A MULTIPLICITY RESULT FOR QUASILINEAR PROBLEMS WITH CONVEX AND CONCAVE NONLINEARITIES AND NONLINEAR BOUNDARY CONDITIONS IN UNBOUNDED DOMAINS

DIMITRIOS A. KANDILAKIS

Abstract

We study the following quasilinear problem with nonlinear boundary conditions $$
\begin{aligned} -\Delta_{p} u= & \lambda a(x)|u|^{p-2} u+k(x)|u|^{q-2} u-h(x)|u|^{s-2} u, \quad \text { in } \Omega, \\ & |\nabla u|^{p-2} \nabla u \cdot \eta+b(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega, \end{aligned}
$$ where Ω is an unbounded domain in \mathbb{R}^{N} with a noncompact and smooth boundary $\partial \Omega, \eta$ denotes the unit outward normal vector on $\partial \Omega, \Delta_{p} u=$ $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, a, k, h and b are nonnegative essentially bounded functions, $q<p<s$ and $p^{*}<s$. The properties of the first eigenvalue λ_{1} and the associated eigenvectors of the related eigenvalue problem are examined. Then it is shown that if $\lambda<\lambda_{1}$, the original problem admits an infinite number of solutions one of which is nonnegative, while if $\lambda=\lambda_{1}$ it admits at least one nonnegative solution. Our approach is variational in character.

1. Introduction

Consider the problem

$$
\begin{align*}
-\Delta_{p} u= & \lambda a(x)|u|^{p-2} u+k(x)|u|^{q-2} u-h(x)|u|^{s-2} u, \quad x \in \Omega, \\
& |\nabla u|^{p-2} \nabla u \cdot \eta+b(x)|u|^{p-2} u=0, \quad x \in \partial \Omega, \tag{1.1}
\end{align*}
$$

on an unbounded domain $\Omega \subseteq \mathbb{R}^{N}$ with a noncompact smooth boundary $\partial \Omega$, where η is the unit outward normal vector on $\partial \Omega$ and $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p Laplacian.

Throughout this work the following hypotheses are assumed:
(D) $1<p<N, 1<q<p, p^{*}:=\frac{N p}{N-p}<s<+\infty$.
(A) There exist positive constants α_{1}, A_{1}, A_{2} with $\alpha_{1} \in(p, N)$, such that

$$
\frac{A_{1}}{(1+|x|)^{\alpha_{1}}} \leq a(x) \leq \frac{A_{2}}{(1+|x|)^{\alpha_{1}}} \quad \text { a.e. in } \Omega
$$

[^0](K) $k() \geq 0,. m\{x \in \Omega: k(x)>0\}>0$ and there exist positive constants K_{1} and α_{2}, with $\frac{p}{q}<\frac{\alpha_{1}-N}{\alpha_{2}-N}$, such that
$$
k(x) \leq \frac{K_{1}}{(1+|x|)^{\alpha_{2}}} \quad \text { a.e. in } \Omega
$$
(H) $h \in L^{\infty}(\Omega), h \geq 0$ a.e. and $m\{x \in \Omega: h(x)>0\}>0$.
(B) $b \in C\left(\mathbb{R}^{N}\right)$ and
$$
\frac{B_{1}}{(1+|x|)^{p-1}} \leq b(x) \leq \frac{B_{2}}{(1+|x|)^{p-1}}
$$
where $B_{1}, B_{2}>0$.
The growing attention in the study of the p-Laplace operator Δ_{p} is motivated by the fact that it arises in various applications, e.g. non-Newtonian fluids, reactiondiffusion problems, flow through porus media, glacial sliding, theory of superconductors, biology etc. (see [14, [6], 10] and the references therein). The existence of nontrivial solutions to equations like (1) with a power like right hand side has received considerable attention since the work of Brezis and Nirenberg [5]. When Ω is bounded, $p=2$ and $1<q<s$, existence, nonexistence and multiplicity of solutions in $H_{0}^{1}(\Omega)$ was studied in [2] according to the integrability properties of the ratio k^{s-1} / h^{q-1}. If $p \neq 2, p<q<q^{*}, h=0$, we refer to [8], where existence of two solutions in $W_{0}^{1, p}(\Omega)$ is provided for $\lambda \leq \lambda_{1}+\varepsilon$ for some $\varepsilon>0$. If $\Omega=\mathbb{R}^{N}$ and $h \geq 0$ we refer to [9] where it was shown that 1.1) admits an infinite number of solutions in $D^{1, p}\left(\mathbb{R}^{N}\right)$.

In this paper we study 1.1 in connection with the corresponding eigenvalue problem for the p-Laplacian:

$$
-\Delta_{p} u=\lambda a(x)|u|^{p-2} u
$$

subject to the nonlinear boundary condition in 1.1). We show that the first eigenvalue λ_{1} is positive, simple and isolated, the associated eigenvectors do not change sign and form a vector space of dimension 1 . Then we combine the method employed in [9] with the results in [11] in order to show that if $\lambda<\lambda_{1}$ then (1.1) admits an infinite number of solutions, while if $\lambda=\lambda_{1}$ we use the fibering method (which is also applicable in case $\lambda<\lambda_{1}$) to show that it admits at least one nonnegative solution. To be more specific, we establish the following

Theorem 1.1. Suppose that (D), (A), (K), (H) and (B) are satisfied.
(i) If $\lambda<\lambda_{1}$ then 1.1 admits infinitely many solutions with negative energy. If in addition $k>0$ a.e., then it also admits a nonnegative solution.
(ii) If $\lambda=\lambda_{1}$ and $k>0$ a.e., then 1.1 admits at least one nonnegative solution with negative energy.

The proof of Theorem 1.1 will be given in Sections 4 and 5 .

