Electronic Journal of Differential Equations, Vol. 2005(2005), No. 68, pp. 1-24. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

AN EQUATION FOR THE LIMIT STATE OF A SUPERCONDUCTOR WITH PINNING SITES

JIANZHONG SUN

Abstract

We study the limit state of the inhomogeneous Ginzburg-Landau model as the Ginzburg-Landau parameter $\kappa=1 / \epsilon \rightarrow \infty$, and derive an equation to describe the limit state. We analyze the properties of solutions of the limit equation, and investigate the convergence of (local) minimizers of the Ginzburg-Landau energy with large κ. Our results verify the pinning effect of an inhomogeneous superconductor with large κ.

1. Introduction

Since the presence of vortices is inevitable for high temperature superconductors in high magnetic fields, it is desirable to pin the vortices to some specific locations, so that the supercurrent pattern around the vortices will be stable under the influence of the applied magnetic field and thermal fluctuation, which are important in applications (see [15, 18, 13]). One of the pinning mechanisms is to add normal impurities to the superconductors to attract the vortices, however, this procedure destroys the homogeneity of the superconductors, introduces an inhomogeneous structure inside the superconductor. The analysis of the behavior of inhomogeneous superconductors provides a good help for the understanding of such pinning mechanism.

Inhomogeneous models of superconductor under Ginzburg-Landau frame work have been discussed in both physics and mathematical literatures (see [2, 4, 11, 12, [17] etc.). We consider a Ginzburg-Landau system describing an inhomogeneous superconducting material used in [4, through the study of the limit case of such system, we derive an equation to describe the limit system, which is useful to understand the pinning effect. The following is the energy of the inhomogeneous superconductor with the parameter ϵ :

$$
\begin{equation*}
J_{\epsilon}(\psi, A)=\int_{\Omega}\left(|(\nabla-i A) \psi|^{2}+\frac{1}{2 \epsilon^{2}}\left(a-|\psi|^{2}\right)^{2}+\left|\operatorname{curl} A-H_{e}\right|^{2}\right) d x \tag{1.1}
\end{equation*}
$$

where the parameter $\epsilon=1 / \kappa$ is a nonnegative number, and κ is the GinzburgLandau parameter of the superconductor material; $\Omega \subset \mathbb{R}^{2}$ is a bounded simply connected domain with a smooth $\left(C^{2, \beta}\right)$ boundary, represents the cross-section of an infinite cylindrical body with $\mathbf{e}_{\mathbf{3}}$ as its generator; $H_{e}=h_{e} \mathbf{e}_{\mathbf{3}}$ is the applied magnetic

[^0]field with h_{e} being a constant; $A \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ is the magnetic potential and curl $A=$ $\nabla \times\left(A_{1}, A_{2}, 0\right)$ is the induced magnetic field in the cylinder; $\psi \in H^{1}(\Omega ; \mathbb{C})$ is complex-valued, with $|\psi|^{2}=\psi^{*} \psi$ represents the density of superconducting electron pairs and $j=\frac{i}{2}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-|\psi|^{2} A$ denotes the superconducting current density circulating in $\Omega ; a: \Omega \rightarrow[0,1]$ is a bounded continuous function, describing the inhomogeneities of the material, the zero set of $a(x)$ corresponds to normal regions in the material.

In order to analyze the limit problem as $\epsilon \rightarrow 0$, we define the energy

$$
\begin{equation*}
J_{0}(\psi, A)=\int_{\Omega}|(\nabla-i A) \psi|^{2}+\left|\operatorname{curl} A-H_{e}\right|^{2} d x \tag{1.2}
\end{equation*}
$$

where $(\psi, A) \in H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right), a(x)$ is the same as in 1.1,

$$
\begin{equation*}
H_{a}^{1} \equiv\left\{\psi \in H^{1}(\Omega ; \mathbb{C}) \text { such that }|\psi|^{2}=a \text { almost everywhere }\right\} \tag{1.3}
\end{equation*}
$$

In Lemma 2.1. we show that for each $u \in H_{a}^{1}$, there is a unique well-defined degree $D \equiv\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$ around $\bar{\Omega}_{H}$, denote the homotopy class in H_{a}^{1} corresponding to D as $H_{a, D}^{1}$, then

$$
H_{a}^{1}=\bigcup_{D \in \mathbb{Z}^{n}} H_{a, D}^{1}
$$

Since $H_{a, D}^{1}$ is a nonempty open and (sequentially weakly) closed subspace of H_{a}^{1} (Theorem 2.3), we can find the minimizer of J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$, and call it the local minimizer of J_{0} in $H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$.

In 4 Andre, Bauman and Phillips have considered the case $a(x)$ vanishes at a finite number of points $\left\{x_{1}, \ldots, x_{n}\right\}$, and showed that for sufficiently large $\kappa=1 / \epsilon$ the local minimizers of J_{ϵ} in (1.1) have nontrivial vortex structures, which are pinned near the zero points of $a(x)$ with any prescribed vortex pattern. In this paper we consider the case where $a(x)$ vanishes in subdomains (holes), which is more realistic in the presence of normal inclusions.

Our situation is different from the cases studied in [19] or [20], where they have considered the energy J_{ϵ} with $a \equiv 1$ in a multiply connected domain without applied magnetic field, they have shown the existence of the local minimizers of J_{ϵ} with prescribed vortex structures within certain homotopy class. In a recent paper [3] by Alama and Bronsard, they studied the energy J_{ϵ} with $a \equiv 1$ in a multiply connected domain with applied magnetic field, and achieved deeply results related to the pinning phenomena. They proved the interior vortex will not be shown until the applied magnetic field exceeds $H_{c_{1}}$ of order $|\ln \epsilon|$, when the applied magnetic filed exceeds $H_{c_{1}}$, the vortices are nucleated strictly inside the multiply connected domain. Their techniques and results are similar to those from [1], [2, 4], 21] and 22.

We analyze the limit state through the investigation of the structure of local minimizers of J_{0}, and derive an equation to describe the limit state. Our methods and results are similar to those of [4]. While, we concentrate more on the analysis of the properties of the solutions of the limit equation, especially various nontrivial properties of the base functions of the solutions, which is a consequence of the setting of $a(x)$.

In detail, $a(x)$ satisfies the following conditions:
$a \in C^{1}\left(\bar{\Omega} \backslash \Omega_{H}\right), \sqrt{a} \in H^{1}(\Omega), a(x) \geq 0$ for all x in $\bar{\Omega}$, and $a(x)=0$ iff $x \in \bar{\Omega}_{H} \subset \Omega$, where $\Omega_{H}=\cup_{j=1}^{n} \Omega_{j}$ corresponds to the inhomogeneities of the superconductor,
$n \in \mathbb{N}$, and $\Omega_{j}, j=1, \ldots, n$, are simply connected Lipschitz subdomains with $\bar{\Omega}_{j} \subset \Omega$. There also exists a constant $0<r_{1}<1$ such that

$$
\operatorname{dist}\left\{\Omega_{i}, \Omega_{j}\right\}>r_{1}, i \neq j, 1 \leq i, j \leq n, \text { and } \operatorname{dist}\left\{\Omega_{H}, \partial \Omega\right\}>r_{1}
$$

In addition, for $x \in \Omega \backslash \bar{\Omega}_{j}$, with $d_{j}(x)=\operatorname{dist}\left\{x, \Omega_{j}\right\}<r_{1}$, there are positive constants C_{0}, C_{1}, α_{j}, such that

$$
\begin{equation*}
C_{0} d_{j}^{\alpha_{j}}(x) \leq a(x) \leq C_{1} d_{j}^{\alpha_{j}}(x), \quad\left|d_{j}(x) \frac{\nabla a(x)}{a(x)}\right| \leq C_{1} \quad j=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

Choose one $x_{j} \in \Omega_{j}$, and fix it, for any $x \in \Omega \backslash \Omega_{j}$, write

$$
\begin{equation*}
\mathbf{n}_{j}(x)=\frac{x-x_{j}}{\left|x-x_{j}\right|}, \tag{1.5}
\end{equation*}
$$

then $\mathbf{n}_{j} \in C^{\infty}\left(\Omega \backslash \Omega_{j}, \mathbb{R}^{2}\right)$ with $\left|\mathbf{n}_{j}\right|=1$. Moreover, we can rewrite $\mathbf{n}_{j}(x)$ in term of its azimuthal angle $\theta_{j}(x)$, so that

$$
\begin{equation*}
\mathbf{n}_{j}(x)=\left(\cos \theta_{j}(x), \sin \theta_{j}(x)\right), 1 \leq j \leq n \tag{1.6}
\end{equation*}
$$

Note that $e^{i \theta_{j}(x)}$ and $\nabla \theta_{j}(x)$ are single-valued with $e^{i \theta_{j}(x)} \in H^{1}\left(\Omega \backslash \bar{\Omega}_{j}, \mathbb{C}\right)$.
Set

$$
\mathcal{M} \equiv H^{1}(\Omega ; \mathbb{C}) \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right), \quad \mathcal{M}_{0} \equiv H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)
$$

then \mathcal{M} and \mathcal{M}_{0} are the domains of the functional J_{ϵ} and J_{0} respectively.
If $(\psi, A) \in \mathcal{M}\left(\mathcal{M}_{0}\right)$ and $\phi \in H^{2}(\Omega)$, the gauge transformation of (ψ, A) under ϕ is defined by

$$
\begin{equation*}
\left(\psi^{\prime}, A^{\prime}\right)=G_{\phi}(\psi, A) \equiv\left(\psi e^{i \phi}, A+\nabla \phi\right) \in \mathcal{M}\left(\mathcal{M}_{0}\right) \tag{1.7}
\end{equation*}
$$

($\psi^{\prime}, A^{\prime}$) is gauge equivalent to (ψ, A) whenever 1.7) has been satisfied for some $\phi \in H^{2}(\Omega)$. As is well-known that $J_{\epsilon}, \epsilon \geq 0$, are gauge invariant, i.e. $J_{\epsilon}(\psi, A)=$ $J_{\epsilon}\left(\psi^{\prime}, A^{\prime}\right)$. Hence if (ψ, A) is a (local) minimizer of J_{ϵ} in \mathcal{M}_{0}, so is $\left(\psi^{\prime}, A^{\prime}\right)$.

In this paper, we fix a gauge by requiring that A satisfy

$$
\begin{gather*}
\operatorname{div} A=0 \\
A \cdot \mathbf{n}=0 \tag{1.8}
\end{gather*} \quad \text { in } \Omega,
$$

This can be done by choosing a gauge ϕ such that

$$
\begin{array}{cc}
\triangle \phi=-\operatorname{div} A & \text { in } \Omega \\
\frac{\partial \phi}{\partial \mathbf{n}}=-A \cdot \mathbf{n} & \text { on } \partial \Omega \tag{1.9}
\end{array}
$$

Apply (1.7) to (ψ, A), we get $\left(\psi^{\prime}, A^{\prime}\right)=G_{\phi}(\psi, A)$ satisfies (1.8).
Since $J_{\epsilon}(\sqrt{a}, 0)=J_{0}(\sqrt{a}, 0)=\int_{\Omega}|\nabla \sqrt{a}|+h_{e}^{2}|\Omega|<\infty$, it makes sense to talk about the minimizers and local minimizers of J_{0} and J_{ϵ} in \mathcal{M}_{0} and \mathcal{M} respectively. In Section II, we derive a few preliminary results. In Section 3, we analyze the local minimizers of J_{0} in \mathcal{M}_{0}, and establish the following equation to describe them.

Theorem 1.1 (see Theorem 3.3). Fix h_{e}. Let $\left(\psi_{D}, A_{D}\right)$ be a minimizer of J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge (1.8), define h_{D} by curl $A_{D}=h_{D} \mathbf{e}_{\mathbf{3}}$, then $h_{D} \in V$ is the unique solution of

$$
\begin{gather*}
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla h \cdot \nabla f d x+\int_{\Omega} h f d x=\sum_{j=1}^{n} 2 \pi d_{j} f_{j}, \tag{1.10}\\
\forall f(x) \in V \cap H_{0}^{1}(\Omega), \quad \text { and } \quad h-h_{e} \in V \cap H_{0}^{1}(\Omega),
\end{gather*}
$$

where the space

$$
\begin{align*}
V \equiv\left\{f \in H^{1}(\Omega)\right. & |f|_{\Omega_{j}}=f_{j}=\text { constant }, 1 \leq j \leq n, \\
& \left.\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}(x)|\nabla f(x)|^{2} d x<\infty\right\} \tag{1.11}
\end{align*}
$$

and f_{j} is the constant for f on $\Omega_{j}, j=1,2, \ldots, n$.
Note that V is nontrivial, since $a \in V$ by $\sqrt{a} \in H^{1}(\Omega)$. We further reveal the relation between the local minimizers and critical points of J_{0} in \mathcal{M}_{0}, namely critical points are the same as local minimizers, as below.
Theorem 1.2 (see Theorem 3.5). Fix h_{e}. For each $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, J_{0} has a unique minimizer in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right) \subset H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ in sense of gauge equivalence; moreover for any two such minimizers, say (ψ, A) and $\left(\psi^{\prime}, A^{\prime}\right)$, under gauge (1.8), then $A=A^{\prime}$ and $\psi=\psi^{\prime} e^{i c}$ for some $c \in \mathbb{R}$.

Combine Theorem 1.1 and Theorem 1.2 , we can see there is a one to one relation between the solutions of 1.10 and the gauge equivalent minimizers of J_{0} in \mathcal{M}_{0}.

In Section IV, we study the properties of solutions of (1.10), where we show its solution can be represented by a linear combination of $n+1$ independent functions in $C(\bar{\Omega}) \cap V$ (see Theorem 4.1), we derive more detailed properties of the independent functions. Under a slightly stronger assumption on $a(x)$, we also achieve higher regularity of the solution.

In Section V, we discuss the motivation of our analysis of the limit problem. We show (see Theorem 5.2 the minimizers of J_{ϵ} converge to the minimizer of J_{0} in \mathcal{M}. Moreover, for ϵ sufficiently small, all vortices of minimizers of J_{ϵ} are pinned near $\bar{\Omega}_{H}$, the zero set of $a(x)$. Since the zero set of $a(x)$ corresponds to the normal regions, the result confirms the effectiveness of the pinning mechanism by adding normal impurities to a superconductor to attract vortices.

Consider the local minimizers of J_{ϵ} in the neighborhood of a local minimizer of J_{0}, similar to the above result, we have the following theorem.

Theorem 1.3. Fix h_{e} and $D \in \mathbb{Z}^{n}$. Let $\left(\psi_{D}, A_{D}\right)$ be a minimizer for J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge 1.8$)$. Choose $r>0$ such that $\mathcal{B}_{r} \cap \mathcal{M}_{0}=\mathcal{B}_{r} \cap$ $\left[H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)\right]$. Then for all $\epsilon>0$ sufficiently small, $\mathcal{B}_{r}\left(\psi_{D}, A_{D}\right)$ contains a local minimizer, $\left(\psi_{\epsilon}, A_{\epsilon}\right)$, of J_{ϵ} in \mathcal{M}, such that, $\left|\psi_{\epsilon}\right| \rightarrow \sqrt{a}$ in $C(\bar{\Omega})$, and $\left(\psi_{\epsilon}, A_{\epsilon}\right) \rightarrow$ $\left(\psi_{D}, A_{D}\right)$ in \mathcal{M} as $\epsilon \rightarrow 0$. In addition, for each $0<\sigma<r_{1}$ and all ϵ sufficiently small, $\left|\psi_{\epsilon}\right|$ is uniformly positive outside $\bigcup_{j=1}^{n} \bar{\Omega}_{j}^{\sigma}$ and the degree of ψ_{ϵ} around $\overline{\Omega_{j}^{\sigma}}$ is $d_{j}, j=1,2, \ldots, n$.

