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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO n-ORDER
FUNCTIONAL DIFFERENTIAL EQUATIONS

SESHADEV PADHI

Abstract. We establish conditions for the linear differential equation

y(n)(t) + p(t)y(g(t)) = 0

to have property A. Explicit sufficient conditions for the oscillation of the the

equation is obtained while dealing with the property A of the equations. A
comparison theorem is obtained for the oscillation of the equation with the

oscillation of a third order ordinary differential equation.

1. Introduction

This paper concerns property A of the n-th order (n ≥ 2) delay differential
equation

y(n)(t) + p(t)y(g(t)) = 0, (1.1)
under certain conditions on the coefficient function p ∈ C([σ,∞), [0,∞)), σ ∈ R,
and g ∈ C([σ,∞), R) such that g(t) ≤ t and g(t) →∞ as t →∞.

It is interesting to note that we have obtained sufficient conditions for oscillation
of all solutions of (1.1) while dealing with property A of the equation. These
sufficient conditions are easily verifiable and different from earlier ones (See [2, 5, 6,
8, 11, 12]). Moreover, these sufficient conditions are consistent with the situation
when p(t) is a constant.

A continuous function y : [g(σ),∞) → R is said to be a proper solution of
(1.1) if it is absolutely continuous on (t0,∞), t0 ≥ σ along with its derivatives
up to the (n − 1)th order and satisfies (1.1) almost everywhere on (t0,∞) and
sup{|y(s)| : s ≥ t} > 0 for t ≥ t0. A proper solution of (1.1) is called oscillatory if
it has a sequence of zeros tending to infinity. Otherwise, it is called non-oscillatory.
Equation (1.1) with g(t) = t is said to be disconjugate on [σ,∞) if no nontrivial
solution of the equation has more than (n− 1) zeros, counting muntiplicities.

A vast body of literature exist on the oscillation of (1.1). One may see the mono-
graphs due to Lakshmikantham et al [12], Gyori and Ladas [8] and the references
cited therein. Higher order differential equations with property A were studied by
Parhi and Padhi [15] and Koplatadze [11]. We shall see that our results are different
form their results. We observe that our results do not hold for the case g(t) = t
(See Theorems 2.1-2.4 and 2.25 and Corollaries 2.5 and 2.26).
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Let y(t) be a positive solution of (1.1) for t ≥ t0σ. Then there exists a t1 > t0
such that y(g(t)) > 0 for t ≥ t1. Then y(n)(t) ≤ 0 for t ≥ t1,and so by a lemma due
to Kiguradze [10], there exists an integer l, 0 ≤ l ≤ n− 1 such that n + l odd and

y(i)(t) > 0, i = 0, 1, 2, . . . , l,

(−1)i+ly(i)(t) > 0, i = l + 1, . . . , n.
(1.2)

for large t. Again, for l ∈ {1, 2, 3, . . . , n − 1}, n + l odd, the following inequality
holds for large t, say for t ≥ t2.

|y(t)| ≥ (t− t2)(n−1)

(n− 1)(n− 2) . . . (n− l)
|y(n−1)(2n−l−1t)|, t ≥ t2. (1.3)

Let N denote the set of all nonoscillatory solutions of (1.1) and Nl denote the set
of all nonoscillatory solutions of (1.1) satisfying (1.2). Then

N =

{
N0 ∪N2 ∪ · · · ∪Nn−1 if n is odd,

N1 ∪N3 ∪ · · · ∪Nn−1 if n is even.

Definition. We say that (1.1) has property A if any of its solution is oscillatory
when n is even and either is oscillatory or satisfies N0 when n is odd.

The following conjecture is given in [10, pp.29, Problem 1.14], which we state as
a problem.

Problem 1.1. Let Mn∗ = max(λ(λ− 1)(λ− 2) . . . (λ− n + 1)). If∫ ∞
tn−1

[
p(t)− Mn∗

tn
]
dt = ∞,

then (1.1) with g(t) = t has property A.

Our Theorem 2.20 gives a partial answer to the above problem for the case n = 2
and g(t) = t in (1.1).

The following lemma, due to Kiguradze [10], is needed for our use in the sequel.

Lemma 1.2. Let for a certain l ∈ {1, 2, 3, . . . , n − 1}, the inequality (1.2) hold.
Then ∫ ∞

t1

sn−l−1|y(n)(s)| ds < ∞, (1.4)

y(i)(t) ≥ y(i)(t1) +
1

(l − i− 1)!

