha} d s \\
& =e^{t_{n}\left[(1-2 a) e^{\pi}+\cos \alpha\right]}\left(e^{t_{n}\left(e^{\alpha}-1\right) \cos \alpha}-1\right) \cos ^{-1} \alpha \rightarrow \infty
\end{aligned}
$$

This shows that $\left|\Psi(t) Y_{1}(t)\right|$ is unbounded on \mathbb{R}_{+}. It follows that the equation (3.1) is not Ψ-stable on \mathbb{R}_{+}. Finally, we have $\int_{0}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s<+\infty$.

Also, the Theorem 3 is no longer true if we require that $\Psi(t) B(t) \Psi^{-1}(t) \rightarrow 0$ as $t \rightarrow \infty$, instead of the condition

$$
\int_{0}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s<+\infty
$$

This is shown by the next example, adapted from an example in Cesari 4.
Example 3.6. Consider the system 1.2 with

$$
A(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & -\frac{2}{t+1}
\end{array}\right)
$$

Then

$$
Y(t)=\left(\begin{array}{cc}
\frac{\sin (t+1)}{t+1} & \frac{\cos (t+1)}{t+1} \\
\frac{(t+1) \cos (t+1)-\sin (t+1)}{(t+1)^{2}} & -\frac{(t+1) \sin (t+1)+\cos (t+1)}{(t+1)^{2}}
\end{array}\right)
$$

is a fundamental matrix for the homogeneous system 1.2 .

$$
\text { Let } \begin{aligned}
& \Psi(t)=\left(\begin{array}{cc}
t+1 & 0 \\
0 & t+1
\end{array}\right) . \text { We have } \\
& \Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \\
&=\left(\begin{array}{cc}
\frac{(s+1) \cos (t-s)+\sin (t-s)}{s+1} & \sin (t-s) \\
\frac{(t-s) \cos (t-s)-(t s+t+s+2) \sin (t-s)}{(t+1)(s+1)} & \frac{(t+1) \cos (t-s)-\sin (t-s)}{t+1}
\end{array}\right),
\end{aligned}
$$

for $0 \leq s \leq t<\infty$. It is easy to see that the system 1.2 is Ψ-uniformly stable on \mathbb{R}_{+}.

Now, we consider the system 3.1 with

$$
B(t)=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{2}{t+1}
\end{array}\right)
$$

Then

$$
\tilde{Y}(t)=\left(\begin{array}{cc}
\sin t & \cos t \\
\cos t & -\sin t
\end{array}\right)
$$

is a fundamental matrix for the perturbed system 3.1. We have

$$
\Psi(t) \widetilde{Y}(t)=(t+1)\left(\begin{array}{cc}
\sin t & \cos t \\
\cos t & -\sin t
\end{array}\right)
$$

It follows that the system (3.1) is not Ψ-(uniformly) stable on \mathbb{R}_{+}. Finally, we have

$$
\int_{0}^{\infty}\left|\Psi(s) B(s) \Psi^{-1}(s)\right| d s=+\infty \quad \text { and } \quad \lim _{t \rightarrow \infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=0
$$

Theorem 3.7. Suppose that:
(1) There exist a continuous function $\varphi: \mathbb{R}_{+} \rightarrow(0, \infty)$ and a positive constant M such that the fundamental matrix $Y(t)$ of the system $\sqrt{1.2}$ satisfies the condition

$$
\int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq M, \quad \forall t \geq 0
$$

(2) $B(t)$ is a continuous $n \times n$ matrix function on \mathbb{R}_{+}such that

$$
\sup _{t \geq 0} \varphi^{-1}(t)\left|\Psi(t) B(t) \Psi^{-1}(t)\right|
$$

is a sufficiently small number.
Then the linear system (3.1) is Ψ-stable on \mathbb{R}_{+}.
Proof. From the first assumption of theorem it follows that there exists a positive constant N such that

$$
|\Psi(t) Y(t)| \leq N, \quad \forall t \geq 0
$$

The solution of (3.1) with initial condition $x\left(t_{0}\right)=x_{0}$ is unique and defined for all $t \geq 0$. Then it is also a solution of the problem

$$
x^{\prime}=A(t) x+B(t) x, \quad x\left(t_{0}\right)=x_{0} .
$$

Therefore, by the variation of constants formula,

$$
x(t)=Y(t) Y^{-1}\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} Y(t) Y^{-1}(s) B(s) x(s) d s, \quad t \geq 0
$$