Where $\mathcal{B}_{r} \equiv \mathcal{B}_{r}\left(\psi_{D}, A_{D}\right)=\left\{(\psi, A) \in \mathcal{M} \mid\left\|(\psi, A)-\left(\psi_{D}, A_{D}\right)\right\|_{H^{1}(\Omega)} \leq r\right\}$.

2. Preliminaries

In this section, we describe some properties of two Sobolev spaces to be used for our later analysis. Section 2.1 is about the properties of H_{a}^{1} defined in 1.3), Section 2.2 is about the properties of the weighted Sobolev space V in 1.11 , where we generalize the space ideas from [4].
2.1. Space H_{a}^{1}. Recall that we have defined

$$
H_{a}^{1} \equiv\left\{\psi \in H^{1}(\Omega ; \mathbb{C}), \text { such that }|\psi|^{2}=a \text { almost everywhere }\right\}
$$

By the assumption on $a(x), \sqrt{a} \in H_{a}^{1}, H_{a}^{1}$ is nonempty. The following lemma justifies the existence of the degree for any $u \in H_{a}^{1}$.

Lemma 2.1. For every $u \in H_{a}^{1}$, there is a unique $D \equiv\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, depending only on u, such that for any subdomain G_{j} and any function $f_{G_{j}}, 1 \leq j \leq n$, satisfying

$$
\begin{equation*}
G_{j} \subset \Omega, \text { be a simply connected smooth subdomain with } G_{j} \cap \bar{\Omega}_{H}=\bar{\Omega}_{j}, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
f_{G_{j}} \in C^{\infty}(\bar{\Omega}), 0 \leq f_{G_{j}} \leq 1, f_{G_{j}}=1 \text { on } \bar{\Omega} \backslash G_{j}, \text { and } \operatorname{supp}\left\{f_{G_{j}}\right\} \subset \bar{\Omega} \backslash \bar{\Omega}_{j}, \tag{2.2}
\end{equation*}
$$

then we have the representation

$$
\begin{equation*}
d_{j}=\operatorname{deg}\left(u / \sqrt{a}, \partial G_{j}\right)=\frac{1}{\pi} \int_{G_{j} \backslash \bar{\Omega}_{j}} J\left(\frac{u f_{G_{j}}}{\sqrt{a}}\right) d x \tag{2.3}
\end{equation*}
$$

Where $J(\mathbf{w})$ is the Jacobian of the map $\mathbf{w}: G_{j} \rightarrow \mathbb{C}$. Write $x=\left(x_{1}, x_{2}\right) \in G_{j}$, $\mathbf{w}=w_{1}+i w_{2}$, then

$$
J(\mathbf{w})=\frac{\partial\left(w_{1}, w_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial w_{1}}{\partial x_{1}} & \frac{\partial w_{1}}{\partial x_{2}} \\
\frac{\partial w_{2}}{\partial x_{1}} & \frac{\partial w_{2}}{\partial x_{2}}
\end{array}\right]
$$

Proof. Fix $u \in H_{a}^{1}$, set $v(x)=u(x) / \sqrt{a(x)}=u(x) /|u(x)|$ in $\Omega \backslash \bar{\Omega}_{H}$, and $v(x)=0$ for other case. By the assumption on $a(x), v \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H} ; S^{1}\right)$, where $S^{1}=\{z \in$ $\mathbb{C}:|z|=1\}$.

Let G_{j} be as in (2.1) and $f_{G_{j}}$ as in 2.2 , we have $v f_{G_{j}}$ is well defined on G_{j}, in addition, $\operatorname{supp}\left\{v f_{G_{j}}\right\} \cap \bar{G}_{j} \subset \bar{G}_{j} \backslash \bar{\Omega}_{j}, v f_{G_{j}} \in H^{1}\left(G_{j}\right)$, and $\left|v f_{G_{j}}\right|=|v|=1$ a.e. on ∂G_{j}. From [8] (Property 5 at page 220 and lemma 11 at page 337),

$$
\begin{equation*}
\operatorname{deg}\left(v, \partial G_{j}\right)=\operatorname{deg}\left(v f_{G_{j}}, \partial G_{j}\right)=\frac{1}{\pi} \int_{G_{j}} J\left(v f_{G_{j}}\right) d x=\frac{1}{\pi} \int_{G_{j} \backslash \bar{\Omega}_{j}} J\left(\frac{u f_{G_{j}}}{\sqrt{a}}\right) d x \tag{2.4}
\end{equation*}
$$

$\operatorname{deg}\left(v, \partial G_{j}\right)$ is well-defined, integer-valued and independent of $f_{G_{j}}$,
Now to show $\operatorname{deg}\left(v, \partial G_{j}\right)$ is independent of the choice of G_{j}.
Claim: If two subdomains G_{j}^{1}, G_{j}^{2} satisfy 2.1 with $G_{j}^{2} \subset G_{j}^{1} \subset \Omega$, then $\operatorname{deg}\left(v, \partial G_{j}^{1}\right)=\operatorname{deg}\left(v, \partial G_{j}^{2}\right)$.
Proof of the Claim: By $v \in H^{1}\left(\bar{G}_{j}^{1} \backslash G_{j}^{2}\right)$, there is a constant $\delta=\delta\left(G_{j}^{1}, G_{j}^{2}, v\right)$, such that for any set $A \subset G_{j}^{1} \backslash G_{j}^{2}$ and meas $\{A\}<\delta,\|v\|_{H^{1}(A)}^{2}<1$. Then for any two simply connected smooth subdomains B^{1}, B^{2} with $G_{j}^{2} \subset B^{2} \subset B^{1} \subset G_{j}^{1}$ and meas $\left\{B^{1} \backslash B^{2}\right\}<\delta$, from 2.4, we have

$$
\begin{aligned}
\left|\operatorname{deg}\left(v, \partial B^{1}\right)-\operatorname{deg}\left(v, \partial B^{2}\right)\right| & =\left|\frac{1}{\pi} \int_{B^{1}} J\left(v f_{G_{j}^{2}}\right) d x-\frac{1}{\pi} \int_{B^{2}} J\left(v f_{G_{j}^{2}}\right) d x\right| \\
& =\left|\frac{1}{\pi} \int_{B^{1} \backslash B^{2}} J(v) d x\right| \\
& \leq 2\|v\|_{H^{1}\left(B^{1} \backslash B^{2}\right)}^{2} / \pi<1
\end{aligned}
$$

Since the left-hand side is integer-valued, $\operatorname{deg}\left(v, \partial B^{1}\right)=\operatorname{deg}\left(v, \partial B^{2}\right)$.
Choose a finite number of nested simply connected smooth subdomains, say $G_{j}^{1}=A^{1} \supset \supset A^{2} \supset \supset A^{2} \supset \supset \cdots \supset \supset A^{k}=G_{j}^{2}$, such that meas $\left\{A^{\ell} \backslash A^{\ell+1}\right\}<\delta, \ell=$ $1, \ldots, k-1$, then $\operatorname{deg}\left(v, \partial G_{j}^{1}\right)=\operatorname{deg}\left(v, \partial A^{1}\right)=\operatorname{deg}\left(v, \partial A^{2}\right)=\cdots=\operatorname{deg}\left(v, \partial G_{j}^{2}\right)$. From the above claim, we know for any two subdomains G_{j}^{1}, G_{j}^{2} satisfy 2.1,

$$
\operatorname{deg}\left(v, \partial G_{j}^{1}\right)=\operatorname{deg}\left(v, \partial\left(G_{j}^{1} \cap G_{j}^{2}\right)\right)=\operatorname{deg}\left(v, \partial G_{j}^{2}\right)
$$

Hence $\operatorname{deg}\left(v, \partial G_{j}\right)$ is constant for any G_{j} satisfying 2.1, i.e., 2.3) is well-defined, and $d_{j} \equiv \operatorname{deg}\left(v, \partial G_{j}\right)=\operatorname{deg}\left(u / \sqrt{a}, \partial G_{j}\right)$ depends on u only.

Lemma 2.2. Each $u \in H_{a}^{1}$ can be written in the form of

$$
u(x)=\sqrt{a(x)} e^{i \Theta(x)}, x \in \Omega \backslash \bar{\Omega}_{H}
$$

where $\Theta(x)=\phi(x)+\sum_{j=1}^{n} d_{j} \theta_{j}, \theta_{j}(x)$ is from 1.6 defined on $\Omega \backslash \bar{\Omega}_{j}, D \in \mathbb{Z}^{n}$ is from (2.3), uniquely decided by $u \in H_{a}^{1}$, and $\phi \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$ is unique up to an additive constant $2 \pi k$ for $k \in \mathbb{Z}$, satisfying $\int_{\Omega \backslash \bar{\Omega}_{j}} a|\nabla \phi|^{2} \leq C\left(\Omega_{H}, a, D\right)+\int_{\Omega}|\nabla u|^{2}$.

We follow the same idea as in [4, Theorem 1.4] to prove the lemma, please see the proof in the appendix.

For each $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, we define the homotopy class

$$
H_{a, D}^{1}=\left\{u \in H_{a}^{1} \mid \text { degree for } u \text { around } \bar{\Omega}_{j} \text { is } d_{j}, j=1,2, \ldots, n\right\} .
$$

By Lemma 2.2. $u \in H_{a, D}^{1}$, if and only if $u=\sqrt{a} e^{i\left[\phi(x)+\sum_{j=1}^{n} d_{j} \theta_{j}\right]}$, where $\phi \in H_{\mathrm{loc}}^{1}(\Omega \backslash$ $\bar{\Omega}_{j}$) and $\int_{\Omega \backslash \bar{\Omega}_{j}} a|\nabla \phi|^{2} \leq C\left(\Omega_{H}, \Omega, a, D\right)+\int_{\Omega}|\nabla u|^{2}$; Lemma 2.1 implies that $H_{a}^{1}=$ $\bigcup_{D \in \mathbb{Z}^{n}} H_{a, D}^{1}$ and $H_{a, D}^{1} \cap H_{a, D^{\prime}}^{1}=\emptyset$ for $D \neq D^{\prime}$ in \mathbb{Z}^{n}; the following theorem further reveals the topology of H_{a}^{1}.

Theorem 2.3. For each $D \in \mathbb{Z}^{n}, H_{a, D}^{1}$ is a nonempty, open and closed subset of H_{a}^{1}. In addition, $H_{a, D}^{1}$ is sequentially weakly closed in $H^{1}(\Omega ; \mathbb{C})$, i.e., if $\left\{u_{k}\right\}_{k=1}^{\infty} \subset$ $H_{a, D}^{1}$ and $u_{k} \rightharpoonup u$ in $H^{1}(\Omega ; \mathbb{C})$ as $k \rightarrow \infty$, then $u \in H_{a, D}^{1}$.

Proof. Since $\sqrt{a} \in H^{1}(\Omega)$ and $\mathbf{n}_{j} \in C^{\infty}\left(\bar{\Omega} \backslash \Omega_{j} ; \mathbb{R}^{2}\right), 1 \leq j \leq n$, according to Lemma 2.2, $\sqrt{a} e^{i \sum_{j=1}^{n} d_{j} \theta_{j}} \in H_{a, D}^{1}$, so that $H_{a, D}^{1} \neq \emptyset$.

Assume $u_{0} \in H_{a, D}^{1}$, let $B_{r}\left(u_{0}\right)=\left\{u \in H_{a}^{1}:\left\|u-u_{0}\right\|_{H^{1}(\Omega ; \mathbb{C})}<r\right\}$, where $r>0$ to be chosen later. Pick any $u \in B_{r}\left(u_{0}\right)$, set $v_{0}=u_{0} /\left|u_{0}\right|=a^{-1 / 2} u_{0}$, $v=u /|u|=a^{-1 / 2} u$. Fix G_{j} as in 2.1) and $f_{G_{j}}$ as in 2.2), $1 \leq j \leq n$, by (2.3),

$$
d_{j}=\frac{1}{\pi} \int_{G_{j} \backslash \Omega_{j}} J\left(v_{0} f_{G_{j}}\right) d x \quad \text { and } \quad \tilde{d}_{j}=\frac{1}{\pi} \int_{G_{j} \backslash \Omega_{j}} J\left(v f_{G_{j}}\right) d x
$$

then
$\left\|J\left(v_{0} f_{G_{j}}\right)-J\left(v f_{G_{j}}\right)\right\|_{L^{1}\left(G_{j}\right)} \leq C \cdot\left(1+\left\|u-u_{0}\right\|_{H^{1}\left(G_{j}\right)}\right) \cdot\left\|u-u_{0}\right\|_{H^{1}\left(G_{j}\right)} \leq C r(1+r)$, where $C=C\left(a, v_{0}, G_{j}\right)$. It follows that for r small (say $r=\frac{1}{2 C+1}$) $d_{j}=\tilde{d}_{j}$ and $u \in H_{a, D}^{1}$. Thus $B_{r}\left(u_{0}\right) \subset H_{a, D}^{1}$ for r small, $H_{a, D}^{1}$ is an open subset of H_{a}^{1}.

Since $H_{a}^{1}=\bigcup_{D \in \mathbb{Z}^{n}} H_{a, D}^{1}$ and $H_{a, D} \cap H_{a, D^{\prime}}^{1}=\emptyset$ for $D \neq D^{\prime}$ in \mathbb{Z}^{n}, from the closeness of H_{a}^{1}, we obtain that $H_{a, D}^{1}$ is a closed subset of H_{a}^{1}.

Now prove $H_{a, D}^{1}$ is weakly sequentially closed in H_{a}^{1}. Assume that $\left\{u_{k}\right\}_{k=1}^{\infty} \subset$ $H_{a, D}^{1}$ and $u_{k} \rightharpoonup u$ weakly in $H^{1}(\Omega ; \mathbb{C})$ as $k \rightarrow \infty$. By compactness, a subsequence (which we relabel as $\left\{u_{k}\right\}_{k=1}^{\infty}$) satisfies $u_{k} \rightarrow u$ in $L^{2}(\Omega)$ as $k \rightarrow \infty$, so $|u|=a^{1 / 2}$ a.e. in Ω, and $u \in H_{a}^{1}$, according to Lemma 2.1, $u \in H_{a, \tilde{D}}^{1}$ for some $\tilde{D} \in \mathbb{Z}^{n}$. We show $D=\tilde{D}$.

Set $v_{k}(x)=u_{k}(x) /\left|u_{k}(x)\right|, v(x)=u(x) /|u(x)|$ in $\Omega \backslash \Omega_{H}$, then $v_{k} \rightharpoonup v$ in $H_{\text {loc }}^{1}(\Omega \backslash$ $\left.\Omega_{H}\right)$ and $v_{k} \rightarrow v$ in $L_{\mathrm{loc}}^{2}\left(\Omega \backslash \Omega_{H}\right)$, as $k \rightarrow \infty$.

