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PERMANENCE IN LOGISTIC AND LOTKA-VOLTERRA
SYSTEMS WITH DISPERSAL AND TIME DELAYS

JINGAN CUI, MINGNA GUO

Abstract. In this paper, we consider the effect of dispersal on the perma-
nence of single and interacting populations modelled by systems of integro

differential equations. Different from former studies, our discussion here in-

cludes the important situation when species live in a weak patchy environment;
i.e., species in some isolated patches will become extinct without the contri-

bution from other patches. For the single population model considered in this
paper, we show that the same species can persist for some dispersal rates and

the species will vanish in some isolated patches. Based on the results for a

single population model, we derive sufficient conditions for the permanence of
two interacting competitive and predator-prey dispersing systems.

1. Introduction

As discussed by several authors, for many species spatial factors are important in
population dynamics. Such theoretical studies of spatial distributions can be traced
back at least as far as Skellem [18], and has been extensively considered in many
papers; see for example in [1, 2, 8, 9, 10, 11, 12, 14, 15, 16, 17, 24, 21, 22, 23] and
references cited therein. Most of the previous papers focused on the coexistence of
populations modelled by systems of ordinary differential equations and the stability
(local and global) of equilibria. Many existing models deal with a single population
dispersing among patches. Some of them deal with competition and predator-prey
interactions in patchy environments.

Recently persistence and stability of population dynamical systems involving
time delays have been discussed by some authors; see for example [3, 4, 5, 20, 28]
and references cited therein. All of these studies assume that the intrinsic growth
rates are all positive (this means that populations live in a suitable environment).
They obtained some sufficient conditions that guarantee permanence of population
or stability of positive equilibria or positive periodic solutions.

However, the actual living environments of some endangered and rare species are
not always like this. Because of the ecological effects of the human activities and
industry, e.g. the location of manufacturing industries, pollution of the atmosphere,
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rivers, soil, etc., more and more habitats were broken into patches and some of the
patches were polluted. In some of these patches the species will go extinct without
the contribution from other patches, and hence the species lived in a weak patchy
environment. The living environments of some endangered and rare species such
as giant panda [27] and alligator sinensis [29] are some convincing examples.

In order to protect endangered and rare species, we should consider theoretically
the effect of dispersal on the permanence of single and multiple species living in weak
environments. The present paper consider the following interesting problem: How
does dispersal lead to the permanence of endangered single and multiple species
which could not persist within isolated patches?

The organization of this paper is as follows. In the next section, we introduce
notation, give some definitions and state a lemma which will be essential for our
proofs. In section 3, a dispersing single species model is given to consider its perma-
nence. We obtain that the dispersal system can be made permanent under different
appropriate dispersal conditions, even if the endangered species become extinct in
some isolated patches without the contribution from other patches (Theorems 3.2,
3.3). In section 4, by using the main results in section 3, we consider the effect of
dispersal on the survival of competitive species. In section 5, we consider the effect
of dispersal on the permanence of prey-predator system. We can choose appropriate
dispersal rates making the dispersing system permanent even if the prey species has
negative intrinsic growth rates in some patches. Finally, the main results obtained
in this paper are biologically discussed in section 6.

2. Preliminaries

In this section we introduce some notations and state a lemma which will be
useful in the subsequent sections. Let f(t) be a continuous ω-periodic function
defined on R = (−∞,+∞), and set

Aω(f) = ω−1

∫ ω

0

f(t)dt.

Let R+ be the cone of nonnegative vectors in Rn. If x, y ∈ Rn, we write x ≤ y
if xi ≤ yi for i = 1, 2, . . . , n; similarly x < y if xi < yi, for i = 1, 2, . . . , n.
Let C = C([−τ, 0],Rn) be the Banach space of continuous functions mapping the
interval [−τ, 0] into Rn with supremum norm. If ϕ,ψ ∈ C, we write ϕ ≤ ψ (ϕ < ψ)
in case the indicated inequality holds at each point of [τ, 0]. Denote C+ = {ϕ ∈ C :
ϕ ≥ 0, ϕ(0) > 0}.