Hence,

$$
\begin{aligned}
\|\Psi(t) x(t)\| \leq & \left\|\Psi(t) Y(t) Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) x_{0}\right\| \\
& +\int_{t_{0}}^{t}\left\|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \Psi(s) B(s) \Psi^{-1}(s) \Psi(s) x(s)\right\| d s
\end{aligned}
$$

for all $t \geq t_{0}$. If we put

$$
b=\sup _{t \geq 0} \varphi^{-1}(t)\left|\Psi(t) B(t) \Psi^{-1}(t)\right|<M^{-1},
$$

then, for $T>t_{0}$ and $t \in\left[t_{0}, T\right]$, we have

$$
\|\Psi(t) x(t)\| \leq\left|\Psi(t) Y(t)\left\|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right) \mid\right\| \Psi\left(t_{0}\right) x_{0}\left\|+M b \sup _{t_{0} \leq t \leq T}\right\| \Psi(t) x(t) \|\right.
$$

Therefore,

$$
\sup _{t_{0} \leq t \leq T}\|\Psi(t) x(t)\| \leq(1-M b)^{-1} N \mid Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\left\|\Psi\left(t_{0}\right) x_{0}\right\|
$$

It follows that the system (3.1) is Ψ-stable on \mathbb{R}_{+}. The proof is complete.

Remark. We can show that the conclusion of Theorem 4 is valid if the condition

$$
\sup _{t \geq 0} \varphi^{-1}(t)\left|\Psi(t) B(t) \Psi^{-1}(t)\right|<M^{-1}
$$

is replaced with the condition

$$
\lim _{t \rightarrow \infty} \varphi^{-1}(t)\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=0
$$

Theorem 3.7 is no longer true if we require that the system 1.2 be Ψ-(uniformly) stable on \mathbb{R}_{+}instead of the condition

$$
\int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq M, \quad \forall t \geq 0
$$

This is shown by the next example.
Example 3.8. Consider the system (1.2) with $A(t)=O_{2}$. Then, a fundamental matrix for the system $\left(\sqrt[1.2]{ }\right.$ is $Y(t)=I_{2}$. Consider

$$
\Psi(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{t+1}
\end{array}\right)
$$

Because

$$
\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{s+1}{t+1}
\end{array}\right)
$$

is bounded for $0 \leq s \leq t<+\infty$, it follows that the system $\sqrt{1.2}$ is Ψ-uniformly stable on \mathbb{R}_{+}. If we take

$$
B(t)=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{a}{\sqrt{t+1}}
\end{array}\right)
$$

where $a>0$, then

$$
\tilde{Y}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{2 a \sqrt{t+1}}
\end{array}\right) .
$$

is a fundamental matrix for the perturbed system (3.1). Because

$$
\Psi(t) \widetilde{Y}(t)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{e^{2 a \sqrt{t+1}}}{t+1}
\end{array}\right)
$$

is unbounded on \mathbb{R}_{+}, it follows that the perturbed system (3.1) is not Ψ-stable on \mathbb{R}_{+}.

Finally, we have $\sup _{t \geq 0}\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=a$ and $\lim _{t \rightarrow \infty}\left|\Psi(t) B(t) \Psi^{-1}(t)\right|=0$.

4. Ψ-STABILITY OF THE NONLINEAR SYSTEM 1.1

The purpose of this section is to study the Ψ-(uniform) stability of trivial solution of (1.1). Now, we state a hypothesis which we shall use in various places.
(H0) For all $t_{0} \geq 0, x_{0} \in \mathbb{R}^{n}$ and $\rho>0$, if $\left\|\Psi\left(t_{0}\right) x_{0}\right\|<\rho$, then there exists a unique solution $x(t)$ on \mathbb{R}_{+}of 1.1 such that $x\left(t_{0}\right)=x_{0}$ and $\|\Psi(t) x(t)\| \leq \rho$ for all t in $\left[0, t_{0}\right]$.

This is a natural hypothesis in studying Ψ-stability of system (1.1). In [10], this hypothesis is tacitly used in particular case $\Psi=I_{n}$.