Choose $\Omega_{j}^{1} \supset \Omega_{j}^{2}$ satisfying 2.1), assume $\left\|v_{k}\right\|_{H^{1}\left(\Omega_{j}^{1} \backslash \Omega_{j}^{2}\right)}<M, M \in \mathbb{Z}, k=$ $1,2,3, \ldots$ Partition $\Omega_{j}^{1} \backslash \Omega_{j}^{2}$ into $4 M^{2}+1$ subdomains enclosing Ω_{j}^{2}, say, they are $G^{(l)} \backslash G^{(l+1)}, l=1,2 \ldots 4 M^{2}+1$, where

$$
\Omega_{j}^{1}=G^{(1)} \supset \supset G^{(2)} \supset \supset \cdots \supset \supset G^{\left(4 M^{2}+2\right)}=\Omega_{j}^{2}
$$

For any v_{k}, at least on one of the $G^{(l)} \backslash G^{(l+1)},\left\|v_{k}\right\|_{H^{1}\left(G^{(l)} \backslash G^{(l+1)}\right)}<\frac{1}{2}$. Choose $G^{(l)} \backslash G^{(l+1)}$ with infinitely many v_{k} such that $\left\|v_{k}\right\|_{H^{1}\left(G^{(l)} \backslash G^{(l+1)}\right)}<\frac{1}{2}$. Let $G_{j}=$ $G^{(l)}, \tilde{G}_{j}=G^{(l+1)}$, and take the corresponding subsequence on $G^{(l)} \backslash G^{(l+1)}$ (still labelled as $\left.\left\{v_{k}\right\}\right)$, then $\Omega_{j} \subset \subset \tilde{G}_{j} \subset \subset G_{j}$ and $\left\|v_{k}\right\|_{H^{1}\left(G_{j} \backslash \tilde{G}_{j}\right)}<\frac{1}{2}$, for all $k \geq 1$. By the weak convergence, $\|v\|_{H^{1}\left(G_{j} \backslash \tilde{G}_{j}\right)}<\frac{1}{2}, \int_{G_{j} \backslash \tilde{G}_{j}}\left|J\left(v_{k}\right)\right| \leq\left\|v_{k}\right\|_{H^{1}\left(G_{j} \backslash \tilde{G}_{j}\right)}^{2}<\frac{1}{4}$, and $\int_{G_{j} \backslash \tilde{G}_{j}}|J(v)| \leq\|v\|_{H^{1}\left(G_{j} \backslash \tilde{G}_{j}\right)}^{2}<\frac{1}{4}$. Pick $f_{G_{j}}$ satisfying 2.2. By 2.3),

$$
\begin{aligned}
& d_{j}=\frac{1}{\pi} \int_{G_{j} \backslash \tilde{G}_{j}} J\left(v_{k} f_{G_{j}}\right) d x, \quad \tilde{d}_{j}=\frac{1}{\pi} \int_{G_{j} \backslash \tilde{G}_{j}} J\left(v f_{G_{j}}\right) d x \\
& \int_{G_{j} \backslash \tilde{G}_{j}}\left(J\left(v_{k} f_{G_{j}}\right)-J\left(v f_{G_{j}}\right)\right) d x \\
& =\int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}}^{2}\left(J\left(v_{k}\right)-J(v)\right) d x \\
& \quad+\int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}} \frac{\partial f_{G_{j}}}{\partial x_{1}} \operatorname{Re}\left(i v_{k}\left(\frac{\partial v_{k}}{\partial x_{2}}\right)^{*}-i v\left(\frac{\partial v}{\partial x_{2}}\right)^{*}\right) d x \\
& \quad+\int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}} \frac{\partial f_{G_{j}}}{\partial x_{2}} \operatorname{Re}\left(i v_{k}\left(\frac{\partial v_{k}}{\partial x_{1}}\right)^{*}-i v\left(\frac{\partial v}{\partial x_{1}}\right)^{*}\right) d x
\end{aligned}
$$

Since $f_{G_{j}} \frac{\partial f_{G_{j}}}{\partial x_{1}} \in C^{\infty}\left(\bar{G}_{j}\right), v_{k} \rightarrow v$ in L^{2}, and $\frac{\partial v_{k}}{\partial x_{2}} \rightharpoonup \frac{\partial v}{\partial x_{2}}$ weakly in L^{2}, it follows that $\int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}} \frac{\partial f_{G_{j}}}{\partial x_{1}} \operatorname{Re}\left(i v_{k}\left(\frac{\partial v_{k}}{\partial x_{2}}\right)^{*}-i v\left(\frac{\partial v}{\partial x_{2}}\right)^{*}\right) d x \rightarrow 0$, as $k \rightarrow \infty$. Similarly $\int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}} \frac{\partial f_{G_{j}}}{\partial x_{2}} \operatorname{Re}\left(i v_{k}\left(\frac{\partial v_{k}}{\partial x_{1}}\right)^{*}-i v\left(\frac{\partial v}{\partial x_{1}}\right)^{*}\right) d x \rightarrow 0$, as $k \rightarrow \infty$.

By $0 \leq f_{G_{j}} \leq 1, \int_{G_{j} \backslash \tilde{G}_{j}} f_{G_{j}}^{2}\left|J\left(v_{k}\right)-J(v)\right| d x \leq \frac{1}{2}$, for any $k,\left|d_{j}-\tilde{d}_{j}\right|<\frac{1}{2}$. Since $d_{j}, \tilde{d}_{j} \in \mathbb{Z}, d_{j}=\tilde{d}_{j}, j=1,2, \ldots n$. Thus $D=\tilde{D}$ and $u \in H_{a, D}^{1}$.
2.2. Space V. By 1.11), $V \equiv\left\{f \in H^{1}(\Omega):\left.f\right|_{\Omega_{j}}=f_{j}=\right.$ constant, $1 \leq j \leq n$, $\left.\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}(x)|\nabla f(x)|^{2} d x<\infty\right\}$ is a weighted Sobolev space. Define the norm of V as

$$
\begin{equation*}
\|f\|_{V}=\left(\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}(x)|\nabla f(x)|^{2} d x+\int_{\Omega} f^{2}\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

Lemma 2.4. V is a Hilbert space with norm (2.5).
Proof. Assume $\left\{f_{k}\right\}_{k=1}^{\infty} \subset V$ is a Cauchy sequence under norm 2.5). By $1 / a(x)>$ $c>0$ in $\bar{\Omega} \backslash \Omega_{H}$ for some constant $c \in \mathbb{R}$, we know $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in $H^{1}(\Omega)$. Hence there is a $f \in H^{1}(\Omega)$, such that $f_{k} \rightarrow f$ in $H^{1}(\Omega)$. Also $f_{k} \in V$ implies that f is constant on $\Omega_{j}, 1 \leq j \leq n$. By $\left\{\nabla f_{k} / \sqrt{a}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in $L^{2}\left(\Omega \backslash \Omega_{H}\right)$, there are g_{1}, g_{2} in $L^{2}\left(\Omega \backslash \Omega_{H}\right)$, such that $\nabla f_{k} / \sqrt{a} \rightarrow\left(g_{1}, g_{2}\right)$ in $L^{2}\left(\Omega \backslash \Omega_{H}\right)$, from $1 / \sqrt{a}$ is bounded away from 0 , we get $\nabla f_{k} \rightarrow\left(\sqrt{a} g_{1}, \sqrt{a} g_{2}\right)$ in $L^{2}\left(\Omega \backslash \Omega_{H}\right)$. Therefore $\left(\sqrt{a} g_{1}, \sqrt{a} g_{2}\right)=\nabla f$ by the uniqueness of the convergence in $L^{2}\left(\Omega \backslash \Omega_{H}\right)$, i.e. $\nabla f / \sqrt{a} \in L^{2}\left(\Omega \backslash \Omega_{H}\right)$, and we get $f \in V, f_{k} \rightarrow f$ in V.

Using the same idea as above, we can obtain that V is weakly closed under the norm 2.5). In addition, we have the following lemma proved in the appendix.

Lemma 2.5. $C^{1}(\Omega) \cap V$ is dense in V.
To go forward, let us first investigate properties of the Lipschitz domain $\Omega_{j} \subset$ $\mathbb{R}^{d}, 1 \leq j \leq n, d$ is the dimension. By saying Ω_{j} is Lipschitz, we means that for every point $p \in \partial \Omega_{j}$, there is a neighborhood \mathcal{U}_{p} of p, and a function $\phi_{p}: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$, such that there is a Cartesian coordinate system in \mathcal{U}_{p} with p as the origin, satisfying:
(i) $\left|\phi_{p}(\tilde{x})-\phi_{p}(\tilde{y})\right| \leq A|\tilde{x}-\tilde{y}|$, where $A=A\left(\Omega_{j}\right), \tilde{x}, \tilde{y} \in \mathbb{R}^{d-1}$.
(ii) $\Omega_{j} \cap \mathcal{U}_{p}=\left\{\left(\tilde{x}, x_{d}\right) \mid x_{d}<\phi_{p}(\tilde{x})\right\} \cap \mathcal{U}_{p}$, and $\mathcal{U}_{p} \backslash \Omega_{j}=\left\{\left(\tilde{x}, x_{d}\right) \mid x_{d}>\phi_{p}(\tilde{x})\right\} \cap \mathcal{U}_{p}$, where $\tilde{x} \in \mathbb{R}^{d-1}$.
(iii) For all $x \in \mathcal{U}_{p}, d(x)=\operatorname{dist}\left\{x, \partial \Omega_{j}\right\}>\left|x_{d}-\phi_{p}(\tilde{x})\right| / g_{p}$, for some constant $g_{p}>1$.

Since $\partial \Omega_{j}$ is compact, we can choose $\left\{\mathcal{U}_{k}^{j}\right\}_{k=1}^{n_{j}}$ to cover it, $j=1,2, \ldots, n$, where $\mathcal{U}_{k}^{j}=\left\{x=\left(\tilde{x}, x_{d}\right) \in \mathbb{R}^{d}| | \tilde{x} \mid \leq \lambda_{k}^{j}\right.$, and $\left.\left|x_{d}-\phi_{k}^{j}(\tilde{x})\right|<\lambda_{k}^{j}\right\}, \lambda_{k}^{j}$ is constant, ϕ_{k}^{j} is as in (i) and (ii).

Apply (iii), for any $x=\left(\tilde{x}, x_{d}\right) \in \mathcal{U}_{k}^{j}$, there is a constant $g=g\left(\Omega_{H}\right)>1$,

$$
\begin{equation*}
\left|x_{d}-\phi_{k}^{j}(\tilde{x})\right| / g \leq d(x) \leq\left|x_{d}-\phi_{k}^{j}(\tilde{x})\right| \quad k=1,2, \ldots, n_{j}, j=1, \ldots, n \tag{2.6}
\end{equation*}
$$

Since $\partial \Omega_{j} \subset \cup_{k=1}^{n_{j}} \mathcal{U}_{k}^{j}$ and \mathcal{U}_{k}^{j} is open, there is a constant r_{1}, such that for $\sigma<r_{1}$, $\bar{\Omega}_{j}^{\sigma} \backslash \Omega_{j} \subset \cup_{k=1}^{n_{j}} \mathcal{U}_{k}^{j}$, where $\Omega_{j}^{\sigma}=\left\{x \in \Omega \mid \operatorname{dist}\left\{x, \Omega_{j}\right\}<\sigma\right\}, j=1,2, \ldots, n$. Choose a partition of unity for $\bar{\Omega}_{j}^{r_{1}} \backslash \Omega_{j}$ subordinate to $\left\{\mathcal{U}_{k}^{j}\right\}_{k=1}^{n_{j}}$, say, $\left\{\beta_{k}^{j}\right\}_{k=1}^{n_{j}}$, such that,

$$
\begin{equation*}
\beta_{k}^{j} \in C_{0}^{\infty}\left(\mathcal{U}_{k}^{j}\right), 0 \leq \beta_{k}^{j} \leq 1, \text { and } \sum_{k=1}^{n_{j}} \beta_{k}^{j}(x)=1 \quad x \in \bar{\Omega}_{j}^{r_{1}} \backslash \Omega_{j}, 1 \leq j \leq n \tag{2.7}
\end{equation*}
$$

Lemma 2.6. Assume $f \in C^{1}(\Omega) \cap V$, and $\left.f\right|_{\Omega_{j}}=f_{j}, 1 \leq j \leq n$, pick the constant g satisfying 2.6, then for any $\sigma_{0}<r_{1} / g$,

$$
\int_{\partial \Omega_{j}^{\sigma_{0}}} a^{-1}(x)\left|f-f_{j}\right|^{2} d s \leq c\left(\Omega_{j}\right) \sigma_{0} \int_{\Omega_{j}^{g \sigma_{0}} \backslash \Omega_{j}} a^{-1}(x)|\nabla f|^{2} d x .
$$

Proof. By $\partial \Omega_{j}^{\sigma_{0}} \subset \Omega_{j}^{r_{1}} \backslash \Omega_{j} \subset \cup_{k=1}^{n_{j}} \mathcal{U}_{k}^{j}$ and the partition of unity,

$$
\begin{aligned}
\int_{\partial \Omega_{j}^{\sigma_{0}}} a^{-1}(x)\left|f-f_{j}\right|^{2} d s & =\int_{\partial \Omega_{j}^{\sigma_{0}}} \sum_{k=1}^{n_{j}} \beta_{k}^{j}(x) a^{-1}(x)\left|f_{j}-f\right|^{2} d s \\
& =\sum_{k=1}^{n_{j}} \int_{\partial \Omega_{j}^{\sigma_{0}} \cap \mathcal{U}_{k}^{j}} \beta_{k}^{j}(x) a^{-1}(x)\left|f_{j}-f\right|^{2} d s
\end{aligned}
$$

Then apply the local coordinate system on \mathcal{U}_{k}^{j}, we obtain

$$
\begin{aligned}
& \int_{\partial \Omega_{j}^{\sigma_{0}} \cap \mathcal{U}_{k}^{j}} \beta_{k}^{j}(x) a^{-1}(x)\left|f-f_{j}\right|^{2} d s \\
= & \int_{\partial \Omega_{j}^{\sigma_{0}} \cap \mathcal{U}_{k}^{j}} \beta_{k}^{j}(x) a^{-1}(x)\left|\int_{\phi_{k}^{j}(\tilde{x})}^{x_{d}} \nabla f \cdot \mathbf{e}_{\mathbf{d}} d t\right|^{2} d s \\
\leq & \int_{\partial \Omega_{j}^{\sigma_{0}} \cap \mathcal{U}_{k}^{j}} a^{-1}(x)\left(\int_{\phi_{k}^{j}(\tilde{x})}^{x_{d}}|\nabla f|^{2} d t \int_{\phi_{k}^{j}(\tilde{x})}^{x_{d}} d t\right) d s \\
\leq & \int_{\partial \Omega_{j}^{\sigma_{0}} \cap \mathcal{U}_{k}^{j}}\left|\phi_{k}^{j}(\tilde{x})-x_{d}\right| \int_{\phi_{k}^{j}(\tilde{x})}^{g \sigma_{0}} a^{-1}(x(s))|\nabla f|^{2} d t d s \\
\leq & c\left(\Omega_{j}\right) \sigma_{0} \int_{\Omega_{j}^{g \sigma_{0}} \backslash \Omega_{j}} a^{-1}(x)|\nabla f|^{2} d x .
\end{aligned}
$$

Where $\mathbf{e}_{\mathbf{d}}$ is the d-th unit vector in the local coordinate system,. In the proof, (1.4), 2.6), $0 \leq \beta_{k}^{j}(x) \leq 1$ and the Lipschitz property (i) are used. Hence $\int_{\partial \Omega_{j}^{\sigma_{0}}} a^{-1}(x)\left|f-f_{j}\right|^{2} d s \leq c\left(\Omega_{j}\right) \sigma_{0} \int_{\Omega_{j}^{g \sigma_{0}} \backslash \Omega_{j}} a^{-1}(x)|\nabla f|^{2} d x, 1 \leq j \leq n$.

3. Limit Equation

In this section, we prove Theorem 1.1 and Theorem 1.2 stated in the introduction. First let us give a result concerning the existence of the minimizers of J_{0} in $H_{a, D}^{1} \times$ $H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$.

