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A MULTIPLICITY RESULT FOR QUASILINEAR PROBLEMS
WITH CONVEX AND CONCAVE NONLINEARITIES AND
NONLINEAR BOUNDARY CONDITIONS IN UNBOUNDED

DOMAINS

DIMITRIOS A. KANDILAKIS

Abstract. We study the following quasilinear problem with nonlinear bound-

ary conditions

−∆pu = λa(x)|u|p−2u + k(x)|u|q−2u− h(x)|u|s−2u, in Ω,

|∇u|p−2∇u · η + b(x)|u|p−2u = 0 on ∂Ω,

where Ω is an unbounded domain in RN with a noncompact and smooth
boundary ∂Ω, η denotes the unit outward normal vector on ∂Ω, ∆pu =

div(|∇u|p−2∇u) is the p-Laplacian, a, k, h and b are nonnegative essentially

bounded functions, q < p < s and p∗ < s. The properties of the first eigen-
value λ1 and the associated eigenvectors of the related eigenvalue problem are

examined. Then it is shown that if λ < λ1, the original problem admits an infi-

nite number of solutions one of which is nonnegative, while if λ = λ1 it admits
at least one nonnegative solution. Our approach is variational in character.

1. Introduction

Consider the problem

−∆pu = λa(x)|u|p−2u + k(x)|u|q−2u− h(x)|u|s−2u, x ∈ Ω,

|∇u|p−2∇u · η + b(x)|u|p−2u = 0, x ∈ ∂Ω,
(1.1)

on an unbounded domain Ω ⊆ RN with a noncompact smooth boundary ∂Ω, where
η is the unit outward normal vector on ∂Ω and ∆pu = div(|∇u|p−2∇u) is the p-
Laplacian.

Throughout this work the following hypotheses are assumed:

(D) 1 < p < N , 1 < q < p, p∗ := Np
N−p < s < +∞.

(A) There exist positive constants α1, A1, A2 with α1 ∈ (p, N), such that

A1

(1 + |x|)α1 ≤ a(x) ≤ A2

(1 + |x|)α1 a.e. in Ω.
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(K) k(.) ≥ 0, m{x ∈ Ω : k(x) > 0} > 0 and there exist positive constants K1

and α2, with p
q < α1−N

α2−N , such that

k(x) ≤ K1

(1 + |x|)α2 a.e. in Ω.

(H) h ∈ L∞(Ω), h ≥ 0 a.e. and m{x ∈ Ω : h(x) > 0} > 0.
(B) b ∈ C(RN ) and

B1

(1 + |x|)p−1 ≤ b(x) ≤ B2

(1 + |x|)p−1 ,

where B1, B2 > 0.
The growing attention in the study of the p-Laplace operator ∆p is motivated by
the fact that it arises in various applications, e.g. non-Newtonian fluids, reaction-
diffusion problems, flow through porus media, glacial sliding, theory of supercon-
ductors, biology etc. (see [14], [6], [10] and the references therein). The existence
of nontrivial solutions to equations like (1) with a power like right hand side has
received considerable attention since the work of Brezis and Nirenberg [5]. When
Ω is bounded, p = 2 and 1 < q < s, existence, nonexistence and multiplicity of
solutions in H1

0 (Ω) was studied in [2] according to the integrability properties of
the ratio ks−1/hq−1. If p 6= 2, p < q < q∗, h = 0, we refer to [8], where existence
of two solutions in W 1,p

0 (Ω) is provided for λ ≤ λ1 + ε for some ε > 0. If Ω = RN

and h ≥ 0 we refer to [9] where it was shown that (1.1) admits an infinite number
of solutions in D1,p(RN ).

In this paper we study (1.1) in connection with the corresponding eigenvalue
problem for the p-Laplacian:

−∆pu = λa(x)|u|p−2u

subject to the nonlinear boundary condition in (1.1). We show that the first eigen-
value λ1 is positive, simple and isolated, the associated eigenvectors do not change
sign and form a vector space of dimension 1. Then we combine the method em-
ployed in [9] with the results in [11] in order to show that if λ < λ1 then (1.1) admits
an infinite number of solutions, while if λ = λ1 we use the fibering method (which
is also applicable in case λ < λ1) to show that it admits at least one nonnegative
solution. To be more specific, we establish the following

Theorem 1.1. Suppose that (D), (A), (K), (H) and (B) are satisfied.
(i) If λ < λ1 then (1.1) admits infinitely many solutions with negative energy.