Theorem 4.1. Assume that Hypothesis (H0) is satisfied. Assume that there exist a continuous function $\varphi: \mathbb{R}_{+} \rightarrow(0, \infty)$ and a positive constant M such that the fundamental matrix $Y(t)$ of the system (1.2) satisfies the condition

$$
\int_{0}^{t} \varphi(s)\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| d s \leq M, \quad \forall t \geq 0
$$

Also assume that function F satisfies the condition

$$
\|\Psi(t) F(t, s, x)\| \leq f(t, s)\|\Psi(s) x\|
$$

for $0 \leq s \leq t<\infty$ and for all x in \mathbb{R}^{n}, where f is a continuous nonnegative function on D such that

$$
\sup _{t \geq 0} \int_{0}^{t} \frac{f(t, s)}{\varphi(t)} d s<\frac{1}{M}
$$

Then, the trivial solution of the system (1.1) is Ψ-stable on \mathbb{R}_{+}.
Proof. From the second assumption of the theorem, it follows that there exists a positive constant N such that

$$
|\Psi(t) Y(t)| \leq N, \quad \text { for all } t \geq 0
$$

From the third assumption of the theorem, there exists q such that

$$
\int_{0}^{t} \frac{f(t, s)}{\varphi(t)} d s \leq q<\frac{1}{M}, \quad \text { for all } t \geq 0
$$

For a given $\varepsilon>0$ and $t_{0} \geq 0$, we choose

$$
\delta=\min \left\{\frac{\varepsilon}{2}, \frac{(1-q M) \varepsilon}{2 N\left|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\right|}\right\}
$$

Let $x_{0} \in \mathbb{R}^{n}$ be such that $\left\|\Psi\left(t_{0}\right) x_{0}\right\|<\delta$.
From the first assumption of the theorem, there exists a unique solution $x(t)$ on \mathbb{R}_{+}of the system 1.1) such that $x\left(t_{0}\right)=x_{0}$ and $\|\Psi(t) x(t)\| \leq \delta$ for all $t \in\left[0, t_{0}\right]$. Suppose that there exists $\tau>t_{0}$ such that

$$
\|\Psi(\tau) x(\tau)\|=\varepsilon \quad \text { and } \quad\|\Psi(t) x(t)\|<\varepsilon \quad \text { for } t \in\left[t_{0}, \tau\right)
$$

By the classical formula of variation of constants, we have

$$
\begin{aligned}
\|\Psi(\tau) x(\tau)\| \leq & \left\|\Psi(\tau) Y(\tau) Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) x_{0}\right\| \\
& +\int_{t_{0}}^{\tau}\left|\Psi(\tau) Y(\tau) Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s}\|\Psi(s) F(s, u, x(u))\| d u d s \\
\leq & N\left|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\right| \delta \\
& +\int_{t_{0}}^{\tau} \varphi(s)\left|\Psi(\tau) Y(\tau) Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} \frac{f(s, u)}{\varphi(s)}\|\Psi(u) x(u)\| d u d s \\
\leq & N\left|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\right| \delta \\
& +\varepsilon \int_{t_{0}}^{\tau} \varphi(s)\left|\Psi(\tau) Y(\tau) Y^{-1}(s) \Psi^{-1}(s)\right| \int_{0}^{s} \frac{f(s, u)}{\varphi(s)} d u d s \\
\leq & N\left|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\right| \delta+\varepsilon q \int_{t_{0}}^{\tau} \varphi(s)\left|\Psi(\tau) Y(\tau) Y^{-1}(s) \Psi^{-1}(s)\right| d s \\
\leq & N\left|Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right)\right| \delta+\varepsilon q M \\
< & \varepsilon(1-q M)+\varepsilon q M=\varepsilon
\end{aligned}
$$

which is a contradiction. Therefore, the trivial solution of system (1.1) is Ψ-stable on \mathbb{R}_{+}. The proof is complete.

Corollary 4.2. Suppose that g and h are continuous nonnegative functions on \mathbb{R}_{+} such that

$$
\sup _{t \geq 0} \frac{g(t)}{\varphi(t)} \int_{0}^{t} h(s) d s<\frac{1}{M}
$$

Then in Theorem4.1 we can consider $f(t, s)=g(t) h(s)$.
Corollary 4.3. Suppose that k is a continuous nonnegative function on \mathbb{R}_{+}such that

$$
\sup _{t \geq 0} \frac{1}{\varphi(t)} \int_{0}^{t} k(u) d u<\frac{1}{M}
$$

Then in Theorem 4.1 we can consider $f(t, s)=k(t-s)$.
Corollary 4.4. If in Theorem 4.1, the third condition is replaced by the condition: The function F satisfies: For all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that for all xin