Consider the functional differential equation

ẋ(t) = f(t, xt) (2.1)

where f : C 7→ Rn and xt denote the element of C given by xt(θ) = x(t + θ),
−τ ≤ θ ≤ 0. We assume that f(t, ϕ) is continuously differentiable in ϕ, f(t+ω, ϕ) =
f(t, ϕ) for all (t, ϕ) ∈ R×C+ and ω > 0. Then by [13], there exists a unique solution
of (2.1) through (t0, ϕ) for t0 ∈ R, ϕ ∈ C+. We write x(t, t0, ϕ)(xt(t0, ϕ)) for the
solution of the initial value problem. By [13], x(t, t0, ϕ) is continuously differential
in ϕ. In the following the notation xt0 = ϕ will be used as the condition of the
initial value of (2.1), by which we mean that we consider the solution x(t) of (2.1)
which satisfies x(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0]. Consider the hypothesis
(H2.1) If ϕ,ψ ∈ C+, ϕ ≤ ψ and ϕi(0) = ψi(0) for some i, then fi(t, ϕ) ≤ fi(t, ψ).
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Under the assumption (H2.1), system (2.1) exhibits the following property.

Lemma 2.1 ([19, 25]). Under assumption (H2.1), we have
(i) If ϕ,ψ ∈ C+ with ϕ ≤ ψ, then

x(t, t0, ϕ) ≤ x(t, t0, ψ)

for all t ≥ t0 for which both are defined.
(ii) Assume that y(t) is continuously differentiable. If ẏ(t) ≤ f(t, yt) and yt0 ≤

ϕ, we have
y(t) ≤ x(t, t0, ϕ)

for all t ≥ t0 for which both are defined. If ẏ(t) ≥ f(t, yt) and yt0 ≥ ϕ,we
have

y(t) ≥ x(t, t0, ϕ)
for all t ≥ t0 for which both are defined.

Definition. System (2.1) is said to be permanent if there exists a compact set K
in the interior of R+, such that all solutions with xt0 ∈ C+ ultimately enter K.

3. Dispersing Logistic system with time delay

Many authors have studied the stability of positive periodic solution of the fol-
lowing type population dynamical system with time delay

ẋ(t) = x(t)[b(t)− a(t)x(t) + c(t)
∫ 0

−τ

x(t+ θ)dµ(θ)]

x(θ) = ϕ(θ) ≥ 0, θ ∈ [−τ, 0], ϕ(0) > 0, ϕ ∈ C([−τ, 0],R+),
(3.1)

where µ(θ) is nondecreasing and∫ 0

−τ

dµ(θ) = µ(0+)− µ(−τ) = 1, (3.2)

the intrinsic growth rate is b(t), the self-inhibition a(t) and the reproduction rate
c(t) are continuously ω-periodic functions, and a(t) > 0, b(t) > 0, c(t) ≥ 0 for
t ∈ R.

Generally c(t), which weights the effect of the past history on the present pop-
ulation density x(t), will make a superposition of positive and negative effects and
here we consider a population x at time t has benefit from the resources accumu-
lated by the population itself in the past (D’Ancona [7]), hence establishing for c(t)
in (3.2) a positive sign.

For some particularly endangered species that live in weak environment, the
intrinsic growth rate b(t) may become negative for some time t. We have the
following extinction result.

Theorem 3.1. If b(t) < 0 and a(t) − c(t) > 0, then species x become extinct
eventually.

Proof. Obviously, solutions of system (3.1) are defined on [0,+∞) and remain pos-
itive for t > 0. Let V (x(t)) = 1

2x
2(t). If |x(t)| ≥ |x(t + θ)|, θ ∈ [−τ, 0], then

V̇ (x(t)) ≤ 2b(t)V (x(t)). Hence, if b(t) < 0, then V (x(t)) is a Liapunov function for
(3.1), and x = 0 is globally asymptotically stable. This means species x become
extinct eventually. This completes the proof. �
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To study the effect of dispersal on the permanence of system (3.1), we introduce
the following system as composed of multiple heterogeneous patches connected by
discrete dispersal.