If in addition k > 0 a.e., then it also admits a nonnegative solution.
(ii) If λ = λ1and k > 0 a.e., then (1.1) admits at least one nonnegative solution

with negative energy.

The proof of Theorem 1.1 will be given in Sections 4 and 5.

2. Preliminaries

Let C∞
δ (Ω) be the space of C∞

0 (RN )−functions restricted on Ω. Then the
weighted Sobolev space Ep is the completion of C∞

δ (Ω) in the norm

|||u|||p =
( ∫

Ω

|∇u|p dx +
∫

Ω

1
(1 + |x|)p

|u|p dx
)1/p

.
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By [11, Lemma 2] we see that if b(·) satisfies (B), then the norm

‖u‖1,p =
( ∫

Ω

|∇u|p dx +
∫

∂Ω

b(x) |u|p dσ(x)
)1/p

(2.1)

is equivalent to ||| · |||p (σ(·) being the surface measure on ∂Ω).
Let wα(x) := 1

(1+|x|)α where α ∈ R. If Σ is a measurable subset of RN , we assume
that the weighted Lebesgue space

Lr(wα,Σ) := {u :
∫

Σ

wα(x)|u(x)|rdx < +∞},

r ∈ (1,+∞), is supplied with the norm

‖u‖wα,r =
( ∫

Σ

wα(x)|u(x)|rdx
)1/r

.

For a nonnegative measurable function h : Σ → R, the space Ls(h, Σ) is similarly
defined. We associate with it the seminorm |u|h,s =

( ∫
Σ

h(x)|u(x)|sdx
)1/s.

Let E = Ep ∩Ls(h, Ω). Then E endowed with the norm ‖ · ‖E = ‖ · ‖1,p + | · |h,s

becomes a separable Banach space.

Lemma 2.1. (i) If

p ≤ r ≤ pN

N − p
and N > α ≥ N − r

N − p

p
,

then the embedding E ⊆ Lr(wα,Ω) is continuous. If the upper bound for
r in the first inequality and the lower bound for α in the second are strict,
then the embedding is compact.

(ii) If

p ≤ m ≤ p(N − 1)
N − p

and N > β ≥ N − 1−m
N − p

p
,

then the embedding E ⊆ Lm(wβ , ∂Ω) is continuous. If the upper bound
for m in the first inequality and the lower bound for β are strict, then the
embedding is compact.

(iii) If

1 < q < p and
α1 −N

α2 −N
>

p

q
,

then the embedding Lp(wα1 ,Ω) ⊆ Lq(wα2 ,Ω) is continuous.

Proof. The first and second part of the lemma corresponds to [11, Theorem 1],
while the third is a consequence of the following inequality∫

Ω

1
(1 + |x|)α2 |u|

qdx ≤
( ∫

Ω

1

(1 + |x|)d
dx

) p−q
p

( ∫
Ω

1
(1 + |x|)α1 |u|

pdx
)q/p

,

where d = (α2p−α1q)/(p− q). Note that the integral
∫
Ω

1
(1+|x|)d dx converges since

d > N . �

The energy functional Φλ : E → R corresponding to our problem is

Φλ(u) =
1
p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

a|u|pdx− 1
q

∫
Ω

k|u|qdx

+
1
s

∫
Ω

h|u|sdx +
1
p

∫
∂Ω

b|u|pdσ(x).
(2.2)
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It is clear that if (D), (A), (K), (H) and (B) are satisfied, then Φλ(.) is continuously
differentiable and its critical points correspond to solutions of (1.1).