∫ t

t1

(t− s)l−i−1y(i)(s) ds (1.5)

for t ≥ t1, i = 0, 1, 2, . . . , l − 1 and

y(l)(t) ≥ 1
(l − i− 1)!

∫ ∞

t

(s− t)n−l−1|y(n)(s)| ds (1.6)

for t ≥ t1. If in addition ∫ ∞

t1

sn−l|y(n)(s)| ds = ∞, (1.7)

then there exists t2 ≥ t1 such that

y(l−1)(t) ≥ t

(n− l)!

∫ ∞

t

sn−l−1|y(n)(s)| ds (1.8)

for t ≥ t2 and
iy(l−1) ≥ ty(l−i+1)(t) ≥ (i− 1)y(l−i)(t) (1.9)
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for t ≥ t2, i ∈ {1, 2, . . . , l}.

2. Main Results

Theorem 2.1. Let g(t) < t and for every l ∈ {1, 2, 3, . . . , n− 1} such that n + l is
odd,

lim sup
t→∞

(t− g(t))l

∫ ∞

g−1(t)

(s− t)n−l−1p(s) ds > (n− l − 1)!.l1 (2.1)

hold. Then (1.1) has property A.

Proof. Let y(t) be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that y(t) > 0 for t ≥ t0 > σ. Thus there exists a T1 ≥ t0 such that
y(g(t)) > 0 for t ≥ T1. Consequently, from (1.1), it follows that y(n)(t) ≤ 0 for
t ≥ T1. Then, there exists a l ∈ {0, 1, 2, . . . , n − 1} and n + l odd such that (1.2)
holds for some t ≥ t1 > T1. We claim that l = 0. If not, then l ∈ {1, 2, . . . , n− 1}.
Putting i = 0 in (1.5), we get

y(t) ≥ 1
(l − 1)!

∫ t

t1

(t− s)l−1y(l)(s) ds, t ≥ t1. (2.2)

We can find a t2 ≥ t1 such that g(t) > t1 for t ≥ t2. Hence, for t ≥ t2

y(t) ≥ y(l)(t)
(l − 1)!

∫ t

g(t)

(t− s)l−1 ds ≥ y(l)(t)
(l − 1)!

.
(t− g(t))l

l
;

that is,

y(t) ≥ (t− g(t))l

l!
y(l)(t). (2.3)

Using (1.6) in (2.3), we obtain

y(t) ≥ (t− g(t))l

l!
.

1
(n− l − 1)!

∫ ∞

t

(s− t)n−l−1|y(n)(s)| ds

≥ (t− g(t))l

l!
.

1
(n− l − 1)!

∫ ∞

g−1(t)

(s− t)n−l−1|y(n)(s)| ds

≥ (t− g(t))l

l!
.

1
(n− l − 1)!

∫ ∞

g−1(t)

(s− t)n−l−1p(s)y(g(s)) ds

≥ (t− g(t))l

l!
.

1
(n− l − 1)!

y(t)
∫ ∞

g−1(t)

(s− t)n−l−1p(s) ds

for t ≥ t2, which is a contradiction to the hypothesis of the theorem. Hence (1.1)
has property A. This completes the proof of the theorem. �

Theorem 2.2. Suppose that for every l ∈ {1, 2, 3, . . . , n− 1} , n + l is odd,,

lim sup
t→∞

tn−1

∫ ∞

g−1(t)

p(s) ds > (n− 1) . . . (n− l)2(n−1)(n−l), (2.4)

holds. Then (1.1) has property A.

Proof. Let y(t) be a non-oscillatory solution of (1.1). Without any loss of generality,
we may assume that y(t) > 0 for t ≥ t0 > σ. Then there exists a t1 ≥ t0 such
that y(g(t)) > 0 for t ≥ t1. Consequently, it follows from (1.1) that y(n)(t) ≤ 0 for
t ≥ t1 and (1.2) holds. If possible, suppose that (1.1) has not property A. Then
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l ∈ {1, 2, 3, . . . , n − 1}. Clearly (1.3) holds for some t ≥ t2 ≥ t1. Since y′(t) > 0,
then for t > t.2l+1−n ≥ t2, we have

y(t) ≥ y(2l+1−nt) ≥ 1
(n− 1) . . . (n− l).2(n−1)(n−l)

tn−1y(n−1)(t). (2.5)

On the other hand, integrating (1.1) from t(≥ t2) to ∞,we have

y(n−1)(t) >

∫ ∞

t

p(s)y(g(s)) ds >

∫ ∞

g−1(t)

p(s)y(g(s)) ds > y(t)
∫ ∞

g−1(t)

p(s) ds.