$$
B_{\delta(\varepsilon)}=\left\{x \in C_{c}: \sup _{t \geq 0}\|\Psi(t) x(t)\| \leq \delta(\varepsilon)\right\}
$$

we have

$$
\|\Psi(t) F(t, s, x(s))\| \leq \varepsilon f(t, s)\|\Psi(s) x(s)\| \quad \text { for } 0 \leq s \leq t<+\infty
$$

where f is a continuous nonnegative function on D such that

$$
\sup _{t \geq 0} \int_{0}^{t} \frac{f(t, s)}{\varphi(t)} d s<+\infty
$$

then the trivial solution of system (1.1) is Ψ-stable on \mathbb{R}_{+}.
The proof of the above corollary is similar to that of Theorem 4.1.

Theorem 4.5. Assume hypothesis (H0) is satisfied. Assume the function F satisfies

$$
\|\Psi(t) F(t, s, x)\| \leq f(t, s)\|\Psi(s) x\|, \quad \text { for } 0 \leq s \leq t<\infty
$$

and for every $x \in \mathbb{R}^{n}$, where f is a continuous nonnegative function on D such that

$$
M=\int_{0}^{\infty} \int_{0}^{t} f(t, s) d s d t<\infty
$$

Also assume the fundamental matrix $Y(t)$ of the system 1.2 is such that

$$
\left|\Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s)\right| \leq K
$$

for all $0 \leq s \leq t<+\infty$, where K is a positive constant. Then, the trivial solution of (1.1) is Ψ-uniformly stable on \mathbb{R}_{+}.

Proof. Let $\varepsilon>0$ and $\delta(\varepsilon)=0.5 \varepsilon K^{-1}(1+M)^{-1} e^{-K M}$. Let $t_{0} \geq 0$ and $x_{0} \in \mathbb{R}^{n}$ be such that $\left\|\Psi\left(t_{0}\right) x_{0}\right\|<\delta(\varepsilon)$. There exists a unique solution $x(t)$ on \mathbb{R}_{+}of (1.1) such that $x\left(t_{0}\right)=x_{0}$ and $\|\Psi(t) x(t)\| \leq \delta(\varepsilon)$ for all $t \in\left[0, t_{0}\right]$. For $t \geq t_{0}$, we have

$$
\begin{aligned}
&\|\Psi(t) x(t)\| \\
&= \| \Psi(t) Y(t) Y^{-1}\left(t_{0}\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) x_{0} \\
&+\int_{t_{0}}^{t} \Psi(t) Y(t) Y^{-1}(s) \Psi^{-1}(s) \int_{0}^{s} \Psi(s) F(s, u, x(u)) d u d s \| \\
& \leq K\left\|\Psi\left(t_{0}\right) x_{0}\right\|+K \int_{t_{0}}^{t} \int_{0}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s=K\left\|\Psi\left(t_{0}\right) x_{0}\right\| \\
&+K \int_{t_{0}}^{t} \int_{0}^{t_{0}} f(s, u)\|\Psi(u) x(u)\| d u d s+K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s \\
& \leq K \delta(\varepsilon)(1+M)+K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s .
\end{aligned}
$$

It is easy to see that the function $Q(t)=\int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u)\|\Psi(u) x(u)\| d u d s$ is continuously differentiable and increasing on $\left[t_{0}, \infty\right)$. For $t \geq t_{0}$, we have

$$
\begin{aligned}
Q^{\prime}(t) & =\int_{t_{0}}^{t} f(t, u)\|\Psi(u) x(u)\| d u \\
& \leq \int_{t_{0}}^{t} f(t, u)[K \delta(\varepsilon)(1+M)+K Q(u)] d u \\
& =K \delta(\varepsilon)(1+M) \int_{t_{0}}^{t} f(t, u) d u+K \int_{t_{0}}^{t} f(t, u) Q(u) d u
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[Q(t) \exp \left(-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s\right)\right]^{\prime}} \\
& =\exp \left(-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s\right)\left[Q^{\prime}(t)-K Q(t) \int_{t_{0}}^{t} f(t, u) d u\right] \\
& \leq \exp \left(-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s\right) \\
& \quad \times\left[K \delta(\varepsilon)(1+M) \int_{t_{0}}^{t} f(t, u) d u+K \int_{t_{0}}^{t} f(t, u)(Q(u)-Q(t)) d u\right] \\
& \leq \exp \left(-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s\right)\left[K \delta(\varepsilon)(1+M) \int_{t_{0}}^{t} f(t, u) d u\right] \\
& =\left[-\delta(\varepsilon)(1+M) e^{-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s}\right]^{\prime}
\end{aligned}
$$