ẋi(t) = xi(t)[bi(t)− ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds]

+
n∑

j=1

Dij(t)(xj(t)− xi(t)), i = 1, 2, . . . , n,
(3.3)

with the initial condition

xi(θ) = ϕi(θ) ≥ 0, −τ ≤ θ ≤ 0, ϕi(0) > 0, i = 1, 2, . . . , n, (3.4)

where xi(t) is the density of species x in patch i; Ki(s)(i = 1, 2, . . . , n) denote
nonnegative piecewise continuous functions defined on [−τ, 0] and normalized such
that

∫ 0

−τ
Ki(s)ds = 1. We assume bi(t), ai(t), ci(t) and Dij(t)(i, j = 1, 2, . . . , n) are

continuous ω-periodic functions defined on R and

ai(t), ci(t) > 0, Dij(t) ≥ 0 and Dii(t) ≡ 0 for t ∈ R, i, j = 1, 2, . . . , n, (3.5)

where bi(t) is the intrinsic growth rate, ai(t) represents the intraspecfic relationship,
Dij(t) is the dispersal coefficient for the species from patch j to patch i(i 6= j).

Theorem 3.2. Suppose that ai(t) > ci(t) holds for i = 1, 2, . . . , n, then solutions
of (3.3) with initial condition (3.4) are uniformly bounded and uniformly ultimately
bounded.

Proof. Similar to the proof in [28], we know that Rn
+ is positively invariant with

respect system (3.3). By ai(t) > ci(t),there exist p(1 < p < mint{a1(t)
c1(t)

, a2(t)
c2(t)

}) and
H > 1 such that

bi(t)− (ai(t)− pci(t))H < −1 for i = 1, 2, . . . , n. (3.6)

Define
V (t) = V (x1(t), . . . , xn(t)) = max

1≤i≤n
{xi(t)} = ‖x(t)‖.

If V (t + θ) = ‖x(t + θ‖ ≥ H,V (t + θ) ≤ pV (t), θ ∈ [−τ, 0], calculating the upper
right derivative of V (t) along solutions of (3.3), we have

D+V (t) ≤ V (t)max
i
{bi(t)− (ai(t)− pci(t))H} < −H < −1.

It follows from the theorem of Lyapunove-Razumikhim type [7, 13, 19, 25, 26] that
positive solutions of (3.3) are uniformly ultimately bounded.

Fix H̃ > H. Let x(t) = (x1(t), . . . , xn(t)) denote the solution of (3.1) through
(σ, ϕ) at t = σ, where ϕ = (ϕ1, . . . , ϕn) ∈ C+ and 0 ≤ ϕi(θ) ≤ H̃ on [−τ, 0] for
i = 1, . . . , n. we claim that ‖x(t)‖ ≤ H̃ for all t ≥ σ. Otherwise, there exists a
t̃ > σ such that

‖x(t)‖ ≤ H̃ for σ − τ ≤ t < t̃, (3.7)

‖x(t̃)‖ = H̃, (3.8)

D+V (t̃) ≥ 0. (3.9)

Using (3.7) and (3.8), we have from (3.3)

D+V (t̃) ≥ H̃ max
1≤i≤n

{bi(t̃)− (ai(t̃)− pci(t̃))H̃}.
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It follows from (3.6) that D+V (t̃) < 0,which contradicts (3.9) and therefore, the
uniform boundedness of the positive solutions of (3.3) with (3.4) follows; i.e. ,
positive solution of (3.3) are uniformly bounded. This completes the proof. �

For the next theorem we us the following hypotheses:

(H3.1) There exists i0(1 ≤ i0 ≤ n), such that Aω(θ̄) > 0,where θ̄(t) = bi0(t) −∑n
j=1Di0j(t)

(H3.2) Aω(φ) > 0,where φ(t) = min1≤i≤n{bi(t)−
∑n

j=1Dij(t) +
∑n

j=1Dji(t)}

Theorem 3.3. Assume that ai(t) > ci(t) (i = 1, 2, . . . , n). If one of the the as-
sumption (H3.1) or (H3.2) holds, then there exist positive constants m and M(m <
M),such that for given 0 < δ < ι, there is a constant T = T (δ, ι) > 0 such that

m ≤ xi(σ, φ) ≤M, i = 1, . . . , n, (3.10)

for t ≥ σ + T, σ ∈ R and φ ∈ C+[δ, ι] = {φ ∈ C+ : δ ≤ φ(θ) ≤ ι}.