Then (2.5) gives

1 ≥ 1
(n− 1) . . . (n− l).2(n−1)(n−l)

tn−1

∫ ∞

g−1(t)

p(s) ds

for t ≥ t2, which contradicts (2.4). Hence (1.1) has property A. The Theorem is
proved. �

Theorem 2.3. Suppose that g(t) < t and for every l ∈ {1, 2, 3, . . . , n−1} such that
n + l is odd, the following inequality

lim sup
t→∞

∫ t

g(t)

(t−s)l−1

∫ ∞

g−1(g−1(s))

(u−s)n−l−1p(u) du ds > (l−1)!.(n− l−1)! (2.6)

holds. Then (1.1) has property A.

Proof. Let y(t) be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t0 > σ. Thus (1.2) holds for
some t ≥ t1 > t0. Suppose that l ∈ {1, 2, . . . , n− 1}. Putting i = 0 in (1.5), we get

y(t) ≥ 1
(l − 1)!

∫ t

t1

(t− s)l−1y(l)(s) ds. (2.7)

From (1.5), we obtain

y(l)(t) ≥ 1
(n− l − 1)!

∫ ∞

t

(s− t)n−l−1p(s)y(g(s)) ds. (2.8)

Then from (2.7) and (2.8), we obtain

y(t) ≥ 1
(n− l − 1)!.(l − 1)!

∫ t

t1

(t− s)l−1

∫ ∞

s

(u− s)n−l−1p(u)y(g(u)) du ds. (2.9)

We can find a t2 ≥ t1 such that g(t) > t1 for t ≥ t2. Thus, for t ≥ t2

y(t) ≥ 1
(n− l − 1)!.(l − 1)!

∫ t

g(t)

(t− s)l−1

∫ ∞

g−1(g−1(s))

(u− s)n−l−1p(u)y(g(u)) du ds

which in turn, yields

1 ≥ 1
(n− l − 1)!.(l − 1)!

∫ t

g(t)

(t− s)l−1

∫ ∞

g−1(g−1(s))

(u− s)n−l−1p(u) du ds.

Taking limit sup., we obtain a contradiction. Consequently, (1.1) has property A.
Hence the theorem is proved. �
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Theorem 2.4. Let g(t) < t and

lim sup
t→∞

∫ t

g(t)

(s− g(t))n−1p(s) ds > (n− 1)!. (2.10)

Then (1.1) has no solution satisfying the property (−1)iy(i)(t) > 0 for large t.

Proof. If possible, suppose that (1.1) has a nonoscillatory solution y(t) satisfying
the property (−1)iy(i)(t) > 0 for large t. Then l = 0 in (1.2). Suppose that
y(g(t)) > 0 and y(t) > 0 for some t ≥ t1 > σ. From Lemma 1.2 due to Kiguradze
and Chanturia [10], it follows for i = 0, that

y(t) ≥ 1
(n− 1)!

∫ ∞

t

(s− t)n−1p(s)y(g(s)) ds

≥ 1
(n− 1)!

∫ g−1(t)

t

(s− t)n−1p(s)y(g(s)) ds

≥ y(t)
(n− 1)!

∫ g−1(t)

t

(s− t)n−1p(s) ds,

that is,

(n− 1)! ≥
∫ g−1(t)

t

(s− t)n−1p(s) ds,

for some t ≥ t2 ≥ t1. Then there exists a t3 ≥ t2 such that g(t) > t2 for t ≥ t3.
Hence for t ≥ t3, we have

(n− 1)! ≥
∫ t

g(t)

(s− g(t))n−1p(s) ds.

Taking limit sup., we obtain a contradiction. Hence l 6= 0. The theorem is proved.
�

Corollary 2.5. Suppose that g(t) < t, (2.10) holds and either (2.1) or (2.4) or
(2.6)is satisfied. Then every solution of (1.1) oscillates.

Example 2.6. Consider

y′′′(t) +
30
t3

y(t/21/3) = 0, t ≥ 2. (2.11)

By Theorem 2.2, (2.11) has property A. In particular, y(t) = 1/t3 is a nonoscillatory
solution of (2.11).