3. The principal eigenvalue

In this section we examine the properties of the first eigenvalue λ1 and the
associated eigenvectors of the following problem

−∆pu = λa(x)|u|p−2u in Ω

|∇u|p−2∇u · η + b(x)|u|p−2u = 0 on ∂Ω.
(3.1)

Proposition 3.1. Suppose that 1 < p < N and hypotheses (A) and (B) are satis-
fied. Then

(i) Problem (3.1) admits a positive principal eigenvalue λ1.
(ii) The set E1 of eigenfunctions corresponding to λ1 is a vector space of di-

mension 1. The elements of E1 are either positive or negative and of class
C1,δ

loc (Ω). A positive eigenfunction always corresponds to λ1.
(iii) λ1 is isolated in the sense that there exists ξ > 0 such that the interval

(0, λ1 + ξ) does not contain any eigenvalue other than λ1.

Proof. (i) Let I, J : Ep → R be defined by

I(u) =
∫

Ω

|∇u|pdx +
∫

∂Ω

b(x)|u|pdσ(x), J(u) =
∫

Ω

a(x)|u|pdx.

Then the operators I, J are continuously Fréchet differentiable, I(.) is coercive, J ′

is compact and J ′(u) = 0 implies that u = 0. Theorem 6.3.2 in [4] implies the
existence of a principal eigenvalue satisfying

λ1 = inf
J(u)=1

I(u). (3.2)

The positivity of λ1follows by a standard argument.
(ii) Let u1 be an eigenfunction corresponding to λ1. Since |u1| is also a minimizer
in (3.2), we may assume that u1 ≥ 0. We will show first that wα1u1is essentially
bounded in Ω. To that purpose for M > 0 define uM (x) := min{u1(x),M}. Mul-
tiplying (3.1) by ukp+1

M , k > 0, and integrating over Ω, we obtain∫
Ω

|∇u1|p−2∇u1 · ∇(ukp+1
M ) dx +

∫
∂Ω

b(x) u
(k+1)p
M dσ(x) ≤ λ1

∫
Ω

a(x) u
(k+1)p
1 dx .

(3.3)
Note that ∫

Ω

|∇u1|p−2∇u1 · ∇(ukp+1
M ) dx = (kp + 1)

∫
Ω

|∇uM |pukp
M dx

=
kp + 1

(k + 1)p

∫
Ω

|∇uk+1
M |p dx, .

So since kp+1
(k+1)p ≤ 1, it follows that∫

Ω

|∇u1|p−2∇u1 · ∇(ukp+1
M ) dx +

∫
∂Ω

b(x)u
(k+1)p
M dσ(x)

≥ c1
kp + 1

(k + 1)p

( ∫
Ω

1
(1 + |x|)α1

u
(k+1)p∗

M dx
)p/p∗

,

(3.4)
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due to the embedding Ep ⊆ Lp∗(wα1 ,Ω). By hypothesis (A), (3.3) and (3.4) we get
that ( ∫

Ω

1
(1 + |x|)α1

u
(k+1)p∗

M dx
)1/p∗

≤
(

λ1A2(k + 1)p

c3(kp + 1)

)1/p ( ∫
Ω

1
(1 + |x|)α1 u

(k+1)p
1 dx

)1/p

,

so

‖uM‖wα1 ,(k+1)p∗ ≤
(λ1A2(k + 1)p

c3(kp + 1)

)1/((k+1)p)

‖u1‖wα1 ,(k+1)p.

A bootstrap argument, as in the proof of [7, Lemma 3.2], shows that wα1u1 is
essentially bounded. Theorems 1.9 and 1.11 in [7] imply that u1 ∈ C1,δ

loc (Ω) and
u1 > 0 in Ω.

We show next that E1 is one dimensional by employing a technique similar to
the one exposed in [1]. Namely, we shall prove that if for λ > 0, w1 is a solution of

−∆pu ≤ λa(x)|u|p−2u in Ω, (3.5)

and z1 is a solution of

−∆pu ≥ λa(x)|u|p−2u in Ω, (3.6)

w1, z1 > 0 on Ω and satisfying the boundary condition in (1.1), then z1 = cw1

for some constant c > 0. For ε > 0 let z1ε = z1 + ε. If ϕ ∈ C∞
δ (Ω), ϕ ≥ 0, then