Proof. Suppose that ai(t) < ci(t)(i = 1, . . . , n) holds. From Theorem 3.2, the
positive solutions of (3.3) with (3.4) are uniformly ultimately bounded. We know
that there exists a constant M > 0, such that for given 0 < δ < ι, there is a
constant T1(δ, ι) > 0 such that

xi(σ, φ)(t) ≤M, i = 1, . . . , n, (3.11)

for t ≥ σ + T1, σ ∈ R and φ ∈ C+[δ, ι]. On the other hand,

ẋi(t) ≥ xi(t)[bi(t)− ai(t)xi(t)] +
n∑

j=1

Dij(t)(xj(t)− xi(t)), (3.12)

i = 1, 2, . . . , n. Applying [6, Theorem 2] to the auxiliary system

u̇i(t) = ui(t)[bi(t)− ai(t)ui(t)] +
n∑

j=1

Dij(t)(uj(t)− ui(t)), ui(0) = xi(0), (3.13)

i = 1, 2, . . . , n, we obtained that there exist m(0 < m < M) and T2 ≥ 0, such that
positive solutions of (3.13) satisfies

ui(t) ≥ m for i = 1, . . . , n and t ≥ σ + T2,

where m dependent on assumptions (H3.1) and (H3.2). Taking T = max{T1, T2},
by Lemma 2.1, (3.10) holds for t > σ + T . This completes the proof. �

Applying the above theorem to a two-patch system, we obtain the following
result. Let

(A3.1) Aω(b1(t)−D12(t)) > 0
(A3.2) Aω(b2(t)−D21(t)) > 0
(A3.3) b1(t) +D21(t)−D12(t) ≥ b2(t) +D12(t)−D21(t) and Aω(b2(t) +D12(t)−

D21(t)) > 0
(A3.4) b1(t) +D21(t)−D12(t) ≤ b2(t) +D12(t)−D21(t) and Aω(b1(t) +D21(t)−

D12(t)) > 0.

Corollary 3.4. If ai(t) > ci(t) (i = 1, 2) and one of the conditions (A3.1)–(A3.4)
holds, then the result of Theorem 3.3 holds for i = 1, 2.
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4. Permanence in dispersing competitive system

In this section we consider the competitive Lotka-Volterra dispersal model

ẋi(t) = xi(t)[bi(t)− ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds− fi(t)yi(t)]

+
n∑

j=1

Dij(t)(xj(t)− xi(t))

ẏi(t) = yi(t)[di(t)− ei(t)xi(t)− qi(t)yi(t) + pi(t)
∫ 0

−τ

Ki(s)yi(t+ s)ds]

+
n∑

j=1

λij(t)(yj(t)− yi(t))

(4.1)

i = 1, 2, . . . , n, with initial conditions
xi(θ) = ϕi(θ) ≥ 0, yi(θ) = ψi(θ) ≥ 0,

−τ ≤ θ ≤ 0, ϕi(0) > 0, ψi(0) > 0, i = 1, 2, . . . , n,
(4.2)

where yi(t) is the density of species y in patch i; Ki(s) (i = 1, 2, . . . , n) denote
nonnegative piecewise continuous functions defined on [−τ, 0] and normalized such
that

∫ 0

−τ
Ki(s)ds = 1. We assume ei(t), fi(t), pi(t), qi(t), λij(t)(i, j = 1, 2, . . . , n)

are continuous ω-periodic functions defined on R and

pi(t), qi(t) > 0, λij(t),≥ 0 and λii(t) ≡ 0 (4.3)

for t ∈ R, i, j = 1, 2, . . . , n, where di(t) is the intrinsic growth rate,ei(t) represents
the intraspecfic relationship, λij(t) is the dispersal coefficient for the species y from
patch j to patch i(i 6= j).