Example 2.7. Consider

y′′′(t) +
82
t3

y(t/3) = 0, t ≥ 1. (2.12)

Theorem 2.1 can be applied to this example where as Theorem 2.3 fails to hold.
On the other hand, (2.10) is satisfied. Hence by Corollary 2.5, all solutions of (2.12)
are oscillatory.

Example 2.8. Inequality (2.6) to the equation

y′′′(t) +
63
t3

y(t/2) = 0, t ≥ 1. (2.13)

is satisfied, where as (2.1) fails to hold. Hence Theorem 2.3 can be applied to (2.13).
Further, since, (2.10) is satisfied, then all solutions of (2.13) are oscillatory, by
Corollary 2.5.
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Remark: Let p(t) = p > 0 be a constant and g(t) = t− τ , τ > 0 be a constant.
Then (1.1) becomes

y(n)(t) + py(t− τ) = 0. (2.14)
Clearly, the conditions of (2.1),(2.4) and (2.6) are consistent with p(t) = p and
g(t) = t− τ . Hence form Corollary 2.5, it follows that, if

pτn > n!, (2.15)

then (2.14) is oscillatory.
The characteristic equation associated with (2.14) is given by

λn + pe−τλ = 0. (2.16)

Setting F (λ) = λn + pe−τλ, we see that F (λ) > 0 for λ ≥ 0. Suppose that λ < 0.
We claim that F (λ) > 0 for λ < 0. If possible suppose that F (λ) ≤ 0 for λ < 0.
Then λn ≤ −pe−τλ. Then λnτn ≤ −n!.e−τλ. If n is even, then λnτn ≤ 0, a
contradiction. Hence n must be odd. Let λ = −γ, γ > 0. Then γnτn ≥ n!.eτγ .
Setting τγ = β, we see that βn ≥ n!.eβ , a contradiction. Hence our claim holds,
that is, F (λ) > 0 for λ < 0. Thus (2.15) implies that all solutions of (2.14) are
oscillatory.

Remark: Although the conditions in Theorems 2.1 and 2.1 are legitimate, these
are not efficient. When g(t) is close to t, the conditions (2.1) and (2.6) fails to hold.
This is evident from the following examples : If we replace g(t) = t

3 in (2.12) by
g(t) = 3t

4 , then the equation becomes

y′′′(t) +
82
t3

y(
3t

4
) = 0, t ≥ 1. (2.17)

Condition (2.1) fails to hold and hence Theorem 2.1 cannot be applied to (2.17).
Similarly,consider the equation

y′′′(t) +
46
t3

y(
t

2
) = 0, t ≥ 1. (2.18)

Theorem 2.3 can be applied to this example. On the other hand, if g(t) = t
2 in

(2.18) is replaced by g(t) = 10t
11 , then (2.18) becomes

y′′′(t) +
46
t3

y(
10t

11
) = 0, t ≥ 1, (2.19)

then(2.6) fails and hence Theorem 2.3 cannot be applied. The following theorems
provides sufficient conditions for (1.1) to have property A when g(t) is close to t.

Theorem 2.9. Assume that g(t) < t and t − g(t) → ∞ as t → ∞.If, for every
l ∈ {1, 2, . . . , n− 1} such that n + l is odd,

lim sup
t→∞

(g(t))l

∫ ∞

g−1(t)

(s− t)n−l−1p(s) ds > (n− l − 1)!.l! (2.20)

holds, then (1.1) has property A.

Proof. We can find a t2 > t1 such that t − g(t) > t1 for t ≥ t2. Hence for t ≥ t2,
(2.2) gives

y(t) ≥ y(l)(t)
(l − 1)!

∫ t

t−g(t)

(t− s)l−1 ds ≥ gl(t)
l!

y(l)(t).

using (1.6)in the above inequality, we obtain a contradiction. The proof is complete.
�
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Corollary 2.10. Suppose that the conditions of Theorems 2.4 and 2.9 are satisfied.
then all solutions of (1.1) oscillates.

Example 2.11. By Theorem 2.9, (2.17) has property A.

Theorem 2.12. Let g(t) < t and t − g(t) → ∞ as t → ∞.If for every l ∈
{1, 2, . . . , n− 1} with n + l odd,

lim sup
t→∞

∫ t

t−g(t)

(t− s)l−1

∫ ∞

g−1(g−1(s))

(u− s)n−l−1p(u) du ds > (l − 1)!.(n− l − 1)!

(2.21)
holds, then (1.1) has property A.