Integrating from t_{0} to $t\left(t \geq t_{0}\right)$, we have

$$
Q(t) e^{-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s} \leq \delta(\varepsilon)(1+M)\left[1-e^{-K \int_{t_{0}}^{t} \int_{t_{0}}^{s} f(s, u) d u d s}\right]
$$

We deduce that

$$
\|\Psi(t) x(t)\| \leq \delta(\varepsilon) K(1+M) e^{K M}<\varepsilon, \quad \text { for all } t \geq t_{0}
$$

This proves that the trivial solution of (1.1) is Ψ-uniformly stable on R_{+}. The proof is complete.

Corollary 4.6. Suppose that g and h are continuous nonnegative functions on R_{+} such that

$$
\int_{0}^{\infty} g(t) \int_{0}^{t} h(s) d s d t<+\infty
$$

Then in Theorem 4.5 we can consider $f(t, s)=g(t) h(s)$.
Remark. Theorem 4.5 generalizes a result of Hara, Yoneyama and Itoh [10].

References

[1] Akinyele, O.; On partial stability and boundedness of degree k; Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,(8), 65(1978), 259-264.
[2] Avramescu, C.; Asupra comportãrii asimptotice a soluţiilor unor ecuaţii funcţionale; Analele Universitãt ii din Timişoara, Seria Ştiinţe Matematice-Fizice, vol. VI, 1968, 41-55.
[3] Caligo, D.; Un criterio sufficiente di stabilità per le soluzioni dei sistemi di equazioni integrali lineari e sue applicazioni ai sistemi di equazioni differenziali lineari; Atti 2 Congresso Un. Mat. Ital. (Bologna; 1940)pp. 177-185.
[4] Cesari, L.; Un nuovo criterio di stabilita per le soluzioni delle equazioni differenziali lineari, Ann. Scuola Norm. Sup. Pisa (2) 9 (1940) 163-186.
[5] Constantin, A.; Asymptotic properties of solutions of differential equations; Analele Universitãţii din Timişoara, Seria Ştiinţe Matematice, vol. XXX, fasc. 2-3, 1992, 183-225.
[6] Conti, R.; Sulla stabilità dei sistemi di equazioni differenziali lineari; Riv. Mat. Univ. Parma, 6(1955) 3-35.
[7] Coppel, W.A.; Stability and Asymptotic Behaviour of Differential Equations, Health, Boston, 1965.
[8] Dannan, F.M., and Elaydi, S.; Lipschitz stability of nonlinear systems of differential equations; J. Math. Appl. 113(1986), 562-577.
[9] Diamandescu, A.; On the Ψ - Asymptotic Stability of a Nonlinear Volterra Integro-Differential System; Bull. Math. Soc. Sc. Math. Roumanie, Tome 46(94) No. 1-2, 2003, 39-60.
[10] Hara, T., Yoneyama, T. and Itoh, T.; Asymptotic Stability Criteria for Nonlinear Volterra Integro - Differential Equations; Funkcialaj Ecvacioj, 33(1990), 39-57.
[11] Lakshmikantham, V. and Rama Mohana Rao, M.; Stability in variation for nonlinear integrodifferential equations; Appl. Anal. 24(1987), 165-173.
[12] Mahfoud, W.E.; Boundedness properties in Volterra integro-differential systems; Proc. Amer. Math. Soc., 100(1987), 37-45.
[13] Morchalo, J.; On ($\Psi-L_{p}$) - stability of nonlinear systems of differential equations, Analele Ştiinţifice ale Universitãţii "Al. I. Cuza" Iaşi, Tomul XXXVI, s. I - a, Matematicã,1990, f. 4, 353-360.
[14] Perron, O.; Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32(1930), 703-728.
Aurel Diamandescu
University of Craiova, Department of Applied Mathematics, 13, "Al. I. Cuza" st., 200585, Craiova, Romania

E-mail address: adiamandescu@central.ucv.ro

[^0]: 2000 Mathematics Subject Classification. 45M10, 45J05.
 Key words and phrases. Ψ-stability; Ψ-uniform stability.
 (C) 2005 Texas State University - San Marcos.

 Submitted March 29, 2005. Published May 31, 2005.