Lemma 3.1. For fixed h_{e} and $D \in \mathbb{Z}^{n}$, there is a minimizer of J_{0} in $H_{a, D}^{1} \times$ $H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge (1.8), which is a local minimizer of J_{0} in \mathcal{M}_{0}.
Proof. By the gauge equivalence in $\sqrt{1.7}$) and $\sqrt{1.9}$, we need only to consider the situation under the fixed gauge 1.8, i.e., in the space

$$
\left\{(\psi, A) \in H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right): \operatorname{div} A=0 \text { in } \Omega \text { and } A \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\}
$$

According to Theorem 2.3, $H_{a, D}^{1}$ is sequentially weakly closed in $H^{1}(\Omega ; \mathbb{C})$, we can apply direct method in the calculus of variations to find the minimizer of J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$. Since $H_{a, D}^{1}$ is both open and closed in H_{a}^{1}, the minimizer in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ is also a local minimize of J_{0} in \mathcal{M}_{0}.

From $\sqrt[1.2]{ }$, we get the Euler-Lagrange equations of the minimizer of J_{0},

$$
\begin{align*}
& \operatorname{div}\left[-\frac{i}{2}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-|\psi|^{2} A\right]=0 \quad \text { in } \Omega \tag{3.1}\\
& {\left[-\frac{i}{2}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-|\psi|^{2} A\right] \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega}
\end{align*}
$$

and

$$
\begin{gather*}
\operatorname{curl} \operatorname{curl} A=-\frac{i}{2}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-|\psi|^{2} A \equiv j_{0} \quad \text { in } \Omega \tag{3.2}\\
\operatorname{curl} A=h_{e} \mathbf{e}_{3} \quad \text { on } \partial \Omega .
\end{gather*}
$$

Where $A=\left(A_{1}, A_{2}\right)$, curl curl $A=\left(\partial_{x_{2} x_{1}} A_{2}-\partial_{x_{2} x_{2}} A_{1},-\partial_{x_{1} x_{1}} A_{2}+\partial_{x_{2} x_{1}} A_{1}\right)$.
Note: Taking divergence on both sides of the second equation (3.2) in above, we could get the first equation of (3.1) in distribution sense.

Assume (ψ, A) is under gauge 1.8 , from (1.9), we see that 3.2 becomes

$$
\begin{gathered}
\triangle A=-\frac{i}{2}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)-|\psi|^{2} A \quad \text { in } \quad \Omega \\
\operatorname{curl} A=h_{e} \mathbf{e}_{\mathbf{3}} \quad \text { on } \quad \partial \Omega \\
A \cdot \mathbf{n}=0 \quad \text { in } \quad \partial \Omega
\end{gathered}
$$

Since $\operatorname{div} A=0$ in Ω and $A \cdot \mathbf{n}=0$ on $\partial \Omega$, according to Poincaré's lemma, rewrite $A=\left(A_{1}, A_{2}\right)$ with $\left(A_{2},-A_{1}\right)=\nabla \zeta$ for some $\zeta \in H_{0}^{1}(\Omega)$, from the above equation, $\zeta \in W^{3,2}(\Omega)$, so that we obtain the following regularity result on A :

Lemma 3.2. If $\left(\psi_{D}, A_{D}\right)$ under gauge 1.8$)$ is a minimizer in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$, then $A_{D} \in W^{2,2}(\Omega)$.

Now we prove Theorem 1.1 in the introduction, for the convenience to read, let us restate it.

Theorem 3.3. Fix h_{e}. Let $\left(\psi_{D}, A_{D}\right)$ be a minimizer of J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge 1.8), define h_{D} by curl $A_{D}=h_{D} \mathbf{e}_{\mathbf{3}}$, then $h_{D} \in V$ is the unique solution of

$$
\begin{gather*}
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla h \cdot \nabla f d x+\int_{\Omega} h f d x=\sum_{j=1}^{n} 2 \pi d_{j} f_{j} . \tag{3.3}\\
\forall f(x) \in V \cap H_{0}^{1}(\Omega), \quad \text { and } \quad h-h_{e} \in V \cap H_{0}^{1}(\Omega) .
\end{gather*}
$$

Proof. First we show $h_{D} \in V$. From the boundary condition, $h=h_{e}$ on $\partial \Omega$. By $\psi_{D} \in H_{a, D}^{1}$ and $\left.\psi\right|_{\Omega_{H}}=0$, 3.2 implies,

$$
\begin{equation*}
\operatorname{curl}\left(h_{D} \mathbf{e}_{\mathbf{3}}\right)=0 \quad \text { in } \Omega_{H} \tag{3.4}
\end{equation*}
$$

Hence in $\Omega_{j}, \nabla h_{D}=0$, i.e., $h_{D}=h_{D, j}$ a.e., where $h_{D, j}$ is a constant depending on $\Omega_{j}, 1 \leq j \leq n$. On $\Omega \backslash \bar{\Omega}_{H},\left|\psi_{D}\right|=\sqrt{a} \neq 0$, we can write $\psi_{D}=\sqrt{a} e^{i \theta_{D}}$, so that

$$
\begin{equation*}
\operatorname{curl}\left(h_{D} \mathbf{e}_{\mathbf{3}}\right)=j_{D}=a\left(\nabla \theta_{D}-A_{D}\right) \quad \text { in } \Omega \backslash \bar{\Omega}_{H} \tag{3.5}
\end{equation*}
$$

Since $\left|\left(\nabla-i A_{D}\right) \psi_{D}\right|^{2}=|\nabla \sqrt{a}|^{2}+\left|\sqrt{a}\left(\nabla \theta_{D}-A_{D}\right)\right|^{2}$ and $J_{0}\left(\psi_{D}, A_{D}\right)$ is bounded, $a^{-1 / 2}\left|\nabla h_{D}\right|=\sqrt{a}\left|\nabla \theta_{D}-A_{D}\right| \in L^{2}(\Omega)$, so that $h_{D} \in H^{1}(\Omega)$, and $h_{D} \in V$.

Now we prove h_{D} satisfies (3.3). Divide on both sides of 3.5) by $a(x)$, then take curl to annihilate $\nabla \theta_{D}$, then $\operatorname{curl} \frac{1}{a(x)} \operatorname{curl}\left(h_{D} \mathbf{e}_{\mathbf{3}}\right)=-\operatorname{curl} A_{D}=\left(0,0,-h_{D}\right)$, rewriting the equation, we obtain

$$
\begin{equation*}
\nabla \cdot \frac{1}{a(x)} \nabla h_{D}=h_{D} \quad \text { in } \Omega \backslash \bar{\Omega}_{H} \tag{3.6}
\end{equation*}
$$

in the sense of distributions. Set

$$
\Omega_{j}^{\sigma}=\left\{x \in \Omega \mid \operatorname{dist}\left\{x, \Omega_{j}\right\}<\sigma\right\}, \quad \Omega^{\sigma}=\bigcup_{j=1}^{n} \Omega_{j}^{\sigma} .
$$

Since $a \in C^{1}\left(\bar{\Omega} \backslash \Omega_{H}\right)$ and $a>0$ in $\bar{\Omega} \backslash \Omega_{H}, h_{D} \in H_{\mathrm{loc}}^{2}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, and $\nabla \theta_{D} \in$ $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$. Take the test function $f(x) \in C^{1}(\Omega) \cap V \cap H_{0}^{1}(\Omega)$ for (3.6), and
integrate by parts,

$$
\begin{aligned}
& \int_{\Omega \backslash \bar{\Omega}^{\sigma}}\left(a^{-1}(x)\left(\nabla h_{D} \cdot \nabla f\right)+h_{D}(x) f(x)\right) d x \\
& =\int_{\partial\left(\Omega \backslash \bar{\Omega}^{\sigma}\right)} \frac{\nu \cdot \nabla h_{D} f}{a(x)} d s \\
& =-\int_{\partial \Omega^{\sigma}} \frac{\mathbf{n} \cdot \nabla h_{D} f}{a(x)} d s \\
& =-\int_{\partial \Omega^{\sigma}} \frac{\mathbf{n} \cdot \nabla h_{D} f_{j}}{a(x)} d s-\int_{\partial \Omega^{\sigma}} \frac{\mathbf{n} \cdot \nabla h_{D}\left(f-f_{j}\right)}{a(x)} d s .
\end{aligned}
$$

Here \mathbf{n} is the outward normal of $\partial \Omega^{\sigma}, \nu=-\mathbf{n}$ is the inward normal. Assume τ is the counterclockwise tangent vector field of $\partial \Omega^{\sigma}$, use 3.2 on $\partial \Omega^{\sigma}$,

$$
\begin{aligned}
-\int_{\partial \Omega^{\sigma}} \frac{\mathbf{n} \cdot \nabla h_{D} f_{j}}{a(x)} d s & =f_{j} \int_{\partial \Omega^{\sigma}} \frac{\tau \cdot \operatorname{curl} h_{D}}{a(x)} d s=f_{j} \int_{\partial \Omega^{\sigma}}\left(\tau \cdot \nabla \theta_{D}-\tau \cdot A_{D}\right) d s \\
& =2 \pi d_{j} f_{j}-f_{j} \int_{\Omega^{\sigma}} \operatorname{curl} A_{D} d x=2 \pi d_{j} f_{j}-f_{j} \int_{\Omega^{\sigma}} h_{D} d x \\
& =2 \pi d_{j} f_{j}-\int_{\Omega^{\sigma}} h_{D} f d x-\int_{\Omega^{\sigma}} h_{D}\left(f_{j}-f\right) d x \\
& =2 \pi d_{j} f_{j}-\int_{\Omega^{\sigma}} h_{D} f d x-o(1), \quad \text { as } \sigma \rightarrow 0 .
\end{aligned}
$$

Using the Cauchy inequality,

$$
\left|\int_{\partial \Omega^{\sigma}} \frac{\mathbf{n} \cdot \nabla h_{D}\left(f-f_{j}\right)}{a(x)} d s\right| \leq\left(\int_{\partial \Omega^{\sigma}} \frac{\left|f-f_{j}\right|^{2}}{a(x)} d s\right)^{1 / 2}\left(\int_{\partial \Omega^{\sigma}} \frac{\left|\nabla h_{D}\right|^{2}}{a(x)} d s\right)^{1 / 2}
$$

By Lemma 2.6, for $d(x) \leq r_{1}$,

$$
\int_{\partial \Omega^{\sigma}} \frac{\left|f-f_{j}\right|^{2}}{a(x)} d s \leq c\left(r_{1}\right) \sigma \int_{\Omega^{g \sigma} \backslash \bar{\Omega}_{H}} \frac{|\nabla f|^{2}}{a(x)} d x
$$

Because $\int_{\Omega^{\sigma} \backslash \bar{\Omega}_{H}} \frac{\left|\nabla h_{D}\right|^{2}}{a(x)} d x \rightarrow 0$, as $\sigma \rightarrow 0$, there is a sequence $\left\{\sigma_{m}\right\}_{m=1}^{\infty}, \sigma_{m} \rightarrow 0$, $\sigma_{m+1}<\sigma_{m}$, and $\int_{\partial \Omega^{\sigma_{m}}} \frac{\left|\nabla h_{D}\right|^{2}}{a(x)} d s \leq \frac{c(a, \Omega)}{\sigma_{m}}$, as $m \rightarrow \infty$, then

$$
\left|\int_{\partial \Omega^{\sigma_{m}}} \frac{\mathbf{n} \cdot \nabla h_{D}\left(f-f_{j}\right)}{a(x)} d s\right| \leq c(a, \Omega)\left(\int_{\Omega^{g \sigma_{m}} \backslash \bar{\Omega}_{H}} \frac{|\nabla f|^{2}}{a(x)} d x\right)^{1 / 2} \rightarrow 0
$$

as $\sigma_{m} \rightarrow 0$. Now we have

$$
\int_{\Omega \backslash \bar{\Omega}^{\sigma_{m}}} a^{-1}\left(\nabla h_{D} \nabla f+h_{D} f\right) d x=\sum_{j=1}^{n} 2 \pi d_{j} f_{j}-\int_{\Omega^{\sigma_{m}}} h_{D} f d x-o(1)
$$

i.e.

$$
\int_{\Omega \backslash \bar{\Omega}^{\sigma_{m}}} a^{-1} \nabla h_{D} \cdot \nabla f d x+\int_{\Omega} h_{D} f d x=\sum_{j=1}^{n} 2 \pi d_{j} f_{j}-o(1) .
$$

If $\sigma \in\left(\sigma_{m+1}, \sigma_{m}\right)$,

$$
\begin{aligned}
& \int_{\Omega \backslash \bar{\Omega}^{\sigma}} a^{-1} \nabla h_{D} \cdot \nabla f d x+\int_{\Omega} h_{D} f d x \\
& =\int_{\Omega \backslash \bar{\Omega}^{\sigma_{m}}} a^{-1} \nabla h_{D} \cdot \nabla f d x+\int_{\Omega} h_{D} f d x+\int_{\Omega^{\sigma_{m}} \backslash \bar{\Omega}^{\sigma}} a^{-1} \nabla h_{D} \cdot \nabla f d x .
\end{aligned}
$$

As $\sigma \rightarrow 0$, meas $\left\{\Omega^{\sigma_{m}} \backslash \bar{\Omega}^{\sigma}\right\} \rightarrow 0, \int_{\Omega^{\sigma_{m}} \backslash \bar{\Omega}^{\sigma}} a^{-1} \nabla h_{D} \cdot \nabla f d x \rightarrow 0$, then

$$
\int_{\Omega \backslash \bar{\Omega}^{\sigma}} a^{-1} \nabla h_{D} \cdot \nabla f d x+\int_{\Omega} h_{D} f d x \rightarrow \sum_{j=1}^{n} 2 \pi d_{j} f_{j}, \quad \text { as } \sigma \rightarrow 0 .
$$

Hence the weak form of h_{D} becomes

$$
\begin{gathered}
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla h \cdot \nabla f d x+\int_{\Omega} h f d x=\sum_{j=1}^{n} 2 \pi d_{j} f_{j}, \\
\forall f(x) \in C^{1}(\Omega) \cap V \cap H_{0}^{1}(\Omega) \quad \text { and } \quad h-h_{e} \in V \cap H_{0}^{1}(\Omega) .
\end{gathered}
$$

By Lemma 2.5. $C^{1}(\Omega) \cap V \cap H_{0}^{1}(\Omega)$ is dense in $V \cap H_{0}^{1}(\Omega)$, thus the above equation is true for $\forall f(x) \in V \cap H_{0}^{1}(\Omega)$, i.e. we get (3.3).

Now to prove the solution of $\left(3.3\right.$) is unique. Assume that h_{1} and h_{2} are solutions, then $h=h_{1}-h_{2} \in V \cap H_{0}^{1}(\Omega)$. Apply h as a test function to the corresponding equations about h_{1} and h_{2} respectively, then take their difference,

$$
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}|\nabla h|^{2} d x+\int_{\Omega} h^{2} d x=0
$$

whence $h_{1}-h_{2}=0$ in V.
Lemma 3.4. For fixed $h_{e} \in \mathbb{R}$ and $D \in \mathbb{Z}^{n}$, there is a unique solution for (3.3).
Proof. Existence: For the given h_{e} and $D \in \mathbb{Z}^{n}$, by Lemma 3.1, we can find $\left(\psi_{D}, A_{D}\right)$ as the minimizer(i.e. a minimizer) of J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge (1.8), apply Theorem [3.3, we know $h_{D} \mathbf{e}_{3}=\operatorname{curl} A_{D}$ satisfying eq (3.3). Uniqueness is exactly the last part of Theorem 3.3.