Proof. Proceeding as in the proof of Theorem 2.3, we arrive at (2.9) for t ≥ t1.
Then we can find a t2 ≥ t1 such that t− g(t) > t1 for t ≥ t2. Hence from (2.9), we
obtain

y(t) ≥ 1
(n− l − 1)!.(l − 1)!

∫ t

t−g(t)

(t−s)l−1

∫ ∞

g−1(g−1(s))

(u−s)n−l−1p(u)y(g(u)) du ds

which further yields

1 ≥ 1
(n− l − 1)!.(l − 1)!

∫ t

t−g(t)

(t− s)l−1

∫ ∞

g−1(g−1(s))

(u− s)n−l−1p(u) du ds.

Taking limit sup. both sides in the above inequality, we obtain a contradiction.
This completes the proof of the theorem. �

Corollary 2.13. Suppose that the conditions of Theorem 2.4 and 2.12 are satisfied.
Then all solutions of (1.1) are oscillatory.

Example 2.14. By Theorem 2.12, (2.19) has property A.

Let y(t) be a nonoscillatory solution of (1.1) such that (2.2) holds for t ≥ t1.
Then for t > t2 ≥ 2t1, (2.2) gives

y(t) ≥ 1
(l − 1)!

∫ t

t/2

(t− s)l−1y(l)(s) ds, t ≥ t1.

Using (1.6) and the above inequality, we obtain the following theorem.

Theorem 2.15. Let g(t) ≤ t. If for every l ∈ {1, 2, . . . , n − 1} such that n + l is
odd,

lim sup
t→∞

tl
∫ ∞

g−1(t)

(s− t)n−l−1p(s) ds > (n− l − 1)!.l!.2l

holds, then (1.1) has property A.

Theorem 2.16. Let g(t) ≤ t and for every l ∈ {1, 2, . . . , n− 1} such that n + l is
odd,

lim sup
t→∞

∫ t

t/2

(t−s)l−1

∫ ∞

g−1(g−1(s))

(u−s)n−l−1p(u) du ds > (l−1)!.(n− l−1)! (2.22)

holds, then (1.1) has property A.

Proof. Proceeding as in the proof of Theorem 2.3, we obtain (2.9). Then for t ≥
t2 > 2t1, (2.9) yields a contradiction. This completes the proof of the theorem. �
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We note that when g(t) = t/2, then Theorem 2.3, 2.12 and 2.16 give same
sufficient conditions to have property A of (1.1).

Corollary 2.17. Suppose that the conditions of Theorem 2.4 are satisfied. If either
of the conditions of Theorem 2.15 or 2.16 hold, then all solutions of (1.1) are
oscillatory.

Example 2.18. Consider

y′′′(t) +
44
t3

y(
3t

5
) = 0, t ≥ 1.

Theorem 2.1 and Theorem 2.9 can be applied to this example, whereas Theorem
2.15 cannot be applied to this example.

Example 2.19. Consider

y′′′(t) +
160
t3

y(
t

3
) = 0, t ≥ 1.

By Theorem 2.15 this equation has property A, whereas Theorem 2.9 fails.

Theorem 2.20. Let g′(t) > 0. If for every l ∈ {1, 2, 3, . . . , n − 1} such that n + l
is odd, ∫ ∞

Hl(t) dt = ∞, (2.23)

then then for n even every solution of (1.1) oscillates and for n odd every solution
of (1.1) is either oscillates or tend to zero as t →∞,in particular, (1.1) has property
A, where

Hn−1(t) = tn−1p(t)− (n− 1)!.(n− 1)2n−4tn−3

g′(t)gn−2(t)
(2.24)

and

Hl(t) =
tl

(n− l − 2)!

∫ ∞

t

(s− t)n−l−2p(s) ds− l!.l.2l−3tl−2

g′(t)gl−1(t)
, (2.25)

for l = 1, 2, 3, . . . , n− 2.

Remark: Let g(t) = t and n = 2. From Theorem 2.20, it follows that, if∫ ∞
[tp(t)− 1

4t
] dt = ∞, (2.26)

then
y′′ + p(t)y = 0 (2.27)

is oscillatory. This gives a partial answer to Problem 1.1. Further, our result
improves the results due to Kneser [16, pp.45] and Hille and Kneser [16, Theorem
2.41]. We note that Theorem 2.20 holds for (1.1) with g(t) = t for n = 2 and
n = 3. however, the theorem cannot be applied to higher order ordinary differential
equations, viz., (1.1) with g(t) = t and n ≥ 4, because of the conditions (2.23) and
(2.25). Now, suppose that n = 3 and g(t) = t. then Theorem 2.20 yields that, if∫ ∞

[t2p(t)− 2
t
] dt = ∞,

then
y′′′ + p(t)y = 0 (2.28)
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has property A. On the other hand, from Hanan [9, Theorem 5.7], and Kiguradze
and Chanturia [10, Theorem 1.1], it follows that (2.28) has property A if∫ ∞

[t2p(t)− 2
3
√

3t
] dt = ∞. (2.29)

hence Theorem 2.20 is yet to be improved.