ϕp

(z1ε)p−1 ∈ Ep. By Picone’s identity [1], we get

0 ≤
∫

Ω

|∇ϕ|pdx−
∫

Ω

∇
( ϕp

zp−1
1ε

)
· |∇z1|p−2∇z1dx

=
∫

Ω

|∇ϕ|pdx +
∫

Ω

ϕp

zp−1
1ε

∆pz1dx−
∫

∂Ω

ϕp

zp−1
1ε

|∇z1|p−2∇z1 · ηdσ(x)

≤
∫

Ω

|∇ϕ|pdx− λ

∫
Ω

ϕp

zp−1
1ε

a(x)zp−1
1 dx−

∫
∂Ω

ϕp

zp−1
1ε

|∇z1|p−2∇z1 · ηdσ(x) ,

while the boundary condition implies that

0 ≤
∫

Ω

|∇ϕ|pdx− λ

∫
Ω

a(x)
ϕp

zp−1
1ε

zp−1
1 dx +

∫
∂Ω

b(x)
ϕp

zp−1
1ε

zp−1
1 dσ(x).

If we let ε → 0 and ϕ → w1 in Ep, we get

0 ≤
∫

Ω

|∇w1|pdx− λ

∫
Ω

a(x)wp
1dx +

∫
∂Ω

b(x)wp
1dσ(x). (3.7)

We can now work as in Theorem 2.1 in [1] to conclude that E1 is a vector space
of dimension 1. The same technique can be used to demonstrate that positive
solutions in Ω correspond only to the first eigenvalue. Assume for instance, that
there exists an eigenpair (λ∗, u2) such that λ∗ > λ1 and u2 ≥ 0 a.e. in Ω. Then u1

is a solution of (3.5) with λ = λ1 and u2 is a solution of (3.6) with λ = λ∗. But
then u2 = cu1 for some c > 0, a contradiction.
(iii) Assume that there exists a sequence of eigenpairs (λn,un) with λn → λ1 and
λn ∈ (λ1, λ1 + δ), δ > 0, for every n ∈ N. Without loss of generality, we may
also assume that ‖un‖1,p = 1 for all n ∈ N. Hence, there exists ũ ∈ Ep such that
un → ũ weakly in Ep. The simplicity of λ1 implies that ũ = u1 or ũ = −u1. Let us
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suppose that un → u1 weakly in Ep. Multiplying (3.1) by un − um and integrating
by parts we get∫

Ω

(|∇un|p−2∇un − |∇um|p−2∇um)(∇un −∇um) dx

+
∫

∂Ω

b(x)(|un|p−2un − |um|p−2um)(un − um) dσ(x)

= λn

∫
Ω

a(x)
(
|un|p−2un − |um|p−2um

)
(un − um) dx

+ (λn − λm)
∫

Ω

a(x)|um|p−2um(un − um) dx .

Exploiting the compactness of the operator J and the monotonicity of the p-
Laplacian operator, we obtain∫

Ω

|∇un|p dx →
∫

Ω

|∇u1|p dx.

The strict convexity of Lp(Ω) implies that un → u1 in Ep. For a fixed n ∈ N and
for every φ ∈ Ep we have∫

Ω

|∇un|p−2∇un∇φ dx +
∫

∂Ω

b(x)|un|p−2unφdσ(x) = λn

∫
Ω

a(x)|un|p−2unφ dx .

Let U−n =: {x ∈ Ω : un(x) < 0}. By (iii) we must have m(U−n ) > 0. By choosing
φ ≡ u−n = min{0, un}, it follows that∫

U−n
|∇u−n |p dx +

∫
∂Ω∩U−n

b(x)|u−n |p dx = λn

∫
U−n

a(x)|u−n |p dx .