Theorem 4.1. Suppose that ai(t) > ci(t) and qi(t) > pi(t) hold for t ≥ 0. Let
(x1(t), . . . , xn(t), y1(t), . . . , yn(t)) denote any solution of (4.1) with initial condi-
tions (4.2). Then there exist positive constants Nxi, Nyi and τ1 such that

xi(t) ≤ Nxi, yi(t) ≤ Nyi for i = 1, . . . , n and t ≥ τ1. (4.4)

Proof. Obviously solutions of system (4.1) and (4.2) are defined on [0,+∞) and
remain positive for all t ≥ 0. It follows from (4.1) and the nonnegativity of the
initial values,

ẋi(t) ≤ xi(t)[bi(t)− ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds]

+
n∑

j=1

Dij(t)(xj(t)− xi(t))

ẏi(t) ≤ yi(t)[di(t)− qi(t)yi(t) + pi(t)
∫ 0

−τ

Ki(s)yi(t+ s)ds]

+
n∑

j=1

λij(t)(yj(t)− yi(t))

i = 1, 2, . . . , n. By Lemma 2.1 and Theorem 3.2, there exist positive constants
Nxi, Nyi and τ1 such that

0 < xi(t) ≤ Nxi, 0 < yi(t) ≤ Nyi,
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for i = 1, . . . , n and t ≥ τ1. This completes the proof. �

For the nest theorem, let

(H4.1) There exists i0(1 ≤ i0 ≤ n), such that Aω(θ1) > 0, where θ1(t) = bi0(t) −
fi0(t)Nyi0 −

∑n
j=1Di0j(t)

(H4.2) Aω(φ1) > 0,where φ1(t) = min1≤i≤n{bi(t) − fi(t)Nyi −
∑n

j=1Dij(t) +∑n
j=1Dji(t)}

(H4.3) There exists i0(1 ≤ i0 ≤ n), such that Aω(θ2) > 0, where θ2(t) = di0(t) −
ei0(t)Nxi0 −

∑n
j=1 λi0j(t)

(H4.4) Aω(φ2) > 0, where φ2(t) = min1≤i≤n{di(t) − ei(t)Nxi −
∑n

j=1 λij(t) +∑n
j=1 λji(t)}.

Theorem 4.2. Assume that ai(t) > ci(t) and qi(t) > pi(t).

(I) If one of the assumption (H4.1) or (H4.2) holds, then there exist ζxi(0 <
ζxi < Nxi) and τ2 ≥ τ1, such that

xi(t) ≥ ζxi for i = 1, 2, . . . , n, t ≥ τ2 (4.5)

(II) If λij(t)(i 6= j) is positive and one of the assumption (H4.3) or (H4.4)
holds, then there exist ζyi(0 < ζyi < Nyi) and τ3 ≥ τ2, such that

yi(t) ≥ ζyi for i = 1, 2, . . . , n, t ≥ τ3 (4.6)

Proof. By Theorem 4.1, there exists τ1 > 0 such that for i = 1, . . . , n,

ẋi(t) ≥ xi(t)[bi(t)− fi(t)Nyi − ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds]

+
n∑

j=1

Dij(t)(xj(t)− xi(t))

Let (u1(t), . . . , un(t)) be the solution of the initial-value problem

u̇i(t) = ui(t)[bi(t)− fi(t)Nyi − ai(t)ui(t) + ci(t)
∫ 0

−τ

Ki(s)ui(t+ s)ds]

+
n∑

j=1

Dij(t)(uj(t)− ui(t))

ui(s) = xi(s), s ∈ [τ1 − τ, τ1], i = 1, . . . , n.