Proof of Theorem 2.20. If possible, suppose that (1.1) dose not have property A.
Then (1.1) admits a nonoscillatory solution y(t) such that y ∈ Nl where l ∈
{1, 2, 3, . . . , n − 1}. We may assume, without any loss of generality, that y(t) > 0
and y(g(t)) > 0 for t ≥ t1 > σ. Clearly, (1.2) holds, where l ∈ {0, 1, 2, 3, . . . , n− 1}
and n + l odd.

Let l = n− 1. Set z(t) = tn−1y(n−1)(t)
y(g(t)) . Then

z′(t) = −tn−1p(t) +
n− 1

t
z(t)− g′(t)

y′(g(t))
y(g(t))

z(t). (2.30)

Putting i = 1, l = n− 1 in (1.5), we obtain, for t ≥ t1

y′(t) ≥ 1
(n− 2)!

(t− t1)n−2y(n−1)(t).

Hence for t ≥ 2t1, we get

y′(t) ≥ tn−2

(n− 2)!.2n−2
y(n−1)(t).

Thus, for t ≥ t2 > 2t1,

y′(g(t)) ≥ (g(t))n−2

(n− 2)!.2n−2
y(n−1)(t)

Using the above inequality, (2.30) yields

z′(t) ≤ −Fn−1(t), (2.31)

where

Fn−1(t) = tn−1p(t)− n− 1
t

z(t) +
g′(t)(g(t))n−2

(n− 2)!2n−2tn−1
z2(t),

which as a function of z, attains the minimum Hn−1(t) given in (2.24). Now, the
integration of (2.31) from t2 to t yields z(t) < 0 for large t, a contradiction. Next,
suppose that l ∈ {1, 2, 3, . . . , n − 2}. Setting z1(t) = tly(l)(t)

y(g(t)) , t ≥ t1, we see that
z1(t) > 0 for t ≥ t1 and

z′1(t) =
tly(l+1)(t)
y(g(t))

+
l

t
z1(t)− g′(t)

y′(g(t))
y(g(t))

z1(t). (2.32)

Putting i = 1 in (1.5), we get

y′(t) ≥ 1
(l − 1)!

(t− t1)l−1y(l)(t).

Thus, for t ≥ t2 ≥ 2t1,

y′(t) ≥ 1
(l − 1)!.2l−1

tl−1.y(l)(t).
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We can find a t3 > t2 such that g(t) > t2 for t ≥ t3. Hence

y′(g(t)) ≥ 1
(l − 1)!.2l−1

(g(t))l−1y(l)(g(t)) >
1

(l − 1)!.2l−1
(g(t))l−1y(l)(t) (2.33)

for t ≥ t3. Putting i = l + 1, k = n and s > t ≥ t3 in the inequality

y(i)(t) =
k−1∑
j=i

(t− s)j−i

(j − i)!
y(j)(s) +

1
(k − i− 1)!

∫ t

s

(t− u)k−i−1y(k)(u) du, (2.34)

and letting s →∞, we obtain

y(l+1)(t) ≤ − y(g(t))
(n− l − 2)!

∫ ∞

t

(s− t)n−l−2p(s) ds. (2.35)

Making the use of (2.33) and (2.35) in (2.32), we have

z′1(t) ≤ −Fl(t), (2.36)

where

Fl(t) =
g′(t).gl−1(t)

(l − 1)!.2l−1.tl
z2
1(t)− l

t
z1(t) +

tl

(n− l − 2)!