Thus
‖u−n ‖

p
1,p ≤ A2 (λ1 + δ)‖u−n ‖

p

Lp(wα1 ,U−n )
, (3.8)

by (A). Denote by Br the ball with radius r > 0 centered at 0 ∈ Rn. For ε ∈ (0, 1)
there exists rε,n > 0 such that

‖u−n ‖
p
1,p ≤ A2 (λ1 + δ)(‖u−n ‖

p

Lp(wα1 ,U−n ∩Brε,n )
+ ε‖u−n ‖

p
1,p) . (3.9)

Apply once again the Hölder inequality to derive that

‖u−n ‖
p

Lp(wα1 ,U−n ∩Brε,n )

≤
( ∫

U−n ∩Brε,n

1

(1 + |x|)
α1p∗
p∗−p

dx
) p∗−p

p∗
( ∫

U−n ∩Brε,n

|u−n |p
∗
dx

)p/p∗

.
(3.10)

By Lemma 2.1 (i), ( ∫
U−n ∩Brε,n

|u−n |p
∗
dx

)p/p∗

≤ c2‖u−n ‖
p
1,p (3.11)

for some c2 > 0. On combining (3.8)-(3.11) we get

1 − ε ≤ c3

( ∫
U−n ∩Brε,n

1

(1 + |x|)
α1p∗
p∗−p

dx
) p∗−p

p∗
,
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so m(U−n ∩ Brε,n
) > c4 > 0, where the constant c4 is independent of n ∈ N. It is

clear that there exists R > 0 such that

m(BR ∩ (U−n ∩Brε,n
)) >

c4

2
(3.12)

for every n ∈ N. Since un → u1 in Ep we have that un → u1 in Lp∗(wα1 , BR ∩ Ω).
By Egorov’s Theorem, un converges uniformly to u1 on BR∩Ω with the exception of
a set with arbitrarily small measure. But this contradicts (3.12) and the conclusion
follows. �

Remark 3.2. If u1 is continuous at x0 ∈ ∂Ω, then u1(x0) > 0. Indeed, if
u1(x0) = 0, then by [16, Theorem 5] we would have |∇u1(x0)|p−2∇u1(x0)·η(x0) < 0,
contradicting (1.1).

4. The case λ < λ1

We need the following lemma in order to show that Φλ is coercive.

Lemma 4.1. If λ < λ1 then the norm

|||u|||1,p :=
( ∫

Ω

|∇u|pdx +
∫

∂Ω

b|u|pdx− λ

∫
Ω

a|u|pdx
)1/p

is equivalent to ‖u‖1,p.

Proof. Suppose that there exists un ∈ Ep, n ∈ N, such that ‖un‖1,p = 1 and∫
Ω

|∇un|pdx +
∫

∂Ω

b|un|pdσ(x)− λ

∫
Ω

a|un|pdx → 0.

In view of (3.2),

0 ≤ (λ1 − λ)
∫

Ω

a|un|pdx ≤
∫

Ω

|∇un|pdx +
∫

∂Ω

b|un|pdσ(x)− λ

∫
Ω

a|un|pdx → 0.

Hence,
∫
Ω

a|un|pdx → 0, which shows that ‖un‖1,p → 0. This is a contradiction
with ‖un‖1,p = 1. �

We can now prove our first result concerning (1.1).

Proof of Theorem 1.1(i). We will show that Φλ satisfies the Palais-Smale con-
dition in E. So let {un}n∈N be a sequence in E such that Φλ(un) is bounded and
Φ′λ(un) → 0. By Lemma 4.1 we get

Φλ(u) =
1
p

( ∫
Ω

|∇u|pdx +
∫

∂Ω

b|u|pdσ(x)− λ

∫
Ω

a|u|pdx
)

− 1
q

∫
Ω

k|u|qdx +
1
s

∫
Ω

h|u|sdx

≥ 1
p
|||u|||p1,p − c5|||u|||q1,p +

1
s
|u|sh,s,

implying that Φλ(.) is coercive. Thus {un}n∈N is bounded in E. Without loss of
generality, we may assume that un → u strongly in Lp(wα1 ,Ω) and Lq(wα2 ,Ω) and
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weakly in Lp(wp−1, ∂Ω), Epand Ls(h, Ω). Thus∫
Ω

a(x)|un − u|pdx → 0,

∫
Ω

k(x)|un − u|qdx → 0 , (4.1)∫
∂Ω

b(x)|u|p−2u(un − u)dσ(x) → 0,

∫
Ω

|∇u|p−2∇u∇(un − u)dx → 0 , (4.2)∫
Ω

h(x)|u|s−2u(un − u)dx → 0 . (4.3)

Therefore, by (4.1)-(4.3),
〈Φ′λ(u), un − u〉 → 0.