Note that for any $h_{e} \in H^{1}(\Omega)$, Lemma 3.4 holds.
Theorem 3.5. For any fixed h_{e} and $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, J_{0} has a unique minimizer in the space $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right) \subset H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ in the sense of gauge equivalence; moreover, for any two such minimizers, say (ψ, A) and $\left(\psi^{\prime}, A^{\prime}\right)$, under gauge (1.8), then $A=A^{\prime}$ and $\psi=\psi^{\prime} e^{i c}$ for some $c \in \mathbb{R}$.
Proof. The existence follows from Lemma 3.1. Uniqueness: By (1.7) and (1.9), we only need to consider the situation under gauge 1.8). Without loss of generality, we assume the two minimizers (ψ, A) and $\left(\psi^{\prime}, A^{\prime}\right)$ in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ are under gauge (1.8), so that $\operatorname{div} A=\operatorname{div} A^{\prime}=0$ and $A \cdot \mathbf{n}=A^{\prime} \cdot \mathbf{n}=0$, according to Poincaré's lemma, we have $A-A^{\prime}=\left(-\frac{\partial \zeta}{\partial y}, \frac{\partial \zeta}{\partial x}\right)$ for some $\zeta \in H^{1}(\Omega)$, where (x, y) are the coordinates in $2-$ dim. we can also derive that ζ is constant on $\partial \Omega$ from $\left(A-A^{\prime}\right) \cdot \mathbf{n}=0$. Through Theorem 3.3, we get $\operatorname{curl} A=\operatorname{curl} A^{\prime}$, which implies $\Delta \zeta=0$ in Ω, thus ζ is constant on Ω, i.e. $A=A^{\prime}$. Then by (3.2), we have $j_{0}=j_{0}^{\prime}$, so $\nabla \theta=\nabla \theta^{\prime}$ in $\Omega \backslash \bar{\Omega}_{H}$, i.e. $e^{i \theta-i \theta^{\prime}}=e^{i c}$, for some $c \in \mathbb{R}$, hence $\psi=\psi^{\prime} e^{i c}$, and We have proved the later part of the theorem. If take $\phi=c=$ constant, we then have $\left(\psi^{\prime}, A^{\prime}\right)=G_{\phi}(\psi, A)$, i.e. they are gauge equivalent.

We need to mention that Theorem 3.5 is a generalization of the Theorem 3.2 in [4] under our setting.

Now suppose $\left(\psi_{D}, A_{D}\right)$ is a critical point of J_{0}, i.e. a solution of 3.1 and (3.2), then from the first part of Theorem 3.3, h_{D} in $\operatorname{curl} A_{D}=h_{D} \mathbf{e}_{3}$ is the unique solution of (3.3), hence $\left(\psi_{D}, A_{D}\right)$ is a local minimizer of J_{0} in \mathcal{M}_{0}. On the other hand, by Lemma 2.2 , every local minimizer (ψ, A) belongs to $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ for some $D \in \mathbb{Z}^{n}$, hence it satisfies (3.1) and (3.2), and by Theorem 3.5, it is gauge equivalent to the minimizer in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$. Thus we have the following statement.

Corollary 3.6. All critical points of J_{0} are local minimizers in $H_{a}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$.
As is easy to see that if we obtain the solution h_{D} of (3.3), then we can recover A_{D} with the condition $\operatorname{div} A_{D}=0$ in Ω, and recover ψ_{D} from 3.2 , so that 3.3) describes the limit system completely.

4. Properties Of The Solutions Of The Limit Equation

Consider the $n+1$ functions in $V \cap H_{0}^{1}(\Omega),\left\{\eta_{0}, \eta_{1}, \ldots \eta_{n}\right\}$ satisfying

$$
\begin{align*}
& \int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla \eta_{0} \cdot \nabla f d x+\int_{\Omega} \eta_{0} f d x=0 \tag{4.1}\\
& \forall f(x) \in V \cap H_{0}^{1}(\Omega) \quad \text { and } \quad \eta_{0}=1 \text { on } \partial \Omega
\end{align*}
$$

and

$$
\begin{gather*}
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla \eta_{j} \cdot \nabla f d x+\int_{\Omega} \eta_{j} f d x=2 \pi f_{j} \tag{4.2}\\
\forall f(x) \in V \cap H_{0}^{1}(\Omega) \quad \text { and } \quad \eta_{j}=0 \text { on } \partial \Omega, j=1, \ldots, n
\end{gather*}
$$

The existence and uniqueness of solutions in V for both (4.1) and (4.2) follows the result in Lemma 3.4. We can use them to represent the solution of (3.3).

Theorem 4.1. Fix $h_{e} \in \mathbb{R}, D \in \mathbb{Z}^{n}$. If h_{D} solves (3.3), then $h_{D} \in C(\bar{\Omega})$ and

$$
\begin{equation*}
h_{D}=\sum_{j=1}^{n} d_{j} \eta_{j}+h_{e} \eta_{0} \tag{4.3}
\end{equation*}
$$

Moreover, if $\alpha_{k}>1, k=1,2, \ldots, n$, then $h_{D} \in C^{1}(\bar{\Omega})$, where α_{k} is from (1.4).
The proof of Theorem 4.1 is a consequence of properties of η_{0} and $\eta_{j}, j=$ $1,2, \ldots, n$. We will postpone it to the end of this section. We first discuss some properties of $\left\{\eta_{1}, \ldots \eta_{n}\right\}$.
Property(i) $\eta_{j} \geq 0$ in $\Omega, 1 \leq j \leq n$.
Property(ii) $\eta_{1}, \ldots, \eta_{n}$ are linear independent in $V \cap H_{0}^{1}(\Omega)$, i.e., $\sum_{j=1}^{n} w_{j} \eta_{j} \equiv 0$ for $w_{j} \in \mathbb{R}, 1 \leq j \leq n$, if and only if $w_{j}=0,1 \leq j \leq n$.

Proof. To prove this property (i), we use the test function $f=\min \left\{\eta_{j}, 0\right\}$ in 4.2 and obtain

$$
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}|\nabla f|^{2} d x+\int_{\Omega}|f|^{2} d x \leq 0 .
$$

So that $f \equiv 0$, i.e., $\eta_{j} \geq 0$ in Ω for $1 \leq j \leq n$, and (i) is proved.

Assume $g=\sum_{j=1}^{n} w_{j} \eta_{j} \equiv 0$ for some $w_{j} \in \mathbb{R}, 1 \leq j \leq n$. From 4.2, g satisfies the equation

$$
\begin{gather*}
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla g \cdot \nabla f d x+\int_{\Omega} g f d x=2 \pi \sum_{j=1}^{n} w_{j} f_{j} \equiv 0, \tag{4.4}\\
\forall f(x) \in V \cap H_{0}^{1}(\Omega), \quad \text { and } \quad g=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

Fix $k \in\{1, \ldots, n\}$. Choose σ, m such that $\Omega_{k}^{\sigma} \cap \Omega_{H}=\Omega_{k}$ and $m>2 / \sigma$. Set χ_{k}^{σ} as the characteristic function of $\Omega_{k}^{\sigma}, \Omega_{k}^{\sigma}=\left\{x \in \Omega \mid \operatorname{dist}\left\{x, \Omega_{k}\right\}<\sigma\right\}$. Let $f^{k} \equiv \chi_{k}^{\sigma} * \rho_{m}(x)$, where $\rho_{m}(x)=m^{2} \rho(m x), \rho(x)$ is defined as in (6.4). Then $f^{k} \in V \cap H_{0}^{1}(\Omega), f_{k}^{k}=1$ and $f_{j}^{k}=0$ if $k \neq j$, for $1 \leq j \leq n$. Apply f^{k} as a test function for 4.4, we have $w_{k}=0$, for $k=1,2, \ldots, n$. Thus $\eta_{1}, \ldots, \eta_{n}$ are linear independent in $V \cap H_{0}^{1}(\Omega)$, we have (ii).

Property (iii) Assume η_{j}^{k} is the value of η_{j} on Ω_{k}, then $\eta_{j}^{j}=\operatorname{ess} \sup { }_{\Omega} \eta_{j}<$ $2 \pi / \operatorname{meas}\left\{\Omega_{j}\right\}$ and $\eta_{j}^{j}>\eta_{j}^{k}$ for $k \neq j, 1 \leq k, j \leq n$.

Proof. Using $f=\eta_{j}$ as a test function for 4.2), then

$$
2 \pi \eta_{j}^{j}=\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x+\int_{\Omega}\left|\eta_{j}\right|^{2} d x>0
$$

On the other hand, Using $f=\left(\eta_{j}-\eta_{j}^{j}\right)_{+}$as a test function for 4.2), then

$$
\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla\left(\eta_{j}-\eta_{j}^{j}\right)_{+}\right|^{2} d x+\int_{\Omega} \eta_{j}\left(\eta_{j}-\eta_{j}^{j}\right)_{+} d x=0
$$

so that $\left(\eta_{j}-\eta_{j}^{j}\right)_{+}=0$ a.e., i.e. $\eta_{j}^{j}=\operatorname{ess} \sup { }_{\Omega} \eta_{j}$. By using test functions from $C_{0}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$ in 4.2$)$, we see that

$$
\begin{gather*}
-\nabla \cdot a^{-1} \nabla \eta_{j}+\eta_{j}=0 \quad \text { in } \Omega \backslash \bar{\Omega}_{H} \tag{4.5}\\
\eta_{j}=0 \quad \text { on } \partial \Omega, \text { for } 1 \leq j \leq n
\end{gather*}
$$

Since η_{j} is nonconstant, by the maximum principle in 4.5, there is no local maxima for η_{j} in $\Omega \backslash \bar{\Omega}_{H}$. If $\eta_{j}^{k}=\eta_{j}^{j}$ for some $k \neq j$, fix σ such that $\Omega_{k}^{\sigma} \cap \Omega_{H}=\Omega_{k}$. Let $c_{k}=\operatorname{ess} \sup _{\Omega_{k}^{\sigma} \backslash \Omega_{k}^{\sigma / 2}} \eta_{j}$, then $c_{k}<\eta_{j}^{j}=\operatorname{ess}, \sup _{\Omega} \eta_{j}$.

Using $f=\chi_{k}^{\sigma}\left(\eta_{j}-c_{k}\right)_{+} \not \equiv 0$ as a test function in 4.2), we have

$$
0=\int_{\Omega_{k}^{\sigma} \backslash \bar{\Omega}_{k}} a^{-1}|\nabla f|^{2} d x+\int_{\Omega_{k}^{\sigma}} f \eta_{j} d x>0
$$

a contradiction, so that $\eta_{j}^{j}>\eta_{j}^{k}$ for $k \neq j, 1 \leq k, j \leq n$. Using η_{j} as a test function in (4.2), we have $\left(\eta_{j}^{j}\right)^{2}$ meas $\left\{\Omega_{j}\right\}<2 \pi \eta_{j}^{j}$, so that $\eta_{j}^{j}<2 \pi / \operatorname{meas}\left\{\Omega_{j}\right\}$. Therefore, (iii) is proved.

Property (iv) $\eta_{j} \in C^{0}(\bar{\Omega}) \cap V, j=1,2, \ldots, n$.
Proof. By 4.5 and $a^{-1} \in C^{1}\left(\bar{\Omega} \backslash \Omega_{H}\right)$, we apply the standard estimate for the weak solution of an elliptic equation (say [16] theorem 8.8 at page 183 and theorem 8.12 at page 186$), \eta_{j}(x)$ in $H^{2}\left(\Omega^{\prime}\right)$, for any $\Omega^{\prime} \subset \subset \bar{\Omega} \backslash \bar{\Omega}_{H}$, by Sobolev embedding, $\eta_{j}(x) \in C^{0}\left(\bar{\Omega} \backslash \bar{\Omega}_{H}\right)$. Since $\eta_{j}(x)$ is a bounded constant in $\bar{\Omega}_{k}, 1 \leq k \leq n$, with $\eta_{j} \in H^{1}(\bar{\Omega})$, i.e.,

$$
\begin{equation*}
\eta_{j}(x) \in H^{1}(\bar{\Omega}) \cap C^{0}\left(\bar{\Omega} \backslash \bar{\Omega}_{H}\right) \tag{4.6}
\end{equation*}
$$

We show $\eta_{j}(x)$ is C^{0} on the boundary of Ω_{H}. Since Ω_{k} is Lipschitz, $k=1,2, \ldots, n$, there is a constant $\sigma_{k}<r_{1}$, for any $x_{0} \in \Omega \backslash \Omega_{H}$ with $d=\operatorname{dist}\left\{x_{0}, \bar{\Omega}_{k}\right\}<\sigma_{k}$, we can find a rectangle with sides parallel to the local coordinate axes, its top $\overline{x_{0} x_{1}}$, above the boundary graph and its bottom $\overline{y_{0} y_{1}}$, below the graph, $\operatorname{dist}\left\{x_{0}, x_{1}\right\}=d^{1+\alpha_{k} / 3}$, $\operatorname{dist}\left\{x_{0}, y_{1}\right\}=c_{k} d$, where c_{k} is a constant depending on $\Omega_{k}, \overline{x_{0} x_{1}}$ represents the line segment starting at x_{0} and ending at $x_{1}, \overline{y_{0} y_{1}}$ is the line segment starting at y_{0} and ending at y_{1}. Note the rectangle is not unique, but it does not matter.
Claim: For all $f \in C^{0}\left(\bar{\Omega} \backslash \bar{\Omega}_{H}\right) \cap V$,

$$
d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|f\left(x_{s}\right)-f_{k}\right| d H^{1} \leq b_{k} d^{\alpha_{k} / 3}(x)\|f\|_{V}
$$

where the integral is in $\overline{x_{0} x_{1}}$, and $x_{s}=(1-s) x_{0}+s x_{1}$, and $s \in[0,1]$.
Proof of the Claim: Assume $f \in C^{1}(\Omega) \cap V$, then $f(y)=f_{k}$ in $\overline{y_{0} y_{1}}$ and

$$
\int_{x_{0}}^{x_{1}}\left|f\left(x_{s}\right)-f_{k}\right| d H^{1}=\int_{x_{0}}^{x_{1}}\left|f\left(x_{s}\right)-f\left(y_{s}\right)\right| d H^{1}=\int_{x_{0}}^{x_{1}}\left|\int_{x_{s}}^{y_{s}} \nabla f \cdot \mathbf{n}_{x_{s} y_{s}} d H^{1}\right| d H^{1}
$$

where $\mathbf{n}_{x_{s} y_{s}}$ is the unit vector from x_{s} to y_{s}. So that

$$
\begin{aligned}
\int_{x_{0}}^{x_{1}}\left|f\left(x_{s}\right)-f_{k}\right| d H^{1} & \leq \int_{x_{0}}^{x_{1}} \int_{x_{s}}^{y_{s}}|\nabla f| d x \\
& \leq\left(\int_{x_{0}}^{x_{1}} \int_{x_{s}}^{y_{s}} a^{-1}|\nabla f|^{2} d x\right)^{1 / 2} \cdot\left(\int_{x_{0}}^{x_{1}} \int_{x_{s}}^{y_{s}} a(x) d x\right)^{1 / 2} \\
& \leq\|f\|_{V}\left(\int_{x_{0}}^{x_{1}} \int_{x_{s}}^{y_{s}} C_{1} d^{\alpha_{k}} d x\right)^{1 / 2} \\
& \leq b_{k} d^{1+2 \alpha_{k} / 3}\|f\|_{V}
\end{aligned}
$$

here $b_{k}=C_{1} c_{k}$. From the above inequality,

$$
d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|f\left(x_{s}\right)-f_{k}\right| d H^{1} \leq b_{k} d^{\alpha_{k} / 3}\|f\|_{V}
$$