2. Preliminaries

Let $C_{\delta}^{\infty}(\Omega)$ be the space of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted on Ω. Then the weighted Sobolev space E_{p} is the completion of $C_{\delta}^{\infty}(\Omega)$ in the norm

$$
\left|\left||u| \|_{p}=\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x\right)^{1 / p}\right.\right.
$$

By [11, Lemma 2] we see that if $b(\cdot)$ satisfies (B), then the norm

$$
\begin{equation*}
\|u\|_{1, p}=\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b(x)|u|^{p} d \sigma(x)\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

is equivalent to $\|\|\cdot\|\|_{p}(\sigma(\cdot)$ being the surface measure on $\partial \Omega)$.
Let $w_{\alpha}(x):=\frac{1}{(1+|x|)^{\alpha}}$ where $\alpha \in \mathbb{R}$. If Σ is a measurable subset of \mathbb{R}^{N}, we assume that the weighted Lebesgue space

$$
L^{r}\left(w_{\alpha}, \Sigma\right):=\left\{u: \int_{\Sigma} w_{\alpha}(x)|u(x)|^{r} d x<+\infty\right\}
$$

$r \in(1,+\infty)$, is supplied with the norm

$$
\|u\|_{w_{\alpha}, r}=\left(\int_{\Sigma} w_{\alpha}(x)|u(x)|^{r} d x\right)^{1 / r}
$$

For a nonnegative measurable function $h: \Sigma \rightarrow \mathbb{R}$, the space $L^{s}(h, \Sigma)$ is similarly defined. We associate with it the seminorm $|u|_{h, s}=\left(\int_{\Sigma} h(x)|u(x)|^{s} d x\right)^{1 / s}$.

Let $E=E_{p} \cap L^{s}(h, \Omega)$. Then E endowed with the norm $\|\cdot\|_{E}=\|\cdot\|_{1, p}+|\cdot|_{h, s}$ becomes a separable Banach space.

Lemma 2.1. (i) If

$$
p \leq r \leq \frac{p N}{N-p} \quad \text { and } \quad N>\alpha \geq N-r \frac{N-p}{p}
$$

then the embedding $E \subseteq L^{r}\left(w_{\alpha}, \Omega\right)$ is continuous. If the upper bound for r in the first inequality and the lower bound for α in the second are strict, then the embedding is compact.
(ii) If

$$
p \leq m \leq \frac{p(N-1)}{N-p} \quad \text { and } \quad N>\beta \geq N-1-m \frac{N-p}{p}
$$

then the embedding $E \subseteq L^{m}\left(w_{\beta}, \partial \Omega\right)$ is continuous. If the upper bound for m in the first inequality and the lower bound for β are strict, then the embedding is compact.
(iii) If

$$
1<q<p \quad \text { and } \quad \frac{\alpha_{1}-N}{\alpha_{2}-N}>\frac{p}{q}
$$

then the embedding $L^{p}\left(w_{\alpha_{1}}, \Omega\right) \subseteq L^{q}\left(w_{\alpha_{2}}, \Omega\right)$ is continuous.
Proof. The first and second part of the lemma corresponds to [11, Theorem 1], while the third is a consequence of the following inequality

$$
\int_{\Omega} \frac{1}{(1+|x|)^{\alpha_{2}}}|u|^{q} d x \leq\left(\int_{\Omega} \frac{1}{(1+|x|)^{d}} d x\right)^{\frac{p-q}{p}}\left(\int_{\Omega} \frac{1}{(1+|x|)^{\alpha_{1}}}|u|^{p} d x\right)^{q / p}
$$

where $d=\left(\alpha_{2} p-\alpha_{1} q\right) /(p-q)$. Note that the integral $\int_{\Omega} \frac{1}{(1+|x|)^{d}} d x$ converges since $d>N$.

The energy functional $\Phi_{\lambda}: E \rightarrow \mathbb{R}$ corresponding to our problem is

$$
\begin{align*}
\Phi_{\lambda}(u)= & \frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{p} \int_{\Omega} a|u|^{p} d x-\frac{1}{q} \int_{\Omega} k|u|^{q} d x \tag{2.2}\\
& +\frac{1}{s} \int_{\Omega} h|u|^{s} d x+\frac{1}{p} \int_{\partial \Omega} b|u|^{p} d \sigma(x)
\end{align*}
$$

It is clear that if $(\mathrm{D}),(\mathrm{A}),(\mathrm{K}),(\mathrm{H})$ and (B) are satisfied, then $\Phi_{\lambda}($.$) is continuously$ differentiable and its critical points correspond to solutions of 1.1).

3. The principal eigenvalue

In this section we examine the properties of the first eigenvalue λ_{1} and the associated eigenvectors of the following problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda a(x)|u|^{p-2} u \quad \text { in } \Omega \\
|\nabla u|^{p-2} \nabla u \cdot \eta+b(x)|u|^{p-2} u=0 \quad \text { on } \partial \Omega . \tag{3.1}
\end{gather*}
$$

Proposition 3.1. Suppose that $1<p<N$ and hypotheses (A) and (B) are satisfied. Then
(i) Problem (3.1) admits a positive principal eigenvalue λ_{1}.
(ii) The set E_{1} of eigenfunctions corresponding to λ_{1} is a vector space of dimension 1. The elements of E_{1} are either positive or negative and of class $C_{\mathrm{loc}}^{1, \delta}(\Omega)$. A positive eigenfunction always corresponds to λ_{1}.
(iii) λ_{1} is isolated in the sense that there exists $\xi>0$ such that the interval $\left(0, \lambda_{1}+\xi\right)$ does not contain any eigenvalue other than λ_{1}.
Proof. (i) Let $I, J: E_{p} \rightarrow \mathbb{R}$ be defined by

$$
I(u)=\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b(x)|u|^{p} d \sigma(x), \quad J(u)=\int_{\Omega} a(x)|u|^{p} d x
$$

Then the operators I, J are continuously Fréchet differentiable, $I($.$) is coercive, J^{\prime}$ is compact and $J^{\prime}(u)=0$ implies that $u=0$. Theorem 6.3.2 in [4 implies the existence of a principal eigenvalue satisfying

$$
\begin{equation*}
\lambda_{1}=\inf _{J(u)=1} I(u) \tag{3.2}
\end{equation*}
$$

The positivity of λ_{1} follows by a standard argument.
(ii) Let u_{1} be an eigenfunction corresponding to λ_{1}. Since $\left|u_{1}\right|$ is also a minimizer in (3.2), we may assume that $u_{1} \geq 0$. We will show first that $w_{\alpha_{1}} u_{1}$ is essentially bounded in Ω. To that purpose for $M>0$ define $u_{M}(x):=\min \left\{u_{1}(x), M\right\}$. Multiplying (3.1) by $u_{M}^{k p+1}, k>0$, and integrating over Ω, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \cdot \nabla\left(u_{M}^{k p+1}\right) d x+\int_{\partial \Omega} b(x) u_{M}^{(k+1) p} d \sigma(x) \leq \lambda_{1} \int_{\Omega} a(x) u_{1}^{(k+1) p} d x \tag{3.3}
\end{equation*}
$$