∫ ∞

t

(s− t)n−l−2p(s) ds,

which as a function of z1, attains the minimum Hl(t) given in (2.25). In view of
the conditions (2.23) and (2.25), integration of (2.36) yields a contradiction. Hence
(1.1) has property A, that is l = 0 for t ≥ t2 ≥ t1.. Thus the theorem is proved
when n is even. Now l = 0 implies that n is odd. Our theorem will be proved if we
can show that y(t) → 0 as t →∞. Since l = 0 then lim y(t) = λ, 0 ≤ λ < ∞ exists.
We claim that λ = 0. If not, them for 0 < ε < λ, there exists a t3 ≥ t2 such that
y(g(t)) > λ − ε for t ≥ t3. Now putting i = 0, k = n and s > t = t3 and letting
s →∞ in (2.34), we obtain

y(t3) > (λ− ε)
∫ ∞

t3

(u− t3)n−1p(u) du

which further gives ∫ ∞

t3

(u− t3)n−1p(u) du < ∞. (2.37)

On the other hand, the condition (2.23) with l = n−1 yields that
∫∞

t3
tn−1p(t) dt =

∞ which contradicts to (2.37). Hence λ = 0. This completes the proof of the
theorem. �

Example 2.21. Consider

y′′′(t) +
24(t− 1)2

t5
y(t− 1) = 0, t ≥ 2. (2.38)

All the conditions of Theorem 2.20 are satisfied. Hence (2.38) has property A. In
particular, y(t) = 1/t2 is a nonoscillatory solution of (2.38).

Corollary 2.22. Suppose that the conditions of Theorems 2.4 and 2.20 are satis-
fied. Then all solutions of (1.1) are oscillatory.
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Now, we consider the following ordinary differential equations associated with
the delay differential equations (2.11), (2.12), (2.13), and (2.38).

y′′′ +
30
t3

y = 0, t ≥ 2. (2.39)

y′′′ +
82
t3

y = 0, t ≥ 1. (2.40)

y′′′ +
63
t3

y = 0, t ≥ 1. (2.41)

y′′′ +
24(t− 1)2

t3
y = 0, t ≥ 2. (2.42)

From Hanan [9, Theorem 5.7], it follows that (2.39)-(2.42) are oscillatory. We note
that a third order ordinary differential equation is said to be oscillatory if it has
an oscillatory solution ; otherwise,it is called nonoscillatory. However, all solutions
of (2.39)-(2.42)are not oscillatory. This is because, (2.39)-(2.42) are of Class I or
CI and hence admits a nonoscillatory solution (see Lemma 2.2 and Theorem 3.1 in
[14]). We may note that Eq.(2.28) is said to be of Class I or CI if any of its solution
y(t) for which y(t0) = y′(t0) = 0 and y′′(t0) > 0, (σ < t0 < ∞) satisfies y(t) > 0 for
t ∈ [σ, t0). It seems that the presence of delay in (2.12) and (2.13) is responsible
for the change in the qualitative behaviour of solutions of the equations. It is easy
to construct an example of a third order delay differential equation all solutions of
which are oscillatory but it is not difficult to construct such an example of a third
order ordinary differential equation. It is evident from the following examples due
to Dolan [3] and Parhi and the author [13] respectively.

Example 2.23. Dolan [3]] All solutions of

{[z′ − r′(t)
r(t)

z] + r(t)z}′ = 0

are oscillatory, where r(t) = [1 +
√

2ε sin(t + π
4 )]−1 > 0, t ≥ 0, 0 < ε < 1√

2
.

To the best of the authors knowledge, the following is the only explicit example
of which all solutions are oscillatory.

Example 2.24 (Parhi and Padhi [13]). All solutions of

y′′′ − y′′ +
( 1
1.0000004

+
1
t

)
y′ − k

t2
y = 0, t ≥ 2

are oscillatory, where k is a constant.

Theorem 2.25. Let n ≥ 3. Suppose that for any µ ∈ (0, 1/2), each of the the third
order ordinary differential equation

u′′′ + Gl(t)u = 0, i ∈ {1, 2, . . . , n− 1}, n + l odd (2.43)

admits an oscillatory solution, where

Gn−1(t) =
µ

(n− 3)!
(g(t)− g(g(t)))n−3

(g(t)
t

)2
p(t) (2.44)

and

Gl(t) =
µ

(n− l − 2)!.(l − 1)!

( ∫ g−1(t)

t

(s− t)n−l−2p(s) ds
)

×
(
g(t)− g(g(t))

)l−2(g(g(t))
t

)2

(2.45)
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for l ∈ {1, 2, 3, . . . , n− 2}. Then (1.1) has property A.