Because $C^{1}(\Omega) \cap V$ is dense in $C^{0}(\Omega) \cap V$, we have proved the claim.
Now we continue the proof of Property (iv). Since $\eta_{j}(x) \in C^{0}\left(\Omega_{k}^{\sigma_{k}} \backslash \bar{\Omega}_{k}\right)$, for every $x_{0} \in \Omega_{k}^{\sigma_{k}} \backslash \bar{\Omega}_{k}$, we have

$$
\begin{aligned}
& \left|\eta_{j}\left(x_{0}\right)-\eta_{j}^{k}\right| \\
& =\leq d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|\eta_{j}\left(x_{s}\right)-\eta_{j}^{k}\right| d H^{1}+d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|\eta_{j}\left(x_{s}\right)-\eta_{j}\left(x_{0}\right)\right| d H^{1} \\
& \leq b_{k} d^{\alpha_{k} / 3}\left\|\eta_{j}\right\|_{V}+d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|\eta_{j}\left(x_{s}\right)-\eta_{j}\left(x_{0}\right)\right| d H^{1}
\end{aligned}
$$

To estimate $d^{-1-\alpha_{k} / 3} \int_{x_{0}}^{x_{1}}\left|\eta_{j}\left(x_{s}\right)-\eta_{j}\left(x_{0}\right)\right| d H^{1}$, consider 4.5) in the ball $B_{d / 2}\left(x_{0}\right)$. Scaling $B_{d / 2}\left(x_{0}\right)$ to a unit ball, 4.5 becomes

$$
-4 d^{-2} \nabla_{y} \cdot a^{-1}\left(y d / 2+x_{0}\right) \nabla_{y} \eta_{j}=-\eta_{j} \quad \text { in } B_{1}(0)
$$

Apply Hölder estimate [16, theorem 8.22 page 200] in the ball $B_{2 d^{\alpha}{ }_{k} / 3}(0)$ for the dilated equation, we have osc $\eta_{j} \leq C d^{\beta \alpha_{k} / 3}\left\|\eta_{j}\right\|_{L^{\infty}}$, where C depends on
β, Ω_{k} and $\alpha_{k}, \beta \in(0,1)$. By Property (iii), $\left\|\eta_{j}\right\|_{L^{\infty}} \leq 1 / \operatorname{meas}\left\{\Omega_{j}\right\}$, so that $\left|\eta_{j}\left(x_{s}\right)-\eta_{j}\left(x_{0}\right)\right| \leq C\left(\Omega_{k}, \alpha_{k}\right) d^{\beta \alpha_{k} / 3}$, i.e.,

$$
\begin{equation*}
\left|\eta_{j}\left(x_{0}\right)-\eta_{j}^{k}\right| \leq b_{k} d^{\alpha_{k} / 3}\left\|\eta_{j}\right\|_{V}+C\left(\Omega_{k}, \alpha_{k}\right) d^{\beta \alpha_{k} / 3} \leq \tilde{b}_{k} d^{\beta \alpha_{k} / 3}\left(1+\left\|\eta_{j}\right\|_{V}\right) \tag{4.7}
\end{equation*}
$$

for all $x_{0} \in \Omega_{k}^{\sigma_{k}} \backslash \bar{\Omega}_{k}$. Since $d(x) \rightarrow 0$ as $x \rightarrow \partial \Omega_{k}, \eta_{j}(x) \rightarrow \eta_{j}^{k}$ at $\partial \Omega_{k}$, i.e., $\eta_{j}(x)$ is continuous at $\partial \Omega_{k}$. Combining this with 4.6), we have $\eta_{j} \in C^{0}(\bar{\Omega})$, and Property (iv) is proved.

Property (v) $\eta_{j}>0$ a.e. in $\Omega, j=1,2, \ldots, n$. Hence $\eta_{j}^{k}>0,1 \leq k, j \leq n$.
Proof. We prove that meas $\left\{x \in \bar{\Omega} \mid \eta_{j}(x)=0\right\}=0$ for $j=1,2, \ldots, n$. By (iv), it makes sense to talk about the level set of $\eta_{j}(x)$. Let $\Gamma_{0}^{j}=\left\{x \in \bar{\Omega} \mid \eta_{j}(x)=0\right\}$, $\Gamma_{\delta}^{j}=\left\{x \in \bar{\Omega} \mid \eta_{j}(x) \leq \delta\right\}$, then $\Gamma_{0}^{j} \subset \Gamma_{\delta}^{j}$, meas $\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\} \rightarrow 0$ as $\delta \rightarrow 0$. By $\eta_{j}^{j}>0$, $\bar{\Omega}_{j} \cap \Gamma_{\delta}^{j}=\emptyset$ for $\delta<\eta_{j}^{j}$. In the proof, we always assume $\delta<\eta_{j}^{j}$, i.e., $\bar{\Omega}_{j} \cap \Gamma_{\delta}^{j}=\emptyset$.

Denote $\chi_{\Gamma_{\delta}^{j}}$ as the characteristic function of the set $\Gamma_{\delta}^{j}, \delta \geq 0$. Set

$$
g_{\delta}(v)=\left\{\begin{array}{ll}
v, & v \leq \delta / 2 \\
(\delta-v)_{+}, & v>\delta / 2
\end{array} \quad \text { and } \quad h_{\delta}(v)= \begin{cases}v / 2, & v \leq 2 \delta / 3 \\
(\delta-v)_{+}, & v>2 \delta / 3\end{cases}\right.
$$

Using $f_{\delta}=\chi_{\Gamma_{\delta}^{j}} h_{\delta}\left(\eta_{j}\right) \in H_{0}^{1}(\Omega) \cap V$ as a test function in 4.2), we have

$$
\int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1} h_{\delta}^{\prime}\left(\eta_{j}\right)\left|\nabla \eta_{j}\right|^{2} d x+\int_{\Gamma_{\delta}^{j}} \eta_{j} f_{\delta} d x=0
$$

By the sign of h_{δ}^{\prime} in Γ_{δ}^{j},

$$
\begin{aligned}
\int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{2 \delta / 3}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x & =1 / 2 \int_{\Gamma_{2 \delta / 3}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x+\int_{\Gamma_{\delta}^{j}} \eta_{j} f_{\delta} d x \\
& \leq 1 / 2 \int_{\Gamma_{2 \delta / 3}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x+\int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x
\end{aligned}
$$

Do the same thing in $\Gamma_{2 / 3 \delta}^{j}, \Gamma_{2^{2} / 3^{2} \delta}^{j}, \Gamma_{2^{3} / 3^{3} \delta}^{j}, \ldots$, to get

$$
\begin{aligned}
\int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{2 \delta / 3}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x & \leq \sum_{k=0}^{\infty} 2^{-k} \int_{\Gamma_{2^{k} \delta / 3^{k}}^{j}}\left|\eta_{j}\right|^{2} d x \\
& <\sum_{k=0}^{\infty} 2^{-k} \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x=2 \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x .
\end{aligned}
$$

Similarly,

$$
\int_{\Gamma_{2 \delta / 3}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{4 \delta / 9}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x<2 \int_{\Gamma_{2 \delta / 3}^{j}}\left|\eta_{j}\right|^{2} d x .
$$

Summing the above two equations, we have

$$
\int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{4 \delta / 9}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x<4 \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x
$$

Use the test function $\chi_{\Gamma_{\delta}^{j}} g_{\delta}\left(\eta_{j}\right)$ in 4.2), get

$$
\int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{\delta / 2}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x=\int_{\Gamma_{\delta / 2}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x+\int_{\Gamma_{\delta}^{j}} \eta_{j} g_{\delta}\left(\eta_{j}\right) d x
$$

i.e.,

$$
\int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{\delta / 2}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x>\int_{\Gamma_{\delta / 2}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x .
$$

So that

$$
\begin{aligned}
\int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x & \leq 2 \int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{\delta / 2}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x \\
& \leq 2 \int_{\Gamma_{\delta}^{j} \backslash\left(\bar{\Omega}_{H} \cup \Gamma_{4 \delta / 9}^{j}\right)} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x \leq 8 \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x
\end{aligned}
$$

Consider the function $g(x)=\chi_{\Gamma_{\delta}^{j}}\left(\delta-\eta_{j}\right)_{+} \in H^{1}(\Omega)$, then $\nabla g=\nabla \eta_{j}$ a.e. in Γ_{δ}^{j}. By $g \equiv 0$ on Ω_{j}, and meas $\left\{\Omega_{j}\right\}>0$, we can apply Sobolev inequality to $g(x)$, then

$$
\begin{aligned}
\int_{\Gamma_{\delta}^{j}}|g|^{2} d x & \leq c(\Omega) \int_{\Gamma_{\delta}^{j}}|\nabla g|^{2} d x=c(\Omega) \int_{\Gamma_{\delta}^{j}}\left|\nabla \eta_{j}\right|^{2} d x \\
& \leq c(a, \Omega) \int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla \eta_{j}\right|^{2} d x \leq c(a, \Omega) \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x
\end{aligned}
$$

Therefore,

$$
\delta^{2} \operatorname{meas}\left\{\Gamma_{0}^{j}\right\} \leq \int_{\Gamma_{\delta}^{j}}|g|^{2} d x \leq c(a, \Omega) \int_{\Gamma_{\delta}^{j}}\left|\eta_{j}\right|^{2} d x \leq c(a, \Omega) \delta^{2} \operatorname{meas}\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\}
$$

i.e., meas $\left\{\Gamma_{0}^{j}\right\} \leq c(a, \Omega) \operatorname{meas}\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\} \rightarrow 0$, as $\delta \rightarrow 0$, thus meas $\left\{\Gamma_{0}^{j}\right\}=0, \eta_{j}>0$ a.e.. Since meas $\left\{\Omega_{k}\right\}>0$, for $1 \leq k \leq n$, and $\eta_{j}>0$ a.e., $\eta_{j}^{k}=\frac{\int_{\Omega_{k}} \eta_{j}(x) d x}{\operatorname{meas}\left\{\Omega_{k}\right\}}>0$. So that Property (v) is proved.

Property (vi) For every domain G_{k} with $G_{k} \cap \bar{\Omega}_{H}=\bar{\Omega}_{k}, \eta_{j}^{k}<\sup _{G_{k}} \eta_{j}$, where $k \neq j, k, j=1,2, \ldots, n$.

Proof. If η_{j} is constant on any subdomain of $\Omega \backslash \bar{\Omega}_{H}$, then $\nabla \eta_{j}$ is zero, from 4.5), η_{j} is also zero, which contradict with (v). So that, η_{j} is not a constant on any subdomain of $\Omega \backslash \bar{\Omega}_{H}$. We use contradiction to prove Property (vi). Assume $\eta_{j}^{k}=\sup _{G_{k}} \eta_{j}$, for some G_{k} as in (vi). Set

$$
\sigma<\operatorname{dist}\left\{\partial G_{k}, \bar{\Omega}_{k}\right\}, \quad c_{k}=\underset{\Omega_{k}^{\sigma} \backslash \bar{\Omega}_{k}^{\sigma / 2}}{\operatorname{ess} \sup _{j}} \eta_{j}
$$

use $f=\chi_{\Omega_{k}^{\sigma}}\left(\eta_{j}-c_{k}\right)_{+}$as a test function in 4.2), for $k \neq j$,

$$
\int_{\Omega_{k}^{\sigma} \backslash \bar{\Omega}_{k}} a^{-1}|\nabla f|^{2} d x+\int_{\Omega_{k}^{\sigma}} f \eta_{j} d x=0
$$

i.e., $f \equiv 0, \eta_{j}^{k}=c_{k}>0$. So that η_{j} achieves its nonzero local maximum in $\Omega_{k}^{\sigma} \backslash \bar{\Omega}_{k}^{\sigma / 2}$, which contradicts with the maximum principle applicable to 4.5, hence Property (vi) holds.

Property (vii) If $\alpha_{k}>1, k=1,2, \ldots, n$, then $\eta_{j} \in C^{1}(\bar{\Omega}), j=1,2, \ldots, n$, where α_{k} is from 1.4.

Proof. Without loss of generality, we write η_{j} as η in the proof. The C^{1} continuity of η in $\bar{\Omega} \backslash \bar{\Omega}_{H}$ is from the standard elliptic argument (See [16], theorem 8.33 on page 210). We focus on the proof of the C^{1} continuity of η close to Ω_{H}, and show that $|\nabla \eta|$ is forced to 0 as x close $\partial \Omega_{H}$. For $T \leq \eta_{j}^{j}$, denote $\Sigma_{T}=\{x \mid \eta(x) \geq T\}$, use the test function $(\eta-T)_{+}$in (4.2), then

$$
\int_{\Sigma_{T} \backslash \bar{\Omega}_{H}} a^{-1}|\nabla \eta|^{2} d x+\int_{\Sigma_{T}} \eta(\eta-T) d x=2 \pi\left(\eta_{j}^{j}-T\right)
$$

Apply the co-area formula (see [14]),

$$
\begin{equation*}
\int_{\{\eta=T\} \backslash \bar{\Omega}_{H}} a^{-1}|\nabla \eta| d H^{1}(x)+\int_{\Sigma_{T}} \eta d x=2 \pi \tag{4.8}
\end{equation*}
$$

For any point x_{0} close to Ω_{k} with $d=\operatorname{dist}\left\{x_{0}, \Omega_{k}\right\} \leq r_{1}, 4.2$ becomes (4.5) in $B_{d / 2}\left(x_{0}\right)$, with $a(x)$ of order $d_{k}^{\alpha_{k}}(x)$, where $d_{k}(x)=\operatorname{dist}\left\{x, \Omega_{k}\right\}$. Scaling $B_{d / 2}\left(x_{0}\right)$ to the unit ball $B_{1}(0)$, write $\tilde{\eta}(y)=\eta\left(d y / 2+x_{0}\right)$, then 4.5 can be simplified as

$$
-\triangle_{y}\left(\tilde{\eta}-\eta\left(x_{0}\right)\right)+\frac{d}{2} \frac{\nabla_{x} a}{a} \cdot \nabla_{y}\left(\tilde{\eta}-\eta\left(x_{0}\right)\right)=-a\left(\frac{d}{2}\right)^{2} \tilde{\eta}, \quad \text { in } B_{1}(0)
$$

Apply Hölder estimate [16, Theorem 8.32 page 210] in the ball $B_{1 / 2}(0)$ for the above dilated equation, then $\tilde{\eta} \in C^{1, \beta}\left(B_{1 / 2}(0)\right), \forall \beta \in(0,1)$, and $\exists \tilde{C}$ depending only on α_{k}, C_{1}, such that

$$
\left|\nabla_{y} \tilde{\eta}\right|_{C^{0, \beta}\left(B_{1 / 2}(0)\right)} \leq \tilde{C}\left(\left|\tilde{\eta}-\eta\left(x_{0}\right)\right|_{C^{0}\left(B_{1}(0)\right)}+\left|a\left(x_{0}\right)\left(\frac{d}{2}\right)^{2} \tilde{\eta}\right|_{C^{0}\left(B_{1}(0)\right)}\right) .
$$

Fix β. From (1.4), $a\left(x_{0}\right)$ is bounded by $d^{\alpha_{k}}$. Pull back to $B_{d / 2}\left(x_{0}\right)$, then

$$
\begin{equation*}
\left|\left(\frac{d}{2}\right)^{1+\beta} \nabla_{x} \eta\right|_{C^{0, \beta}\left(B_{d / 4}\left(x_{0}\right)\right)} \leq \tilde{C}\left(\left|\eta-\eta\left(x_{0}\right)\right|_{C^{0}\left(B_{d / 2}\left(x_{0}\right)\right)}+d^{\alpha_{k}+2}\right) \tag{4.9}
\end{equation*}
$$

Let $T=\eta\left(x_{0}\right), M=\left|\nabla \eta\left(x_{0}\right)\right|$, we iterate to obtain the bound on $\nabla \eta\left(x_{0}\right)$. First by the uniform bound of η and $\sqrt[4.9]{ },|\nabla \eta|_{C^{0, \beta}\left(B_{d / 4}\left(x_{0}\right)\right)} \leq \tilde{C}_{1} d^{-1-\beta}$, so that $|\nabla \eta(x)|>$ $\frac{M}{2}$ for $x \in B_{\tilde{r}_{1}}\left(x_{0}\right)$, where $\tilde{r}_{1}=\left(\frac{M}{2 \tilde{C}_{1}}\right)^{1 / \beta} d^{1+1 / \beta}$.