By Theorem 3.3 and Lemma 2.1, there exist ζxi(0 < ζxi < Nxi) and τ2 ≥ τ1, such
that

xi(t) ≥ ζxi for i = 1, 2, . . . , n, t ≥ τ2,

provided condition (H4.1) or (H4.2) hold.
We omit the proof of part (II) since it is entirely similar to that of (I). �
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5. Permanence in dispersing predator-prey system

In this section we consider the dispersing predator-prey model

ẋi(t) = xi(t)[bi(t)− ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds− fi(t)yi(t)]

+
n∑

j=1

Dij(t)(xj(t)− xi(t))

ẏi(t) = yi(t)[−di(t) + ei(t)xi(t)− qi(t)yi(t) + pi(t)
∫ 0

−τ

K̄i(s)yi(t+ s)ds]

+
n∑

j=1

λij(t)(yj(t)− yi(t))

(5.1)

i = 1, 2, . . . , n, with initial conditions

xi(θ) = ϕi(θ) ≥ 0, yi(θ) = ψi(θ) ≥ 0,

−τ ≤ θ ≤ 0, ϕi(0) > 0, ψi(0) > 0, i = 1, 2, . . . , n,
(5.2)

where yi(t) is the density of species y in patch i, K̄i(s) (i = 1, 2, . . . , n) denote
nonnegative piecewise continuous functions defined on [−τ, 0] and normalized such
that

∫ 0

−τ
K̄i(s)ds = 1. All coefficients in system (5.1) are bounded continuous and

ω-periodic functions. In addition, ai(t), ci(t), di(t), qi(t) and pi(t) are positive for
all t ∈ [0, ω] and Dii(t) ≡ 0.

Theorem 5.1. Suppose ai(t) > ci(t) and qi(t) > pi(t) hold for t ≥ 0. Let
(x1(t), . . . , xn(t), y1(t), . . . , yn(t)) denote any solution of (5.1) with initial condi-
tions (5.2). Then there exist positive constants N̄xi, N̄yi and τ̄1 such that

xi(t) ≤ N̄xi, yi(t) ≤ N̄yi for i = 1, . . . , n t ≥ τ̄1. (5.3)

Proof. Obviously, solutions of system (5.1) and (5.2) are defined on [0,+∞) and
remain positive for all t ≥ 0. It follows from (5.1) and the positivity of the initial
values,

ẋi(t) ≤ xi(t)[bi(t)−ai(t)xi(t)+ci(t)
∫ 0

−τ

Ki(s)xi(t+s)ds]+
n∑

j=1

Dij(t)(xj(t)−xi(t)).

By Theorem 3.3 and Lemma 2.1, there exist positive constants N̄xi and τ̄1 such
that

0 < xi(t) ≤ N̄xi, i = 1, . . . , n,

for t ≥ τ̄1. Moreover, for t ≥ τ̄1 we have

ẏi(t) ≤ yi(t)[ei(t)N̄xi − qi(t)yi(t) + pi(t)
∫ 0

−τ

K̄i(s)yi(t+ s)ds]

+
n∑

j=1

λij(t)(yj(t)− yi(t)).
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Let (v1(t), . . . , vn(t)) be the solution of the initial-value problem

v̇i(t) = vi(t)[ei(t)N̄xi − qi(t)vi(t) + pi(t)
∫ 0

−τ

K̄i(s)vi(t+ s)ds]

+
n∑

j=1

λij(t)(vj(t)− vi(t))

vi(s) = yi(s) > 0, s ∈ [τ̄1 − τ, τ̄1], i = 1, . . . , n.

(5.4)

By Theorem 3.3 and Lemma 2.1, there exist positive constants N̄yi and τ̄2 > τ̄1
such that

0 < yi(t) ≤ N̄yi, i = 1, . . . , n,

for t ≥ τ̄2. This completes the proof. �

For the next theorem let

(H5.1) There exists i0(1 ≤ i0 ≤ n), such that Aω(θ̄1) > 0, where θ̄1(t) = bi0(t) −
fi0(t)N̄yi0 −

∑n
j=1Di0j(t)

(H5.2) Aω(φ̄1) > 0, where φ̄1(t) = min1≤i≤n{bi(t) − fi(t)N̄yi −
∑n

j=1Dij(t) +∑n
j=1Dji(t)}.