Note that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \cdot \nabla\left(u_{M}^{k p+1}\right) d x & =(k p+1) \int_{\Omega}\left|\nabla u_{M}\right|^{p} u_{M}^{k p} d x \\
& =\frac{k p+1}{(k+1)^{p}} \int_{\Omega}\left|\nabla u_{M}^{k+1}\right|^{p} d x
\end{aligned}
$$

So since $\frac{k p+1}{(k+1)^{p}} \leq 1$, it follows that

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \cdot \nabla\left(u_{M}^{k p+1}\right) d x+\int_{\partial \Omega} b(x) u_{M}^{(k+1) p} d \sigma(x) \\
& \geq c_{1} \frac{k p+1}{(k+1)^{p}}\left(\int_{\Omega} \frac{1}{(1+|x|)^{\alpha_{1}}} u_{M}^{(k+1) p^{*}} d x\right)^{p / p^{*}} \tag{3.4}
\end{align*}
$$

due to the embedding $E_{p} \subseteq L^{p^{*}}\left(w_{\alpha_{1}}, \Omega\right)$. By hypothesis (A), 3.3) and 3.4 we get that

$$
\begin{aligned}
& \left(\int_{\Omega} \frac{1}{(1+|x|)^{\alpha_{1}}} u_{M}^{(k+1) p^{*}} d x\right)^{1 / p^{*}} \\
& \leq\left(\frac{\lambda_{1} A_{2}(k+1)^{p}}{c_{3}(k p+1)}\right)^{1 / p}\left(\int_{\Omega} \frac{1}{(1+|x|)^{\alpha_{1}}} u_{1}^{(k+1) p} d x\right)^{1 / p}
\end{aligned}
$$

SO

$$
\left\|u_{M}\right\|_{w_{\alpha_{1}},(k+1) p^{*}} \leq\left(\frac{\lambda_{1} A_{2}(k+1)^{p}}{c_{3}(k p+1)}\right)^{1 /((k+1) p)}\left\|u_{1}\right\|_{w_{\alpha_{1}},(k+1) p}
$$

A bootstrap argument, as in the proof of [7, Lemma 3.2], shows that $w_{\alpha_{1}} u_{1}$ is essentially bounded. Theorems 1.9 and 1.11 in [7] imply that $u_{1} \in C_{\mathrm{loc}}^{1, \delta}(\Omega)$ and $u_{1}>0$ in Ω.

We show next that E_{1} is one dimensional by employing a technique similar to the one exposed in [1]. Namely, we shall prove that if for $\lambda>0, w_{1}$ is a solution of

$$
\begin{equation*}
-\Delta_{p} u \leq \lambda a(x)|u|^{p-2} u \quad \text { in } \Omega \tag{3.5}
\end{equation*}
$$

and z_{1} is a solution of

$$
\begin{equation*}
-\Delta_{p} u \geq \lambda a(x)|u|^{p-2} u \quad \text { in } \Omega \tag{3.6}
\end{equation*}
$$

$w_{1}, z_{1}>0$ on Ω and satisfying the boundary condition in 1.1 , then $z_{1}=c w_{1}$ for some constant $c>0$. For $\varepsilon>0$ let $z_{1 \varepsilon}=z_{1}+\varepsilon$. If $\varphi \in C_{\delta}^{\infty}(\Omega), \varphi \geq 0$, then $\frac{\varphi^{p}}{\left(z_{1 \varepsilon}\right)^{p-1}} \in E_{p}$. By Picone's identity [1] , we get

$$
\begin{aligned}
0 & \leq \int_{\Omega}|\nabla \varphi|^{p} d x-\int_{\Omega} \nabla\left(\frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}}\right) \cdot\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} d x \\
& =\int_{\Omega}|\nabla \varphi|^{p} d x+\int_{\Omega} \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}} \Delta_{p} z_{1} d x-\int_{\partial \Omega} \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \eta d \sigma(x) \\
& \leq \int_{\Omega}|\nabla \varphi|^{p} d x-\lambda \int_{\Omega} \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}} a(x) z_{1}^{p-1} d x-\int_{\partial \Omega} \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \eta d \sigma(x),
\end{aligned}
$$

while the boundary condition implies that

$$
0 \leq \int_{\Omega}|\nabla \varphi|^{p} d x-\lambda \int_{\Omega} a(x) \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}} z_{1}^{p-1} d x+\int_{\partial \Omega} b(x) \frac{\varphi^{p}}{z_{1 \varepsilon}^{p-1}} z_{1}^{p-1} d \sigma(x)
$$

If we let $\varepsilon \rightarrow 0$ and $\varphi \rightarrow w_{1}$ in E_{p}, we get

$$
\begin{equation*}
0 \leq \int_{\Omega}\left|\nabla w_{1}\right|^{p} d x-\lambda \int_{\Omega} a(x) w_{1}^{p} d x+\int_{\partial \Omega} b(x) w_{1}^{p} d \sigma(x) . \tag{3.7}
\end{equation*}
$$

We can now work as in Theorem 2.1 in [1] to conclude that E_{1} is a vector space of dimension 1. The same technique can be used to demonstrate that positive solutions in Ω correspond only to the first eigenvalue. Assume for instance, that there exists an eigenpair $\left(\lambda^{*}, u_{2}\right)$ such that $\lambda^{*}>\lambda_{1}$ and $u_{2} \geq 0$ a.e. in Ω. Then u_{1} is a solution of (3.5) with $\lambda=\lambda_{1}$ and u_{2} is a solution of (3.6) with $\lambda=\lambda^{*}$. But then $u_{2}=c u_{1}$ for some $c>0$, a contradiction.
(iii) Assume that there exists a sequence of eigenpairs $\left(\lambda_{n}, u_{n}\right)$ with $\lambda_{n} \rightarrow \lambda_{1}$ and $\lambda_{n} \in\left(\lambda_{1}, \lambda_{1}+\delta\right), \delta>0$, for every $n \in \mathbb{N}$. Without loss of generality, we may also assume that $\left\|u_{n}\right\|_{1, p}=1$ for all $n \in \mathbb{N}$. Hence, there exists $\tilde{u} \in E_{p}$ such that $u_{n} \rightarrow \tilde{u}$ weakly in E_{p}. The simplicity of λ_{1} implies that $\tilde{u}=u_{1}$ or $\tilde{u}=-u_{1}$. Let us
suppose that $u_{n} \rightarrow u_{1}$ weakly in E_{p}. Multiplying 3.1) by $u_{n}-u_{m}$ and integrating by parts we get