By 4.8), $\int_{\{\eta=T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)} a^{-1}|\nabla \eta| d H^{1}(x) \leq 2 \pi$, then $\frac{M}{2 d^{\alpha k}} \operatorname{meas}\{\{\eta=T\} \cap$ $\left.B_{\tilde{r}_{1}}\left(x_{0}\right)\right\} \leq 2 \pi$. If meas $\left\{\{\eta=T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)\right\} \geq \tilde{r}_{1}$, then $\frac{M^{1+1 / \beta} d^{1+1 / \beta}}{2 d^{\alpha k}\left(2 \tilde{C}_{1}\right)^{1 / \beta}} \leq 2 \pi$, i.e. $M \leq \tilde{C}_{2} d^{\beta \alpha_{k} /(1+\beta)-1}$.

If meas $\left\{\{\eta=T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)\right\}<\tilde{r}_{1}$, by the continuity of η and the intermediate value theorem, $\{\eta=T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)$ will be a closed curve inside $B_{\tilde{r}_{1}}\left(x_{0}\right)$, we use $(T-\eta)+\chi_{B_{\tilde{r}_{1}}\left(x_{0}\right)}$ as the test function in 4.2), then

$$
\int_{\{\eta \leq T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)}\left(-a^{-1}|\nabla \eta|^{2}+\eta(T-\eta)\right) d x=0
$$

so that

$$
\begin{aligned}
\frac{M}{2 C_{1} d^{\alpha_{k}}} \operatorname{meas}\left\{\{\eta \leq T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)\right\} & \leq \int_{\{\eta \leq T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)} \eta(T-\eta) d x \\
& \leq C \operatorname{meas}\left\{\{\eta \leq T\} \cap B_{\tilde{r}_{1}}\left(x_{0}\right)\right\}
\end{aligned}
$$

we have $M \leq \tilde{C}_{2} d^{\alpha_{k}}$. Hence $|\nabla \eta(x)| \leq \tilde{C}_{2} d^{-1+\beta \alpha_{k} /(1+\beta)}$ for all $x \in \Omega_{k}^{r_{1}}$, which yields

$$
\left|\tilde{\eta}-\eta\left(x_{0}\right)\right|_{C^{0}\left(B_{d / 2}\left(x_{0}\right)\right)} \leq \tilde{C}_{2} d^{\beta \alpha_{k} /(1+\beta)}
$$

Back to 4.9), then $|\nabla \eta|_{C^{0, \beta}\left(B_{d / 4}\left(x_{0}\right)\right)} \leq \tilde{C}_{3} d^{-1-\beta+\beta \alpha_{k} /(1+\beta)}$. Consider in $B_{\tilde{r}_{2}}\left(x_{0}\right)$, where $\tilde{r}_{2}=\left(\frac{M}{2 \tilde{C}_{3}}\right)^{1 / \beta} d^{1+1 / \beta-\alpha_{k} /(1+\beta)}$. Using the same way as above, we obtain

$$
\frac{M^{1+1 / \beta} d^{1+1 / \beta-\alpha_{k} /(1+\beta)}}{2 d^{\alpha_{k}}\left(2 \tilde{C}_{3}\right)^{1 / \beta}} \leq 2 \pi
$$

i.e., $M \leq \tilde{C}_{4} d^{-1+\beta \alpha_{k} /(1+\beta)+\beta \alpha_{k} /(1+\beta)^{2}}$. Iterate N times,

$$
M \leq \tilde{C}_{2 N} d^{-1+\beta \alpha_{k}\left((1+\beta)^{-1}+(1+\beta)^{-2}+\cdots+(1+\beta)^{-N}\right)}=\tilde{C}_{2 N} d^{-1+\alpha_{k}\left(1-(1+\beta)^{-N-1}\right)}
$$

Take $N=1+\left\lfloor\log _{1+\beta} \frac{\alpha_{k}}{\alpha_{k}-1}\right\rfloor$, then $\gamma_{k}=\left(1-(1+\beta)^{-N-1}\right) \alpha_{k}-1>0$, and $|\nabla \eta(x)| \leq$ $\tilde{C}_{2 N} d^{\gamma_{k}}$ for any x with $\operatorname{dist}\left\{x, \Omega_{k}\right\} \leq r_{1} / 2$. Thus as x approaches $\Omega_{k},|\nabla \eta(x)|$ approaches 0 with the order of $d_{k}^{\gamma_{k}}(x)$. The above argument is held for all x close to $\Omega_{k}, k=1,2, \ldots, n$, hence as x approaches $\Omega_{H},|\nabla \eta(x)|$ approaches 0 .

Similar to Properties (i)-(vii) of $\eta_{k}, k=1,2, \ldots, n$, we have the following results.
Lemma 4.2. η_{0} has the following properties:
(i) $0 \leq \eta_{0} \leq 1$ in Ω
(ii) $\eta_{0} \in C^{0}(\bar{\Omega}) \cap V$
(iii) Assume η_{0}^{k} is the value of η_{0} on Ω_{k}, then $\eta_{0}^{j} \neq 1$, for $1 \leq k \leq n$.
(iv) $\eta_{0} \neq 0$ a.e.. $\eta_{0} \neq 1$ a.e.; i.e. $\eta_{0}^{j} \neq 0$ for $1 \leq k \leq n$.
(v) For any subdomain G_{k} with $G_{k} \cap \bar{\Omega}_{H}=\bar{\Omega}_{k}, \eta_{0}^{k}<\sup _{G_{k}} \eta_{0}$, for $1 \leq k \leq n$.
(vi) If $\alpha_{k}>1, k=1,2, \ldots, n$, then $\eta_{0} \in C^{1}(\bar{\Omega})$.

Proof. (i) can be proved by using test functions $\left(\eta_{0}-1\right)_{+}=\max \left\{\eta_{0}-1,0\right\}$ and $f=\min \left\{\eta_{0}, 0\right\}$ for (4.1) respectively.

The proof of (ii) is the same as the proof of Property (iv) above.
Using test functions from $C_{0}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$ in 4.1), we get

$$
\begin{gather*}
-\nabla \cdot a^{-1} \nabla \eta_{0}+\eta_{0}=0 \quad \text { in } \Omega \backslash \bar{\Omega}_{H} \tag{4.10}\\
\eta_{0}=1 \quad \text { on } \partial \Omega
\end{gather*}
$$

Fix σ such that $\Omega_{k}^{\sigma} \cap \Omega_{H}=\Omega_{k}$. If $\eta_{0}^{k}=1$ for some k, let $c_{k}=\operatorname{ess} \sup _{\Omega_{k}^{\sigma} \backslash \Omega_{k}^{\sigma / 2}} \eta_{0}$, then $c_{k}<1=\operatorname{ess}_{\sup }^{\Omega} \eta_{0}$ by the maximum principle for 4.10). Use $f=\chi_{k}^{\sigma}\left(\eta_{0}-c_{k}\right)_{+} \not \equiv 0$ as a test function in 4.1,

$$
0=\int_{\Omega_{k}^{\sigma} \backslash \bar{\Omega}_{k}} a^{-1}|\nabla f|^{2} d x+\int_{\Omega_{k}^{\sigma}} f \eta_{0} d x>0
$$

a contradiction, so that $\eta_{0}^{k}<1$ for $1 \leq k \leq n$. (iii) is showed.
Applying the maximum principle for $4.10, \eta_{0}$ can not achieve the maximum value in $\Omega \backslash \bar{\Omega}_{H}$, combine with (iii), then $\eta_{0} \neq 1$ a.e..

To show $\eta_{0} \neq 0$ a.e., we use the same idea as in the proof of Property (v) to show meas $\left\{\Gamma_{0}^{j}\right\}=0$, where $\Gamma_{0}^{j}=\left\{x \in \bar{\Omega} \mid \eta_{0}(x)=0\right\}$. Let $\Gamma_{\delta}^{j}\left\{x \in \bar{\Omega} \mid \eta_{0}(x) \leq \delta\right\}$, then $\Gamma_{0}^{j} \subset \Gamma_{\delta}^{j}$, and meas $\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\} \rightarrow 0$ as $\delta \rightarrow 0$. By $\eta_{0}=1$ on $\partial \Omega, \Gamma_{\delta}^{j} \cap \partial \Omega=\emptyset$ for all $0 \leq \delta<1$. Use $f_{\delta}=-\chi_{\Gamma_{\delta}^{j}}\left(\delta-\eta_{0}\right)_{+} \in H_{0}^{1}(\Omega) \cap V$ as a test function in (4.1), then

$$
\int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla f_{\delta}\right|^{2} d x+\int_{\Gamma_{\delta}^{j}} \eta_{0} f_{\delta} d x=0, \text { i.e., } \int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla f_{\delta}\right|^{2} d x=\int_{\Gamma_{\delta}^{j}} \eta_{0}\left|f_{\delta}\right| d x .
$$

By the Sobolev embedding,

$$
\begin{aligned}
\int_{\Gamma_{\delta}^{j}}\left|f_{\delta}\right|^{2} d x & \leq c(\Omega) \int_{\Gamma_{\delta}^{j}}\left|\nabla f_{\delta}\right|^{2} d x \\
& \leq c(a, \Omega) \int_{\Gamma_{\delta}^{j} \backslash \bar{\Omega}_{H}} a^{-1}\left|\nabla f_{\delta}\right|^{2} d x \\
& \leq c(a, \Omega) \int_{\Gamma_{\delta}^{j}} \eta_{0}\left|f_{\delta}\right| d x
\end{aligned}
$$

Therefore,

$$
\delta^{2} \operatorname{meas}\left\{\Gamma_{0}^{j}\right\} \leq \int_{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}}\left|f_{\delta}\right|^{2} d x \leq c(a, \Omega) \delta^{2} \operatorname{meas}\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\}
$$

i.e., meas $\left\{\Gamma_{0}^{j}\right\} \leq c(a, \Omega) \operatorname{meas}\left\{\Gamma_{\delta}^{j} \backslash \Gamma_{0}^{j}\right\} \rightarrow 0$, as $\delta \rightarrow 0$. Therefore, meas $\left\{\Gamma_{0}^{j}\right\}=0$ and (iv) is proved.

The proof of (v) is the same as the proof of Property (vi) above. To prove (vi), use $\left(T-\eta_{0}\right)_{+}$as the test function in 4.1). The rest is similar to the proof of Property (vii) above, use the coarea formula, elliptic estimates and iteration to obtain the desired result.

Proof of Theorem 4.1. The representation of the h_{D} follows from the linearity of (3.3) and its uniqueness of solution. The regularity of h_{D} follows from the regularity of η_{0} and $\eta_{j}, j=1,2, \ldots, n$.

5. Consequence of the Limit Problem

In this section, we follow [4] closely to give a few applications of the limit problem. Set

$$
\begin{gathered}
a_{i j}=\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla \eta_{i} \cdot \nabla \eta_{j} d x+\int_{\Omega} \eta_{i} \eta_{j} d x, 1 \leq i, j \leq n, \\
b_{j}=\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla \eta_{0} \cdot \nabla \eta_{j} d x+\int_{\Omega}\left(\eta_{0}-1\right) \eta_{j} d x, \quad 1 \leq j \leq n, \\
b_{0}=\int_{\Omega \backslash \bar{\Omega}_{H}} a^{-1} \nabla \eta_{0} \cdot \nabla \eta_{0} d x+\int_{\Omega}\left(\eta_{0}-1\right)^{2} d x
\end{gathered}
$$

and apply the same argument as [4, Theorem 3.4] (also see [3, Lemma 2.2]). We can represent the local minimum energy of J_{0} as the follows.

Lemma 5.1. Fix h_{e}. If $\left(\psi_{D}, A_{D}\right)$ minimizes J_{0} in $H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$, then

$$
\begin{equation*}
J_{0}\left(\psi_{D}, A_{D}\right)=\int_{\Omega}|\nabla \sqrt{a}|^{2} d x+\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} d_{i} d_{j}+2 \sum_{j=1}^{n} b_{j} d_{j} h_{e}+b_{0} h_{e}^{2} \tag{5.1}
\end{equation*}
$$

For a minimizing sequence of J_{ϵ} in \mathcal{M}, we also prove the following result.
Theorem 5.2. Fix h_{e} and a sequence $\epsilon_{k} \rightarrow 0^{+}$as $k \rightarrow \infty$. Let $\left(\psi_{\epsilon_{k}}, A_{\epsilon_{k}}\right)$ minimize $J_{\epsilon_{k}}$ in $H^{1}(\Omega ; \mathbb{C}) \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ under gauge (1.8), then $\left|\psi_{\epsilon_{k}}\right| \rightarrow \sqrt{a}$ in $C(\bar{\Omega})$, and there is a subsequence $\left(\psi_{\epsilon_{k_{\ell}}}, A_{\epsilon_{k_{\ell}}}\right) \rightarrow\left(\psi_{D}, A_{D}\right)$ in \mathcal{M} as $\ell \rightarrow \infty$, where $\left(\psi_{D}, A_{D}\right)$ is a minimizer of J_{0} in \mathcal{M}_{0}, and $\left(\psi_{D}, A_{D}\right) \in H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$ for some $D \in \mathbb{Z}^{n}$. Consequently, $J_{\epsilon_{k_{\ell}}}\left(\psi_{\epsilon_{k_{\ell}}}, A_{\epsilon_{k_{\ell}}}\right) \rightarrow J_{0}\left(\psi_{D}, A_{D}\right)$ as $\ell \rightarrow \infty$, moreover, for any $0<$
$\sigma<r_{1}$ and ℓ sufficiently large, $\left|\psi_{\epsilon_{k_{\ell}}}\right|$ is uniformly positive outside $\bigcup_{j=1}^{n} \bar{\Omega}_{j}^{\sigma}$, and the degree of $\psi_{\epsilon_{k_{\ell}}}$ around $\overline{\Omega_{j}^{\sigma}}$ is $d_{j}, j=1,2, \ldots, n$.

Proof. Use the same argument as 4, Theorem 4.2], we can prove the first part of the theorem; the second part follows from the definition of the degree in 2.3 and the fact that $\left(\psi_{\epsilon_{k_{\ell}}}, A_{\epsilon_{k_{\ell}}}\right) \rightarrow\left(\psi_{D}, A_{D}\right)$ in \mathcal{M} as $k_{\ell} \rightarrow \infty$.

From Theorem5.2, for sufficiently small ϵ, the vortex set of the minimizers of J_{ϵ} in \mathcal{M} is forced to close the zero set of $a(x)$, by zero set of $a(x)$ corresponds to the normal impurities in the inhomogeneous superconductor, the vortices of the minimizers of J_{ϵ} is pinned near the normal impurities, which verifies the effectiveness of the pinning mechanism by adding normal impurities to a superconductor.
Proof of Theorem 1.3. By Theorem 2.3. $H_{a, D}^{1}$ is both open and closed in H_{a}^{1}, we can always find $r>0$ sufficiently small, such that $\mathcal{B}_{r} \cap \mathcal{M}_{0}=\mathcal{B}_{r} \cap\left[H_{a, D}^{1} \times H^{1}\left(\Omega ; \mathbb{R}^{2}\right)\right]$. Apply the same argument as in [4, Theorem 4.6], we derive Theorem 1.3 .