(H5.3) There exists i0(1 ≤ i0 ≤ n), such thatAω(θ̄2) > 0, where θ̄2(t) = ei0(t)ζ̄xi0−
di0(t)−

∑n
j=1 λi0j(t),

(H5.4) Aω(φ̄2) > 0, where φ̄2(t) = min1≤i≤n{ei(t)ζ̄xi − di(t) −
∑n

j=1 λij(t) +∑n
j=1 λji(t)}.

Theorem 5.2. Suppose that ai(t) > ci(t) and qi(t) > pi(t) hold.

(I) If one of the assumption (H5.1) or (H5.2) holds, then there exist ζ̄xi(0 <
ζ̄xi < N̄xi) and τ̄3 ≥ τ̄2 such that

xi(t) ≥ ζ̄xi for i = 1, 2, . . . , n, t ≥ τ̄3 (5.5)

(II) Suppose further that one of the assumption (H5.3) or (H5.4) holds. Then
there exist ζ̄yi(0 < ζ̄yi < N̄yi) and τ̄4 ≥ τ̄3 such that

yi(t) ≥ ζ̄yi for i = 1, 2, . . . , n t ≥ τ̄4 (5.6)

Proof. Suppose that condition (H5.1) or (H5.2) holds. By Theorem 5.1, there exists
τ̄2 such that

ẋi(t) ≥ xi(t)[bi(t)− fi(t)N̄yi(t)− ai(t)xi(t) + ci(t)
∫ 0

−τ

Ki(s)xi(t+ s)ds]

+
n∑

j=1

Dij(t)(xj(t)− xi(t)),

for t ≥ τ̄2. By Theorem 3.3 and Lemma 2.1, there exist ζ̄xi(0 < ζ̄xi < N̄xi) and
τ̄3 ≥ τ̄2 such that

xi(t) ≥ ζ̄xi for i = 1, 2, . . . , n, t ≥ τ̄3

provided condition (H5.1) or (H5.2) holds.
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Furthermore, suppose that (H5.3) or (H5.4) be satisfied

ẏi(t) ≥ yi(t)[−di(t) + ei(t)ζ̄xi − qi(t)yi(t) + pi(t)
∫ 0

−τ

K̄i(s)yi(t+ s)ds]

+
n∑

j=1

λij(t)(yj(t)− yi(t))

for t ≥ τ̄2. Similar to the above discussion, there exist ζ̄yi(0 < ζ̄yi < N̄yi) and
τ̄4 ≥ τ̄3 such that

yi(t) ≥ ζ̄yi for i = 1, 2, . . . , n, t ≥ τ̄4.

This completes the proof. �

6. Discussion

Zhang and Chen [28] showed that in a nonautonomous system composed of two
patches connected by random dispersal and occupied by a single species, if the
species is able to survive then it continues to do so for any dispersal rate (see [28,
Theorem 3.1]).

Different from above consideration, in section 3 of the present paper we focus on
the more interesting cases in biology that the species living in a weak environment
in the sense that species x in some of the isolated patches will be extinct without
the contribution from other patches. By the main results in this section, dispersing
species x becomes permanent in every patches depending on the choice of the
dispersal rates (see Theorem 3.3). But in [28], the authors assumed that bi(t) > 0.
We find that this condition does not hold for a weak patchy environment in the sense
that the intrinsic growth rate bi(t) may become negative on some time intervals.

By using the results obtained in section 3 and Lemma 2.1, we also considered the
effect of dispersal on the permanence of competitive and predator-prey systems.

Within the context of the mathematical models used here, the main results of
this paper imply that some endangered species can avoid extinction by choosing
suitable dispersal rates. Hence dispersal is a major factor on the determination of
the permanence or extinction of the endangered species.
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