Since Φ′λ(un) → 0, we also have that

〈Φ′λ(un)− Φ′λ(u), un − u〉 → 0.

Thus ∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u)dx

− λ

∫
Ω

a(x)
(
|un|p−2un − |u|p−2u

)
(un − u)dx

−
∫

Ω

k(x)
(
|un|q−2un − |u|q−2u

)
(un − u)dx

+
∫

∂Ω

b(x)
(
|un|p−2un − |u|p−2u

)
(un − u)dσ(x)

+
∫

Ω

h(x)
(
|un|s−2un − |u|s−2u

)
(un − u)dx → 0 .

(4.4)

On combining (4.1)-(4.4) we get∫
Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u)dx

+
∫

∂Ω

b(x)
(
|un|p−2un − |u|p−2u

)
(un − u)dσ(x)

+
∫

Ω

h(x)
(
|un|s−2un − |u|s−2u

)
(un − u)dx → 0 .

We can now use the inequality

0 ≤
{(∫

Ω

|f1|rdx
)1/r′

−
( ∫

Ω

|f2|rdx
)1/r′}

×
{(∫

Ω

|f1|rdx
)1/r

−
( ∫

Ω

|f2|rdx
)1/r}

≤
∫

Ω

(
|f1|r−2f1 − |f2|r−2f2

)
(f1 − f2)dx,

where f1, f2 ∈ Lr(Ω), r > 1, r′ = r/(r − 1), to obtain

‖∇un‖p → ‖∇u‖p, ‖h 1
s un‖s → ‖h 1

s u‖s .

Exploiting the strict convexity of Lp(Ω) and Ls(Ω) we derive that ∇un → ∇u in
(Lp(Ω))N and un → u in Ls(h, Ω). Consequently, un → u in E, proving the claim.

Now let Z = {x ∈ Ω : k(x) = 0} and E0 = {u ∈ E : u(x) = 0 a.e. in Z}. Define
a norm on E0 by ‖u‖E0 = ‖k1/qu‖q. Consider the family Σ of closed and symmetric



EJDE-2005/57 A MULTIPLICITY RESULT 9

subsets of E\{0}. For A ∈ Σ we define the genus γ(A) of A as the minimum of
the n ∈ N such that there exists a continuous function ϕ : A → Rn\{0} with
ϕ(−x) = −ϕ(x). If no such n exists, we define γ(A) = +∞. We claim that for
n ∈ N there exists ε > 0 such that γ({u ∈ E : Φλ(u) ≤ −ε}) ≥ n. It will be
enough to show that the set {u ∈ E : Φλ(u) ≤ −ε} contains an n-dimensional
sphere centered at 0 ∈ RN . So let En

0 be an n-dimensional subspace of E0. Then

Φλ(u) =
1
p

( ∫
Ω

|∇u|pdx +
∫

∂Ω

b|u|pdσ(x)− λ

∫
Ω

a|u|pdx
)

− 1
q

∫
Ω

k|u|qdx +
1
s

∫
Ω

h|u|sdx

≤ 1
p
|||u|||p1,p −

1
q
‖u‖q

E0
+

1
s
|u|sh,s .

Since all norms on En
0 are equivalent, we have that Φλ(u) ≤ c′1‖u‖

p
En

0
+ c′2‖u‖s

En
0
−

c′3‖u‖
q
En

0
, so there exists ε > 0 and δ > 0 such that Φλ(u) ≤ −ε for ‖u‖En

0
= δ.

Thus {u ∈ En
0 : ‖u‖X = δ} ⊆ {u ∈ E : Φλ(u) ≤ −ε}, implying that γ({u ∈

E : Φλ(u) ≤ −ε}) ≥ n. Let Σn = {A ∈ Σ : γ(A) ≥ n}. Then the numbers
cn = infA∈Σn

supu∈A Φλ(u) are critical values of Φλ, providing an infinite sequence
of critical points of Φλ. For more details we refer to [3]. For the existence of a
nonnegative solution, see Remark 5.1 in the next section.

5. The case λ = λ1

In this section we apply the fibering method introduced by Pohozaev [12], [13]
in order to show that (1.1) admits at least one nonnegative solution.