Acknowledgements. The main results of the paper were done when the author was a student in the Math department at Purdue University. The author thanks his advisor, Professor Bauman, for her endless assistance and helpful suggestions for this paper and other results.

6. Appendix

In this part, we list some lengthy proofs omitted in Section II.
Proof of Lemma 2.2. First we can find a sequence of nested C^{∞} domains to approximate Ω_{H}, say they are

$$
\Omega_{H}^{1} \supset \supset \Omega_{H}^{2} \supset \supset \cdots \supset \supset \Omega_{H} \quad \text { with } \operatorname{dist}\left\{\partial \Omega_{H}^{m}, \partial \Omega_{H}\right\} \rightarrow 0, \text { as } m \rightarrow \infty
$$

Then by the proposition of Schoen and Uhlenbeck [23, page 267] (also see [8, Lemma A. 11 page 244]), there exists a sequence $\left\{v^{m}\right\}_{m=1}^{\infty}$, such that

$$
\begin{equation*}
v^{m} \in C^{2}\left(\bar{\Omega} \backslash \Omega_{H}^{m} ; S^{1}\right) \cap H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right), v^{m} \rightarrow v \text { in } H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right), \text { as } m \rightarrow \infty \tag{6.1}
\end{equation*}
$$

From (2.3), for any G_{j} satisfying (2.1), $f_{G_{j}}$ satisfying 2.2, the degree of v^{m} on ∂G_{j} will converge to the degree of $v=u / \sqrt{a}$ on ∂G_{j}, i.e. for all m sufficiently large, we have

$$
\begin{equation*}
d_{j}=\operatorname{deg}\left(v^{m}, \partial G_{j}\right)=\frac{1}{\pi} \int_{G_{j} \backslash \bar{\Omega}_{j}} J\left(v^{m} f_{G_{j}}\right) d x=\frac{1}{2 \pi i} \int_{\partial G_{j}}\left(v^{m}\right)^{*}\left(v^{m}\right)_{\tau} d s \tag{6.2}
\end{equation*}
$$

Here τ is the counterclockwise tangent vector field of ∂G_{j}, and the most righthand side is derived by using integral by part, it is the standard definition of the degree (winding number) of C^{1} function on ∂G_{j}. We define a sequence of real two-dimensional vector fields by

$$
\begin{equation*}
F^{m}(x)=-\sum_{j=1}^{n} d_{j} \nabla \theta_{j}+i\left(v^{m}\right)^{*} \nabla v^{m}, \quad m=1,2, \ldots, x \in \Omega \backslash \bar{\Omega}_{H}^{m} \tag{6.3}
\end{equation*}
$$

Note that $\nabla \theta_{j}$ is a single-valued smooth vector field on $\Omega \backslash \bar{\Omega}_{H}$, and $\int_{\partial G_{j}} \nabla \theta_{j} \cdot \tau d s=$ $2 \pi, 1 \leq j \leq n$, for any G_{j} as in 2.1. From 6.2, $\oint_{C} F^{m} \cdot \tau d s=0$ for any closed curve $C \subset \subset \Omega \backslash \bar{\Omega}_{H}$, and all m sufficiently large with $C \subset \Omega \backslash \bar{\Omega}_{H}^{m}$. Hence there exists a $\phi^{m} \in H^{1}\left(\Omega \backslash \bar{\Omega}_{H}^{m}\right)$, such that $\nabla \phi^{m}=F^{m}$ in $\Omega \backslash \bar{\Omega}_{H}^{m}$ for all m
sufficiently large. Use (6.3), then $v^{m} \nabla \phi^{m}=-v^{m} \sum_{j=1}^{n} d_{j} \nabla \theta_{j}+i \nabla v^{m}$. As a result, $v^{m}(x)=e^{i \phi^{m}(x)} \cdot e^{i \sum_{j=1}^{n} d_{j} \theta_{j}(x)}=e^{i\left[\phi^{m}(x)+\sum_{j=1}^{n} d_{j} \theta_{j}(x)\right]}$.

Since $v^{m} \rightarrow v=u / \sqrt{a}$ in $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, as $m \rightarrow \infty, \nabla \theta_{j} \in C^{\infty}\left(\bar{\Omega} \backslash \Omega_{H}\right)$, it follows that $e^{i \phi^{m}} \equiv v^{m} \cdot e^{-i \sum_{j=1}^{n} d_{j} \theta_{j}(x)} \rightarrow v \cdot e^{-i \sum_{j=1}^{n} d_{j} \theta_{j}(x)}$ in $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, as $m \rightarrow \infty$, and $\nabla \phi^{m} \rightarrow-\sum_{j=1}^{n} d_{j} \nabla \theta_{j}+i v^{*} \nabla v$ in $L_{\mathrm{loc}}^{2}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, as $m \rightarrow \infty$. It follows that, after possibly subtracting constants $2 \pi k_{m}, k_{m} \in \mathbb{Z}, m=1,2, \ldots, \phi^{m} \rightarrow \phi$ in $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, as $m \rightarrow \infty$, where $\phi \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, and $v=e^{i\left(\phi+\sum_{j=1}^{n} d_{j} \theta_{j}\right)}$ in $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$. Setting $\Theta(x)=\phi(x)+\sum_{j=1}^{n} d_{j} \theta_{j}$, then $u=\sqrt{a} v=\sqrt{a} e^{i \Theta(x)}$. By $\left|\nabla \theta_{j}\right| \leq C\left(\Omega_{H}\right), \quad 1 \leq j \leq n$,

$$
\begin{aligned}
\int_{\Omega \backslash \bar{\Omega}_{H}} a|\nabla \phi|^{2} & =\leq \int_{\Omega \backslash \bar{\Omega}_{H}}|\nabla u|^{2}+C \int_{\Omega \backslash \bar{\Omega}_{H}} a\left|\sum_{j=1}^{n} d_{j} \nabla \theta_{j}\right|^{2} \\
& \leq \int_{\Omega \backslash \bar{\Omega}_{H}}|\nabla u|^{2}+C\left(\Omega_{H}, D, a\right)
\end{aligned}
$$

To show $\phi \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$ is unique (up to an additive constant $2 \pi k, k \in \mathbb{Z}$). Assume $\tilde{\phi} \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{\tilde{H}}\right)$, satisfying $u=\sqrt{a} e^{i\left(\tilde{\phi}+\sum_{j=1}^{n} d_{j} \theta_{j}\right)}$, then $e^{i(\phi-\tilde{\phi})}=1$ in $H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, with $\phi-\tilde{\phi} \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash \bar{\Omega}_{H}\right)$, so $\phi-\tilde{\phi}=2 \pi k$, for some $k \in \mathbb{Z}$.
Proof of Lemma 2.5. Our proof is standard. We first construct a family of functions in V to approximate a given $f \in V$, then use a mollifier to smooth them, and apply the diagonal rule to finish the proof. Take $\sigma<r_{1}$, so that $\Omega_{j}^{\sigma} \cap \Omega_{k}^{\sigma}=\emptyset, k \neq j, 1 \leq$ $k, j \leq n$. Let

$$
\alpha(r)= \begin{cases}1, & 0 \leq r \leq \frac{1}{2} \\ 2-2 r, & \frac{1}{2}<r \leq 1 \\ 0, & r>1\end{cases}
$$

Then $\left|\frac{d}{d r} \alpha\right| \leq 2$ If $x=\left(\tilde{x}, x_{d}\right) \in \mathcal{U}_{k}^{j} \backslash \bar{\Omega}_{j}$ represented in the local coordinate system of \mathcal{U}_{k}^{j}, define the shift of x away from $\bar{\Omega}_{j}$ in sense of the local coordinate as

$$
m_{\sigma}^{k j}(x)=x+\alpha\left(\frac{\phi_{k}^{j}(\tilde{x})-x_{d}}{\sigma}\right)\left(\left(\tilde{x}, \phi_{k}^{j}(\tilde{x})\right)-x\right)
$$

it can be verified that $\left|\nabla m_{\sigma}^{k j}(x)\right| \leq c\left(\Omega_{H}\right)$ a.e. in $\mathcal{U}_{k}^{j} \backslash \bar{\Omega}_{j}$.
For any $f \in V, \sigma$ small enough, define

$$
f_{\sigma}(x)= \begin{cases}\sum_{k=1}^{n_{j}} \beta_{k}^{j}(x) f\left(m_{\sigma}^{k j}(x)\right) & \text { for } x \in \Omega_{j}^{\sigma} \subset \Omega_{j}^{r_{1}}, j=1,2, \ldots, n \\ f(x) & \text { for other } x\end{cases}
$$

where $\left\{\beta_{k}^{j}\right\}_{k=1}^{n_{j}}$ is the partition of unity from 2.7). Clearly $f_{\sigma} \in H^{1}(\Omega)$, we verify $f_{\sigma} \in V$. For $x \in \Omega_{j}^{\sigma / 2 g}$, by (2.6), $\left|\phi_{k}^{j}(\tilde{x})-x_{d}\right| \leq g d(x) \leq \sigma / 2, m_{\sigma}^{k j}(x)=$ $\left(\tilde{x}, \phi_{k}^{j}(\tilde{x})\right) \in \partial \Omega$, so that $f_{\sigma}(x)=f_{j}=$ constant, and $\nabla f_{\sigma}=0$; from (1.4), $a(x)>C_{0}(\sigma / 2 g)^{\alpha_{j}}$ for $x \in \Omega \backslash \Omega_{j}^{\sigma / 2 g}$, then $f_{\sigma} \in V$. Moreover, calculate in the local coordinates, and sum together the difference of f and f_{σ} in V-norm, we obtain,

$$
\left\|f_{\sigma}-f\right\|_{V}^{2} \leq C\left(\Omega_{H}\right) \int_{\Omega^{\sigma} \backslash \bar{\Omega}_{H}}\left(a^{-1}|\nabla f|^{2}+f^{2}\right) d x
$$

Since meas $\left\{\Omega^{\sigma} \backslash \bar{\Omega}_{H}\right\} \rightarrow 0$, as $\sigma \rightarrow 0$, we have $\left\|f_{\sigma}-f\right\|_{V} \rightarrow 0$, as $\sigma \rightarrow 0$.

Choose a mollifier

$$
\begin{equation*}
\rho \in C_{0}^{\infty}\left(B_{1}(0)\right) \cap C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \quad \rho \geq 0, \quad \text { and } \int_{B_{1}(0)} \rho(x) d x=1 \tag{6.4}
\end{equation*}
$$

and set $\rho_{m}(x)=m^{d} \rho(m x)$, where $B_{1}(0)$ is the unit ball in \mathbb{R}^{d}. Then for $m>6 g / \sigma$, $\rho_{m} * f_{\sigma} \in C^{\infty}(\Omega) \cap V$, and $\rho_{m} * f_{\sigma}=f_{j}$ in $\bar{\Omega}_{j}^{\sigma / 3 g}$.

From 1.4, $|a(x)| \geq C_{0}(\sigma / 3 g)^{\alpha_{j}} \geq C\left(\bar{\Omega}_{H}, \sigma\right)>0$ in $\Omega \backslash \bar{\Omega}^{\sigma / 3 g}$, we obtain

$$
\left.\left\|f_{\sigma}-\rho_{m} * f_{\sigma}\right\|_{V}^{2} \leq C\left(\bar{\Omega}_{H}, \sigma\right) \| f_{\sigma}-\rho_{m} * f_{\sigma}\right) \|_{H^{1}}^{2}
$$

Hence by $\rho_{m} * f_{\sigma} \rightarrow f_{\sigma}, m \rightarrow \infty$ in H^{1}, we have $\rho_{m} * f_{\sigma} \rightarrow f_{\sigma}, m \rightarrow \infty$ in V. Apply the diagonal rule, pick up the $\rho_{m_{\sigma}} * f_{\sigma} \in C^{\infty}(\Omega) \cap V$, such that $\rho_{m_{\sigma}} * f_{\sigma} \rightarrow f$ in V, as $\sigma \rightarrow 0$.

References

[1] A. Aftalion, S. Alama and L. Bronsard. Giant Vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. preprint (2004).
[2] A. Aftalion, E. Sandier and S. Serfaty. Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity. J. Math. Pures Appl.(9), 80(2001), No.3, 339-372.
[3] S. Alama and L. Bronsard. Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains. preprint (2004).
[4] N. Andre, P. Bauman and D. Phillips. Vortex pinning with bounded fields for the GinzburgLandau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(2003) No.4, 705-729.
[5] F. Bethuel, H. Brezis and F. Hélein Ginzburg-Landau vortiecs. Progress in Nonlinear Differential Equations and their Applications,13. Birkhäusser, Boston MA, 1994.
[6] F. Bethuel and T. Riviére, Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincar Anal. Non Linaire 12 (1995), no. 3, 243-303.
[7] H. Brezis The interplay between analysis and topology in some nonlinear PDE problems . Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 2, 179-201.
[8] H. Brezis and L. Nirenberg. Degree theory and BMO; part I: Compact manifolds without boundaries. Selecta Math. (N. S.) 1(1995), No. 2, 197-263.
[9] H. Brezis and L. Nirenberg. Degree theory and BMO; part II: Compact manifolds with boundaries. Selecta Math. (N. S.) 2(1996), No. 3, 309-368.
[10] A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice. A boundary value problem related to the Ginzburg-Landau model. Comm. Math. Phys. 142(1991), 1-23.
[11] S. J. Chapman and G. Richardson. Vortex pinning by inhomogeneities in type-II superconductors. Phys. D 108 (1997), no. 4, 397-407.
[12] J. Du and M. D. Gunzburger. A model for superconducting thin films having variable thickness. Phys. D 69 (1993), no. 3-4, 215-231.
[13] J. Du, M. D. Gunzburger and J.S. Peterson. Analysis and approximation of the GinzburgLandau model of superconductivity. SIAM Rev. 34 (1992), no. 1, 54-81.
[14] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, 1992.
[15] T. Giorgi and D. Phillips. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal. 30 (1999) no. 2, 341-359.
[16] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer 1998.
[17] K. Likharev. Superconducting weak links. Rev. Mod. Phys., 51, (1979), 101-159.
[18] F. Lin and Q. Du. Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997), no. 6, 1265-1293.
[19] S. Jimbo and Y. Morita. Ginzburg-Landau equation with magnetic effect: non-simplyconnected domains. SIAM J. Math. Anal. 27(1996) No. 5, 1360-1385.
[20] J. Rubinstein and P. Sternberg. Homotopy classification of minimizers of the GinzburgLandau energy and the existence of permanent currents. Comm. Math. Phys. 179 (1996), no. 1, 257-263.
[21] E. Sandier and S. Serfaty. Global Minimizers for the Ginzburge-Landau Functional Below the First Critical Magnetic Field Ann. Inst. H. Poincaré Anal. Non Linéaire, 17(2000) No.1, 119-145
[22] E. Sandier and S. Serfaty. On the energy of type-II superconductors in the mixed phase. Rev. Math. Phys. 12 (2000), no. 9, 1219-1257.
[23] R. Schoen and K. Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom. 18(1983), No.2, 253-268.

Jianzhong Sun
457 Racine Dr., Apt 210, Wilmington, NC 28403, USA
E-mail address: sunj_999_1999@yahoo.com; lsjason@gmail.com

[^0]: 2000 Mathematics Subject Classification. 35B45, 35J55, 35J50, 82D55.
 Key words and phrases. Ginzburg-Landau; limit state; degree; pinning.
 (C) 2005 Texas State University - San Marcos.

 Submitted March 15, 2005. Published June 27, 2005.