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-\left|\nabla u_{m}\right|^{p-2} \nabla u_{m}\right)\left(\nabla u_{n}-\nabla u_{m}\right) d x \\
& +\int_{\partial \Omega} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{m}\right|^{p-2} u_{m}\right)\left(u_{n}-u_{m}\right) d \sigma(x) \\
& =\lambda_{n} \int_{\Omega} a(x)\left(\left|u_{n}\right|^{p-2} u_{n}-\left|u_{m}\right|^{p-2} u_{m}\right)\left(u_{n}-u_{m}\right) d x \\
& \quad+\left(\lambda_{n}-\lambda_{m}\right) \int_{\Omega} a(x)\left|u_{m}\right|^{p-2} u_{m}\left(u_{n}-u_{m}\right) d x
\end{aligned}
$$

Exploiting the compactness of the operator J and the monotonicity of the p Laplacian operator, we obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \rightarrow \int_{\Omega}\left|\nabla u_{1}\right|^{p} d x
$$

The strict convexity of $L^{p}(\Omega)$ implies that $u_{n} \rightarrow u_{1}$ in E_{p}. For a fixed $n \in \mathbb{N}$ and for every $\phi \in E_{p}$ we have

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \phi d x+\int_{\partial \Omega} b(x)\left|u_{n}\right|^{p-2} u_{n} \phi d \sigma(x)=\lambda_{n} \int_{\Omega} a(x)\left|u_{n}\right|^{p-2} u_{n} \phi d x .
$$

Let $\mathcal{U}_{n}^{-}=:\left\{x \in \bar{\Omega}: u_{n}(x)<0\right\}$. By (iii) we must have $m\left(\mathcal{U}_{n}^{-}\right)>0$. By choosing $\phi \equiv u_{n}^{-}=\min \left\{0, u_{n}\right\}$, it follows that

$$
\int_{\mathcal{U}_{n}^{-}}\left|\nabla u_{n}^{-}\right|^{p} d x+\int_{\partial \Omega \cap \mathcal{U}_{n}^{-}} b(x)\left|u_{n}^{-}\right|^{p} d x=\lambda_{n} \int_{\mathcal{U}_{n}^{-}} a(x)\left|u_{n}^{-}\right|^{p} d x
$$

Thus

$$
\begin{equation*}
\left\|u_{n}^{-}\right\|_{1, p}^{p} \leq A_{2}\left(\lambda_{1}+\delta\right)\left\|u_{n}^{-}\right\|_{L^{p}\left(w_{\alpha_{1}}, \mathcal{U}_{n}^{-}\right)}^{p} \tag{3.8}
\end{equation*}
$$

by (A). Denote by B_{r} the ball with radius $r>0$ centered at $0 \in \mathbb{R}^{n}$. For $\varepsilon \in(0,1)$ there exists $r_{\varepsilon, n}>0$ such that

$$
\begin{equation*}
\left\|u_{n}^{-}\right\|_{1, p}^{p} \leq A_{2}\left(\lambda_{1}+\delta\right)\left(\left\|u_{n}^{-}\right\|_{L^{p}\left(w_{\alpha_{1}}, \mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}\right)}^{p}+\varepsilon\left\|u_{n}^{-}\right\|_{1, p}^{p}\right) \tag{3.9}
\end{equation*}
$$

Apply once again the Hölder inequality to derive that

$$
\begin{align*}
& \left\|u_{n}^{-}\right\|_{L^{p}\left(w_{\alpha_{1}}, \mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}\right)}^{p} \\
& \leq\left(\int_{\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}} \frac{1}{(1+|x|)^{\frac{\alpha_{1} p^{*}}{p^{*}-p}}} d x\right)^{\frac{p^{*}-p}{p^{*}}}\left(\int_{\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}}\left|u_{n}^{-}\right|^{p^{*}} d x\right)^{p / p^{*}} \tag{3.10}
\end{align*}
$$

By Lemma 2.1 (i),

$$
\begin{equation*}
\left(\int_{\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}}\left|u_{n}^{-}\right|^{p^{*}} d x\right)^{p / p^{*}} \leq c_{2}\left\|u_{n}^{-}\right\|_{1, p}^{p} \tag{3.11}
\end{equation*}
$$

for some $c_{2}>0$. On combining (3.8)-(3.11) we get

$$
1-\varepsilon \leq c_{3}\left(\int_{\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}} \frac{1}{(1+|x|)^{\frac{\alpha_{1} p^{*}}{p^{*}-p}}} d x\right)^{\frac{p^{*}-p}{p^{*}}}
$$

so $m\left(\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}\right)>c_{4}>0$, where the constant c_{4} is independent of $n \in \mathbb{N}$. It is clear that there exists $R>0$ such that

$$
\begin{equation*}
m\left(B_{R} \cap\left(\mathcal{U}_{n}^{-} \cap B_{r_{\varepsilon, n}}\right)\right)>\frac{c_{4}}{2} \tag{3.12}
\end{equation*}
$$

for every $n \in \mathbb{N}$. Since $u_{n} \rightarrow u_{1}$ in E_{p} we have that $u_{n} \rightarrow u_{1}$ in $L^{p^{*}}\left(w_{\alpha_{1}}, B_{R} \cap \Omega\right)$. By Egorov's Theorem, u_{n} converges uniformly to u_{1} on $B_{R} \cap \Omega$ with the exception of a set with arbitrarily small measure. But this contradicts 3.12 and the conclusion follows.

Remark 3.2. If u_{1} is continuous at $x_{0} \in \partial \Omega$, then $u_{1}\left(x_{0}\right)>0$. Indeed, if $u_{1}\left(x_{0}\right)=0$, then by [16, Theorem 5] we would have $\left|\nabla u_{1}\left(x_{0}\right)\right|^{p-2} \nabla u_{1}\left(x_{0}\right) \cdot \eta\left(x_{0}\right)<0$, contradicting (1.1).