Proof of Theorem 1.1 (ii). We decompose the function u ∈ E as u(x) = rv(x)
with r ∈ R and v ∈ E. By (2.2) we have that

Φλ1(rv) =
|r|p

p

( ∫
Ω

|∇v|p − λ1

∫
Ω

a|v|p +
∫

∂Ω

b|v|pdσ(x)
)

− |r|q

q

∫
Ω

k|v|q +
|r|s

s

∫
Ω

h|v|s.

If u is a critical point of Φλ1 , then ∂Φλ1
∂r = 0, so we will search for the critical points

of Φλ1 among the ones which satisfy this equation, that is

|r|p−q
( ∫

Ω

|∇v|pdx− λ1

∫
Ω

a|v|pdx +
∫

∂Ω

b|v|pdσ(x)
)

+ |r|s−q

∫
Ω

h|v|sdx

=
∫

Ω

k|v|qdx .

(5.1)

Since k > 0 a.e., for every v ∈ E\{0} there exists a unique r = r(v) > 0 satisfying
(5.1). By using the implicit function theorem [17, Thm. 4.B, p.150], we see that
the function v → r(v) is continuously differentiable for v 6= 0. Clearly,

r(µv)µv = r(v)v for every µ > 0 . (5.2)

Also, in view of (5.1)

Φλ1(r(v)v) =
(rq

p
− rq

q

) ∫
Ω

k|v|qdx +
(rs

s
− rs

p

) ∫
Ω

h|v|sdx ≤ 0 . (5.3)
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Let
H(v) =

∫
Ω

|∇v|pdx− λ1

∫
Ω

a|v|pdx +
∫

∂Ω

b|v|pdσ(x) +
∫

Ω

h|v|sdx.

The variational characterization of λ1 and hypothesis (H) imply that H(v) ≥ 0 for
every v ∈ E. Let W = {v ∈ E : H(v) = 1}. By (3.2), W is bounded in Ls(h,Ω).
Since

(H ′(v), v) = p
( ∫

Ω

|∇v|pdx− λ1

∫
Ω

a|v|pdx +
∫

∂Ω

b|v|pdσ(x)
)

+ s

∫
Ω

h|v|sdx

we see that (H ′(v), v) 6= 0 for v ∈ W . In view of [8, Lemma 3.4], any conditional
critical point of the function Φ̂λ1(v) := Φλ1(r(v)v) subject to H(v) = 1 provides a
critical point r(v)v of Φλ1 . Consider the problem

M1 = inf{Φλ1(r(v)v) : v ∈ W}.
Suppose that {vn}n∈N is a minimizing sequence in W , that is

Φλ1(r(vn)vn) → M1

and

H(vn) =
( ∫

Ω

|∇vn|pdx− λ1

∫
Ω

a|vn|pdx +
∫

∂Ω

b|vn|pdσ(x)
)

+
∫

Ω

h|vn|sdx = 1.

Assume that ‖vn‖1,p → +∞and let un =
vn

an
where an = ‖vn‖1,p. Then

ap
n

( ∫
Ω

|∇un|pdx− λ1

∫
Ω

a|un|pdx +
∫

∂Ω

b|un|pdσ(x)
)

+ as
n

∫
Ω

h|un|sdx = 1,

so, by (3.2),

0 ≤
∫

Ω

|∇un|pdx− λ1

∫
Ω

a|un|pdx +
∫

∂Ω

b|un|pdσ(x) ≤ 1
ap

n
→ 0 (5.4)

and
0 ≤

∫
Ω

h|un|sdx ≤ 1
as

n

→ 0. (5.5)

Thus
lim

n→∞
λ1

∫
Ω

a|un|pdx = 1. (5.6)

Since ‖un‖1,p = 1, by passing to a subsequence if necessary, we may assume that
un → u weakly in Ep. In view of (5.6) we get

λ1

∫
Ω

a|u|pdx = 1,

so u 6= 0. The lower semicontinuity of the norm of Ep implies that∫
Ω

|∇u|pdx +
∫

∂Ω

b|u|pdσ(x) ≤ 1,

and (5.4) gives ∫
Ω

|∇u|pdx +
∫

∂Ω

b|u|pdσ(x) = λ1

∫
Ω

a|u|pdx.