Proof. If (1.1) has not property A, then it admits a non-oscillatory solution y(t)
such that (1.2) is satisfied for l ∈ {1, 2, 3, . . . , n− 1}. We may assume, without any
loss of generality, that y(t) > 0 and y(g(t)) > 0 for some t ≥ t1 > t0 > σ. Let
l = n − 1. Setting x(t) = y(n−3)(t), we see that x(t) > 0, x′(t) > 0, x′′(t) > 0 and
x′′′(t) < 0 for t ≥ t2 ≥ t1. For any µ ∈ (0, 1/2), there exists a T µ ≥> t2 such that

x(g(t))
x(t)

≥ µ
(g(t)

t

)2 (2.46)

for t ≥ Tµ (See Theorem 2.2 in [5]). Setting z(t) = x′(t)/x(t) for t ≥ Tµ, we get

z′(t) =
x′′(t)
x(t)

− z2(t). (2.47)

Further, assuming u(t) = exp
( ∫ t

Tµ
z(s) ds

)
and using (2.46), (2.47) and the in-

equality

y(t) ≥ y(n−3)(t)
(n− 3)!

(t− g(t))n−3,

we obtain

u′′′(t) +
µ

(n− 3)!
(g(t)− g(g(t)))n−3

(g(t)
t

)2
p(t)u(t) ≤ 0

for t ≥ Tµ. From Lemma 4 in [7], it follows that (2.43) with l = n−1 is disconjugate
on [Tµ,∞), a contradiction.

Next let l ∈ {1, 2, 3, . . . , n− 2}. Putting i = l + 1, k = n and s = g−1(t) > t1 in
(2.34), we get

y(l+1)(t) +
1

(n− l − 2)!

( ∫ g−1(t)

t

(s− t)n−l−2p(s) ds
)
y(g(t)) ≤ 0.

for t ≥ T ≥ t1, which further gives, for t ≥ T

y(l+1)(t) +
1

(n− l − 2)!.(l − 1)!

( ∫ g−1(t)

t

(s− t)n−l−2p(s) ds
)

×(g(t)− g(g(t)))l−2y(l−2)(w(t)) ≤ 0

(2.48)

where g(g(t)) = w(t). Let x1(t) = y(l−2)(t). Then x1(t) > 0, x′1(t) > 0, x′′1(t) > 0
and x′′′1 (t) < 0 for t ≥ T and hence we can find a t ≥ Tµ > T such that

x1(w(t))
x1(t)

≥ µ
(w(t)

t

)2;

that is,
y(l−2)(w(t))

y(l−2)(t)
≥ µ

(w(t)
t

)2
, (2.49)

for t ≥ Tµ′ . Then z′1(t) = x′′1 (t)
x1(t)

− z2
1(t). Further, setting v(t) = e

„R t
T

µ′
z1(s) ds

«
and

using (2.49),(2.48) gives

v′′′(t) +
µ

(n− l − 2)!.(l − 1)!

( ∫ g−1(t)

t

(s− t)n−l−2p(s) ds
)

×(g(t)− g(g(t)))l−2
(w(t)

t

)2
v(t) ≤ 0
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for t ≥ Tµ′ .This in turn implies that (2.43) is disconjugate, by in [7, Lemma 4 ], a
contradiction to the hypothesis of the theorem for the case l ∈ {1, 2, 3, . . . , n− 2}.
Hence (1.1) has property A. This completes the proof of the theorem. �

Corollary 2.26. Suppose that g(t) < t, n ≥ 3. If all the conditions of Theorems
2.4 and 2.25 are satisfied, then all solutions of (1.1) are oscillatory.

Example 2.27. Consider

y′′′(t) + e−1y(t− 1) = 0, t ≥ 2. (2.50)

As lim inft→∞ µe−1t(t− 1)2 > 2
3
√

3
, then, for every µ ∈ (0, 1/2), the equation

u′′′ + µe−1
( t− 1

t

)2
u = 0, t ≥ 2

admits an oscillatory solution by Theorem 5.7 of [9]. from Theorem 2.25, it follows
that (2.50) has property A. In particular, y(t) = e−t is a solution of (2.50) for t ≥ 2.

Remark: Consider Equations (2.12) and (2.13). For 0 < µ <
√

3
82 , it follows that

limt→∞ t3µ 82
9t3 < 2√

3
and hence u′′′ + µ 82

9t3 u = 0 is nonoscillatory, by [9, Theorem
5.7]. Similarly, for 0 < µ < 4

189
√

3
, the equation u′′′ + µ 63

4t3 u = 0is nonoscillatory.
Hence Corollary 2.26 cannot be applied to (2.12) and (2.13).
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