4. The case $\lambda<\lambda_{1}$

We need the following lemma in order to show that Φ_{λ} is coercive.
Lemma 4.1. If $\lambda<\lambda_{1}$ then the norm

$$
\left|\|u \mid\|_{1, p}:=\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b|u|^{p} d x-\lambda \int_{\Omega} a|u|^{p} d x\right)^{1 / p}\right.
$$

is equivalent to $\|u\|_{1, p}$.
Proof. Suppose that there exists $u_{n} \in E_{p}, n \in \mathbb{N}$, such that $\left\|u_{n}\right\|_{1, p}=1$ and

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\int_{\partial \Omega} b\left|u_{n}\right|^{p} d \sigma(x)-\lambda \int_{\Omega} a\left|u_{n}\right|^{p} d x \rightarrow 0
$$

In view of 3.2),

$$
0 \leq\left(\lambda_{1}-\lambda\right) \int_{\Omega} a\left|u_{n}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\int_{\partial \Omega} b\left|u_{n}\right|^{p} d \sigma(x)-\lambda \int_{\Omega} a\left|u_{n}\right|^{p} d x \rightarrow 0 .
$$

Hence, $\int_{\Omega} a\left|u_{n}\right|^{p} d x \rightarrow 0$, which shows that $\left\|u_{n}\right\|_{1, p} \rightarrow 0$. This is a contradiction with $\left\|u_{n}\right\|_{1, p}=1$.

We can now prove our first result concerning (1.1).

Proof of Theorem 1.1(i). We will show that Φ_{λ} satisfies the Palais-Smale condition in E. So let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in E such that $\Phi_{\lambda}\left(u_{n}\right)$ is bounded and $\Phi_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. By Lemma 4.1 we get

$$
\begin{aligned}
\Phi_{\lambda}(u)= & \frac{1}{p}\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b|u|^{p} d \sigma(x)-\lambda \int_{\Omega} a|u|^{p} d x\right) \\
& -\frac{1}{q} \int_{\Omega} k|u|^{q} d x+\frac{1}{s} \int_{\Omega} h|u|^{s} d x \\
\geq & \frac{1}{p}\left|\left\|u \left|\left\|_{1, p}^{p}-c_{5}\left|\left\|\left.u\left|\|_{1, p}^{q}+\frac{1}{s}\right| u\right|_{h, s} ^{s},\right.\right.\right.\right.\right.\right.
\end{aligned}
$$

implying that $\Phi_{\lambda}($.$) is coercive. Thus \left\{u_{n}\right\}_{n \in \mathbb{N}}$ is bounded in E. Without loss of generality, we may assume that $u_{n} \rightarrow \bar{u}$ strongly in $L^{p}\left(w_{\alpha_{1}}, \Omega\right)$ and $L^{q}\left(w_{\alpha_{2}}, \Omega\right)$ and
weakly in $L^{p}\left(w_{p-1}, \partial \Omega\right), E_{p}$ and $L^{s}(h, \Omega)$. Thus

$$
\begin{gather*}
\int_{\Omega} a(x)\left|u_{n}-\bar{u}\right|^{p} d x \rightarrow 0, \quad \int_{\Omega} k(x)\left|u_{n}-\bar{u}\right|^{q} d x \rightarrow 0 \tag{4.1}\\
\int_{\partial \Omega} b(x)|\bar{u}|^{p-2} \bar{u}\left(u_{n}-\bar{u}\right) d \sigma(x) \rightarrow 0, \quad \int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \nabla\left(u_{n}-\bar{u}\right) d x \rightarrow 0 \tag{4.2}\\
\int_{\Omega} h(x)|\bar{u}|^{s-2} \bar{u}\left(u_{n}-\bar{u}\right) d x \rightarrow 0 \tag{4.3}
\end{gather*}
$$

Therefore, by (4.1)-4.3),

$$
\left\langle\Phi_{\lambda}^{\prime}(\bar{u}), u_{n}-\bar{u}\right\rangle \rightarrow 0
$$

Since $\Phi_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, we also have that

$$
\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right)-\Phi_{\lambda}^{\prime}(\bar{u}), u_{n}-\bar{u}\right\rangle \rightarrow 0
$$

Thus

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla u|^{p-2} \nabla \bar{u}\right)\left(\nabla u_{n}-\nabla \bar{u}\right) d x \\
& -\lambda \int_{\Omega} a(x)\left(\left|u_{n}\right|^{p-2} u_{n}-|\bar{u}|^{p-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d x \\
& -\int_{\Omega} k(x)\left(\left|u_{n}\right|^{q-2} u_{n}-|\bar{u}|^{q-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d x \tag{4.4}\\
& +\int_{\partial \Omega} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-|\bar{u}|^{p-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d \sigma(x) \\
& +\int_{\Omega} h(x)\left(\left|u_{n}\right|^{s-2} u_{n}-|\bar{u}|^{s-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d x \rightarrow 0 .
\end{align*}
$$

On combining (4.1)-(4.4) we get

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right)\left(\nabla u_{n}-\nabla \bar{u}\right) d x \\
& +\int_{\partial \Omega} b(x)\left(\left|u_{n}\right|^{p-2} u_{n}-|\bar{u}|^{p-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d \sigma(x) \\
& +\int_{\Omega} h(x)\left(\left|u_{n}\right|^{s-2} u_{n}-|\bar{u}|^{s-2} \bar{u}\right)\left(u_{n}-\bar{u}\right) d x \rightarrow 0 .
\end{aligned}
$$

We can now use the inequality

$$
\begin{aligned}
0 \leq & \left\{\left(\int_{\Omega}\left|f_{1}\right|^{r} d x\right)^{1 / r^{\prime}}-\left(\int_{\Omega}\left|f_{2}\right|^{r} d x\right)^{1 / r^{\prime}}\right\} \\
& \times\left\{\left(\int_{\Omega}\left|f_{1}\right|^{r} d x\right)^{1 / r}-\left(\int_{\Omega}\left|f_{2}\right|^{r} d x\right)^{1 / r}\right\} \\
\leq & \int_{\Omega}\left(\left|f_{1}\right|^{r-2} f_{1}-\left|f_{2}\right|^{r-2} f_{2}\right)\left(f_{1}-f_{2}\right) d x
\end{aligned}
$$

where $f_{1}, f_{2} \in L^{r}(\Omega), r>1, r^{\prime}=r /(r-1)$, to obtain

$$
\left\|\nabla u_{n}\right\|_{p} \rightarrow\|\nabla \bar{u}\|_{p}, \quad\left\|h^{\frac{1}{s}} u_{n}\right\|_{s} \rightarrow\left\|h^{\frac{1}{s}} \bar{u}\right\|_{s}
$$

Exploiting the strict convexity of $L^{p}(\Omega)$ and $L^{s}(\Omega)$ we derive that $\nabla u_{n} \rightarrow \nabla \bar{u}$ in $\left(L^{p}(\Omega)\right)^{N}$ and $u_{n} \rightarrow \bar{u}$ in $L^{s}(h, \Omega)$. Consequently, $u_{n} \rightarrow \bar{u}$ in E, proving the claim.