Thus uis an eigenfunction corresponding to λ1. But then∫
Ω

h|u|sdx ≤ lim inf
n→∞

∫
Ω

h|un|sdx = 0 ,
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by (5.5), a contradiction. Thus {vn}n∈N is bounded in Ep. Since {vn}n∈N is also
bounded in Ls(h, Ω) we conclude that {vn}n∈N is bounded in E. Going back to
(5.1) we get that r(W ) is also bounded. Consequently, I = {Φλ1(r(v)v) : v ∈ W} is
a bounded interval in R with endpoints A,B, A < B ≤ 0. We will show that A ∈ I.
To that purpose let {vn}n∈N ∈ W such that Φλ1(r(vn)vn) → A. Without loss of
generality we may assume that vn → v0 weakly in Ep and in Ls(h, Ω). Furthermore,
we may also assume that rn = r(vn) → d, d ∈ R. Clearly rnvn → dv0 weakly in
Ep. Since Φλ1(.) is weakly lower semicontinuous we have

Φλ1(dv0) ≤ lim inf
n→+∞

Φλ1(rnvn) = A ,

so dv0 6= 0. By lemma 2.1, r(vn)vn → dv0 strongly in Lp(wα1 ,Ω) and in Lq(wα2 ,Ω).
Exploiting the lower semicontinuity of the norms in the relation H(vn) = 1 and in
(5.1) we get( ∫

Ω

|∇v0|pdx +
∫

∂Ω

b|v0|pdσ(x)− λ1

∫
Ω

a|v0|pdx
)

+
∫

Ω

h|v0|sdx ≤ 1

and

dp−q
( ∫

Ω

|∇v0|pdx +
∫

∂Ω

b|v0|pdσ(x)− λ1

∫
Ω

a|v0|pdx
)

+ ds−q

∫
Ω

h|v0|sdx

≤
∫

Ω

k|v0|qdx.

(5.7)

Thus d ≤ r(v0). We will show that d = r(v0). So assume that d < r(v0)and define
G(r) = Φλ1(rv0). For r ∈ [0, r(v0)) we have

G′(r)
rq−1

= rp−q
( ∫

Ω

|∇v0|pdx− λ1

∫
Ω

a|v0|pdx +
∫

∂Ω

b|v0|pdσ(x)
)

+ rs−q

∫
Ω

h|v0|sdx−
∫

Ω

k|v0|qdx < 0,

by (5.1). Thus G(·) is strictly decreasing on [0, r(v0)). Consequently,

Φλ1(dv0) = G(d) > G(r(v0)) = Φλ1(r(v0)v0). (5.8)

Let γ ≥ 1 be such that( ∫
Ω

|∇γv0|pdx +
∫

∂Ω

b|γv0|pdσ(x)− λ1

∫
Ω

a|γv0|pdx
)

+
∫

Ω

h|γv0|sdx = 1, (5.9)

implying that γv0 ∈ W . On combining (5.2), (5.8) and (5.9) we obtain

Φλ1(r(γv0)γv0) = Φλ1(r(v0)v0) < Φλ1(dv0) ≤ lim inf
n→+∞

Φλ1(r(vn)vn) = A,

that is Φλ1(r(γv0)γv0) < A, a contradiction. So d = r(v0). By taking γ ≥ 1 as in
(5.9) we get

Φλ1(r(γv0)γv0) = Φλ1(r(v0)v0) ≤ lim inf
n→+∞

Φλ(rnvn) = A,

so Φ̂λ1(v0) = Φλ1(r(v0)v0) = A. Since |v0| is also a minimizer, we may assume that
v0 ≥ 0. [8, Lemma 3.4] guarantees that w0 = r(v0)v0is a nontrivial nonnegative
solution of (1.1).
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Remark 5.1. It is easy to see that the proof of Theorem 1.1(ii) can be applied for
the case λ < λ1. Therefore (1.1) admits also a nonnegative solution for λ < λ1. If,
in addition, h ≡ 0, then working as in Proposition 3.1 we see that this solution is
positive in Ω.
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