Now let $Z=\{x \in \Omega: k(x)=0\}$ and $E_{0}=\{u \in E: u(x)=0$ a.e. in $Z\}$. Define a norm on E_{0} by $\|u\|_{E_{0}}=\left\|k^{1 / q} u\right\|_{q}$. Consider the family Σ of closed and symmetric
subsets of $E \backslash\{0\}$. For $A \in \Sigma$ we define the genus $\gamma(A)$ of A as the minimum of the $n \in \mathbb{N}$ such that there exists a continuous function $\varphi: A \rightarrow \mathbb{R}^{n} \backslash\{0\}$ with $\varphi(-x)=-\varphi(x)$. If no such n exists, we define $\gamma(A)=+\infty$. We claim that for $n \in \mathbb{N}$ there exists $\varepsilon>0$ such that $\gamma\left(\left\{u \in E: \Phi_{\lambda}(u) \leq-\varepsilon\right\}\right) \geq n$. It will be enough to show that the set $\left\{u \in E: \Phi_{\lambda}(u) \leq-\varepsilon\right\}$ contains an n-dimensional sphere centered at $0 \in \mathbb{R}^{N}$. So let E_{0}^{n} be an n-dimensional subspace of E_{0}. Then

$$
\begin{aligned}
\Phi_{\lambda}(u)= & \frac{1}{p}\left(\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b|u|^{p} d \sigma(x)-\lambda \int_{\Omega} a|u|^{p} d x\right) \\
& -\frac{1}{q} \int_{\Omega} k|u|^{q} d x+\frac{1}{s} \int_{\Omega} h|u|^{s} d x \\
\leq & \left.\frac{1}{p}\left|\|u\|\left\|_{1, p}^{p}-\frac{1}{q}\right\| u \|_{E_{0}}^{q}+\frac{1}{s}\right| u\right|_{h, s} ^{s} .
\end{aligned}
$$

Since all norms on E_{0}^{n} are equivalent, we have that $\Phi_{\lambda}(u) \leq c_{1}^{\prime}\|u\|_{E_{0}^{n}}^{p}+c_{2}^{\prime}\|u\|_{E_{0}^{n}}^{s}-$ $c_{3}^{\prime}\|u\|_{E_{0}^{n}}^{q}$, so there exists $\varepsilon>0$ and $\delta>0$ such that $\Phi_{\lambda}(u) \leq-\varepsilon$ for $\|u\|_{E_{0}^{n}}=\delta$. Thus $\left\{u \in E_{0}^{n}:\|u\|_{X}=\delta\right\} \subseteq\left\{u \in E: \Phi_{\lambda}(u) \leq-\varepsilon\right\}$, implying that $\gamma(\{u \in$ $\left.\left.E: \Phi_{\lambda}(u) \leq-\varepsilon\right\}\right) \geq n$. Let $\Sigma_{n}=\{A \in \Sigma: \gamma(A) \geq n\}$. Then the numbers $c_{n}=\inf _{A \in \Sigma_{n}} \sup _{u \in A} \Phi_{\lambda}(u)$ are critical values of Φ_{λ}, providing an infinite sequence of critical points of Φ_{λ}. For more details we refer to 3. For the existence of a nonnegative solution, see Remark 5.1 in the next section.

5. The CASE $\lambda=\lambda_{1}$

In this section we apply the fibering method introduced by Pohozaev [12, [13] in order to show that (1.1) admits at least one nonnegative solution.

Proof of Theorem 1.1 (ii). We decompose the function $u \in E$ as $u(x)=r v(x)$ with $r \in \mathbb{R}$ and $v \in E$. By 2.2 we have that

$$
\begin{aligned}
\Phi_{\lambda_{1}}(r v)= & \frac{|r|^{p}}{p}\left(\int_{\Omega}|\nabla v|^{p}-\lambda_{1} \int_{\Omega} a|v|^{p}+\int_{\partial \Omega} b|v|^{p} d \sigma(x)\right) \\
& -\frac{|r|^{q}}{q} \int_{\Omega} k|v|^{q}+\frac{|r|^{s}}{s} \int_{\Omega} h|v|^{s} .
\end{aligned}
$$

If u is a critical point of $\Phi_{\lambda_{1}}$, then $\frac{\partial \Phi_{\lambda_{1}}}{\partial r}=0$, so we will search for the critical points of $\Phi_{\lambda_{1}}$ among the ones which satisfy this equation, that is

$$
\begin{align*}
& |r|^{p-q}\left(\int_{\Omega}|\nabla v|^{p} d x-\lambda_{1} \int_{\Omega} a|v|^{p} d x+\int_{\partial \Omega} b|v|^{p} d \sigma(x)\right)+|r|^{s-q} \int_{\Omega} h|v|^{s} d x \tag{5.1}\\
& =\int_{\Omega} k|v|^{q} d x
\end{align*}
$$

Since $k>0$ a.e., for every $v \in E \backslash\{0\}$ there exists a unique $r=r(v)>0$ satisfying (5.1). By using the implicit function theorem [17, Thm. 4.B, p.150], we see that the function $v \rightarrow r(v)$ is continuously differentiable for $v \neq 0$. Clearly,

$$
\begin{equation*}
r(\mu v) \mu v=r(v) v \quad \text { for every } \mu>0 \tag{5.2}
\end{equation*}
$$

Also, in view of (5.1)

$$
\begin{equation*}
\Phi_{\lambda_{1}}(r(v) v)=\left(\frac{r^{q}}{p}-\frac{r^{q}}{q}\right) \int_{\Omega} k|v|^{q} d x+\left(\frac{r^{s}}{s}-\frac{r^{s}}{p}\right) \int_{\Omega} h|v|^{s} d x \leq 0 \tag{5.3}
\end{equation*}
$$

Let

$$
H(v)=\int_{\Omega}|\nabla v|^{p} d x-\lambda_{1} \int_{\Omega} a|v|^{p} d x+\int_{\partial \Omega} b|v|^{p} d \sigma(x)+\int_{\Omega} h|v|^{s} d x
$$

The variational characterization of λ_{1} and hypothesis (H) imply that $H(v) \geq 0$ for every $v \in E$. Let $W=\{v \in E: H(v)=1\}$. By (3.2), W is bounded in $L^{s}(h, \Omega)$. Since

$$
\left(H^{\prime}(v), v\right)=p\left(\int_{\Omega}|\nabla v|^{p} d x-\lambda_{1} \int_{\Omega} a|v|^{p} d x+\int_{\partial \Omega} b|v|^{p} d \sigma(x)\right)+s \int_{\Omega} h|v|^{s} d x
$$

we see that $\left(H^{\prime}(v), v\right) \neq 0$ for $v \in W$. In view of [8, Lemma 3.4], any conditional critical point of the function $\widehat{\Phi}_{\lambda_{1}}(v):=\Phi_{\lambda_{1}}(r(v) v)$ subject to $H(v)=1$ provides a critical point $r(v) v$ of $\Phi_{\lambda_{1}}$. Consider the problem

$$
M_{1}=\inf \left\{\Phi_{\lambda_{1}}(r(v) v): v \in W\right\}
$$

Suppose that $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is a minimizing sequence in W, that is

$$
\Phi_{\lambda_{1}}\left(r\left(v_{n}\right) v_{n}\right) \rightarrow M_{1}
$$

and

$$
H\left(v_{n}\right)=\left(\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x-\lambda_{1} \int_{\Omega} a\left|v_{n}\right|^{p} d x+\int_{\partial \Omega} b\left|v_{n}\right|^{p} d \sigma(x)\right)+\int_{\Omega} h\left|v_{n}\right|^{s} d x=1
$$

Assume that $\left\|v_{n}\right\|_{1, p} \rightarrow+\infty$ and let $u_{n}=\frac{v_{n}}{a_{n}}$ where $a_{n}=\left\|v_{n}\right\|_{1, p}$. Then

$$
a_{n}^{p}\left(\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\lambda_{1} \int_{\Omega} a\left|u_{n}\right|^{p} d x+\int_{\partial \Omega} b\left|u_{n}\right|^{p} d \sigma(x)\right)+a_{n}^{s} \int_{\Omega} h\left|u_{n}\right|^{s} d x=1
$$

so, by 3.2 ,

$$
\begin{equation*}
0 \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\lambda_{1} \int_{\Omega} a\left|u_{n}\right|^{p} d x+\int_{\partial \Omega} b\left|u_{n}\right|^{p} d \sigma(x) \leq \frac{1}{a_{n}^{p}} \rightarrow 0 \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq \int_{\Omega} h\left|u_{n}\right|^{s} d x \leq \frac{1}{a_{n}^{s}} \rightarrow 0 \tag{5.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{1} \int_{\Omega} a\left|u_{n}\right|^{p} d x=1 \tag{5.6}
\end{equation*}
$$

Since $\left\|u_{n}\right\|_{1, p}=1$, by passing to a subsequence if necessary, we may assume that $u_{n} \rightarrow u$ weakly in E_{p}. In view of (5.6) we get

$$
\lambda_{1} \int_{\Omega} a|u|^{p} d x=1
$$

so $u \neq 0$. The lower semicontinuity of the norm of E_{p} implies that

$$
\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b|u|^{p} d \sigma(x) \leq 1
$$

and (5.4) gives

$$
\int_{\Omega}|\nabla u|^{p} d x+\int_{\partial \Omega} b|u|^{p} d \sigma(x)=\lambda_{1} \int_{\Omega} a|u|^{p} d x
$$

Thus u is an eigenfunction corresponding to λ_{1}. But then

$$
\int_{\Omega} h|u|^{s} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega} h\left|u_{n}\right|^{s} d x=0
$$

by (5.5), a contradiction. Thus $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is bounded in E_{p}. Since $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is also bounded in $L^{s}(h, \Omega)$ we conclude that $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is bounded in E. Going back to (5.1) we get that $r(W)$ is also bounded. Consequently, $I=\left\{\Phi_{\lambda_{1}}(r(v) v): v \in W\right\}$ is a bounded interval in \mathbb{R} with endpoints $A, B, A<B \leq 0$. We will show that $A \in I$. To that purpose let $\left\{v_{n}\right\}_{n \in \mathbb{N}} \in W$ such that $\Phi_{\lambda_{1}}\left(r\left(v_{n}\right) v_{n}\right) \rightarrow A$. Without loss of generality we may assume that $v_{n} \rightarrow v_{0}$ weakly in E_{p} and in $L^{s}(h, \Omega)$. Furthermore, we may also assume that $r_{n}=r\left(v_{n}\right) \rightarrow d, d \in \mathbb{R}$. Clearly $r_{n} v_{n} \rightarrow d v_{0}$ weakly in E_{p}. Since $\Phi_{\lambda_{1}}($.$) is weakly lower semicontinuous we have$

$$
\Phi_{\lambda_{1}}\left(d v_{0}\right) \leq \liminf _{n \rightarrow+\infty} \Phi_{\lambda_{1}}\left(r_{n} v_{n}\right)=A
$$

so $d v_{0} \neq 0$. By lemma 2.1, $r\left(v_{n}\right) v_{n} \rightarrow d v_{0}$ strongly in $L^{p}\left(w_{\alpha_{1}}, \Omega\right)$ and in $L^{q}\left(w_{\alpha_{2}}, \Omega\right)$. Exploiting the lower semicontinuity of the norms in the relation $H\left(v_{n}\right)=1$ and in (5.1) we get

$$
\left(\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x+\int_{\partial \Omega} b\left|v_{0}\right|^{p} d \sigma(x)-\lambda_{1} \int_{\Omega} a\left|v_{0}\right|^{p} d x\right)+\int_{\Omega} h\left|v_{0}\right|^{s} d x \leq 1
$$

and

$$
\begin{align*}
& d^{p-q}\left(\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x+\int_{\partial \Omega} b\left|v_{0}\right|^{p} d \sigma(x)-\lambda_{1} \int_{\Omega} a\left|v_{0}\right|^{p} d x\right)+d^{s-q} \int_{\Omega} h\left|v_{0}\right|^{s} d x \tag{5.7}\\
& \leq \int_{\Omega} k\left|v_{0}\right|^{q} d x
\end{align*}
$$

Thus $d \leq r\left(v_{0}\right)$. We will show that $d=r\left(v_{0}\right)$. So assume that $d<r\left(v_{0}\right)$ and define $G(r)=\Phi_{\lambda_{1}}\left(r v_{0}\right)$. For $r \in\left[0, r\left(v_{0}\right)\right)$ we have

$$
\begin{aligned}
\frac{G^{\prime}(r)}{r^{q-1}}= & r^{p-q}\left(\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x-\lambda_{1} \int_{\Omega} a\left|v_{0}\right|^{p} d x+\int_{\partial \Omega} b\left|v_{0}\right|^{p} d \sigma(x)\right) \\
& +r^{s-q} \int_{\Omega} h\left|v_{0}\right|^{s} d x-\int_{\Omega} k\left|v_{0}\right|^{q} d x<0,
\end{aligned}
$$

by (5.1). Thus $G(\cdot)$ is strictly decreasing on $\left[0, r\left(v_{0}\right)\right)$. Consequently,

$$
\begin{equation*}
\Phi_{\lambda_{1}}\left(d v_{0}\right)=G(d)>G\left(r\left(v_{0}\right)\right)=\Phi_{\lambda_{1}}\left(r\left(v_{0}\right) v_{0}\right) \tag{5.8}
\end{equation*}
$$

Let $\gamma \geq 1$ be such that

$$
\begin{equation*}
\left(\int_{\Omega}\left|\nabla \gamma v_{0}\right|^{p} d x+\int_{\partial \Omega} b\left|\gamma v_{0}\right|^{p} d \sigma(x)-\lambda_{1} \int_{\Omega} a\left|\gamma v_{0}\right|^{p} d x\right)+\int_{\Omega} h\left|\gamma v_{0}\right|^{s} d x=1 \tag{5.9}
\end{equation*}
$$

implying that $\gamma v_{0} \in W$. On combining (5.2, (5.8) and (5.9) we obtain

$$
\Phi_{\lambda_{1}}\left(r\left(\gamma v_{0}\right) \gamma v_{0}\right)=\Phi_{\lambda_{1}}\left(r\left(v_{0}\right) v_{0}\right)<\Phi_{\lambda_{1}}\left(d v_{0}\right) \leq \liminf _{n \rightarrow+\infty} \Phi_{\lambda_{1}}\left(r\left(v_{n}\right) v_{n}\right)=A
$$

that is $\Phi_{\lambda_{1}}\left(r\left(\gamma v_{0}\right) \gamma v_{0}\right)<A$, a contradiction. So $d=r\left(v_{0}\right)$. By taking $\gamma \geq 1$ as in (5.9) we get

$$
\Phi_{\lambda_{1}}\left(r\left(\gamma v_{0}\right) \gamma v_{0}\right)=\Phi_{\lambda_{1}}\left(r\left(v_{0}\right) v_{0}\right) \leq \liminf _{n \rightarrow+\infty} \Phi_{\lambda}\left(r_{n} v_{n}\right)=A
$$

so $\widehat{\Phi}_{\lambda_{1}}\left(v_{0}\right)=\Phi_{\lambda_{1}}\left(r\left(v_{0}\right) v_{0}\right)=A$. Since $\left|v_{0}\right|$ is also a minimizer, we may assume that $v_{0} \geq 0$. [8, Lemma 3.4] guarantees that $w_{0}=r\left(v_{0}\right) v_{0}$ is a nontrivial nonnegative solution of 1.1.

Remark 5.1. It is easy to see that the proof of Theorem 1.1(ii) can be applied for the case $\lambda<\lambda_{1}$. Therefore (1.1) admits also a nonnegative solution for $\lambda<\lambda_{1}$. If, in addition, $h \equiv 0$, then working as in Proposition 3.1 we see that this solution is positive in Ω.
Acknowledgements. The author wishes to express his gratitude for the referee's careful and detailed comments. This work was supported by the Greek Ministry of Education at the University of the Aegean under the project EPEAEK IIPYTHAGORAS with title "Theoretical and numerical study of evolutionary and stationary PDEs arising as mathematical models in physics and industry".

References

[1] W. Allegretto and Y.X. Huang; A Picone's identity for the p-Laplacian and applications, Nonlinear Analysis, 32, No. 7 (1998), 819-830.
[2] S. Alama and G. Tarantello; Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal. 141 (1996), 159-215.
[3] J. Azorero and I.P. Alonso; Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. AMS 323 (1991), 877-895.
[4] M. S. Berger; Nonlinearity and functional analysis, Academic Press, 1977.
[5] H. Brezis and L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[6] F. Cîrstea, D. Motreanu and V. Rǎdulescu; Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlinear Analysis 43 (2001), 623-636.
[7] P. Drabek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, W. de Gruyter, 1997.
[8] P. Drabek and S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburg Sect. A 127 (1997), 703-726.
[9] S. Liu and S. Li; An elliptic equation with concave and convex nonlinearities, Nonlinear Analysis 53 (2003), 723-731.
[10] M.-C. Pélissier and M. Reynaud; Etyde d' un modèle mathématique d'écoulement de glacier, C.R. Acad. Sc. Paris Sér. I Math. 279 (1974), 531-534.
[11] K. Pflüger; Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electr. J. Diff. Equ., Vol. 1998 (1998), No. 10, pp. 1-13.
[12] S. I. Pohozaev; On a constructive method in calculus of variations, Dokl. Akad. Nauk 298 (1988) 1330-1333 (in Russian) and 37 (1988) 274-277 (in English).
[13] S. I. Pohozaev; On fibering method for the solutions of nonlinear boundary value problems, Trudy Mat. Inst. Steklov192 (1990) 146-163 (in Russian).
[14] R. E. Showalter; Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997.
[15] E. Tonkes; A semilinear elliptic equation with convex and concave nonlinearities, Top. Meth. Nonlin. Anal. 13 (1999), 251-271.
[16] J. L. Vazquez; A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
[17] E. Zeidler; Nonlinear Functional Analysis and its Applications, Vol. 1, Springer-Verlag, New York (1986).

Dimitrios A. Kandilakis
Department of Sciences, Technical University Of Crete, Chania, Crete 73100 Greece E-mail address: dkan@science.tuc.gr

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J60.
 Key words and phrases. Variational method; fibering method; Palais-Smale condition; genus. (C) 2005 Texas State University - San Marcos.

 Submitted September 27, 2004. Published May 31, 2005.

