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OSCILLATION OF SECOND-ORDER NONLINEAR
DIFFERENTIAL EQUATIONS WITH A DAMPING TERM

ELMETWALLY M. ELABBASY, TAHER S. HASSAN, SAMIR H. SAKER

Abstract. This paper concerns the oscillation of solutions to the differential

equation `
r(t)x′(t)

´′
+ p(t)x′(t) + q(t)g(x(t)) = 0,

where xg(x) > 0 for all x 6= 0, r(t) > 0 for t ≥ t0 > 0. No sign conditions

are imposed on p(t) and q(t). Our results solve the open problem posed by

Rogovchenko [27], complement the results in Sun [29], and improve a number
of existing oscillation criteria. Our main results are illustrated with examples.

1. Introduction

This paper concerned with oscillation of the solutions to the second-order non-
linear differential equation with damping term:(

r(t)x′(t)
)′ + p(t)x′(t) + q(t)g(x(t)) = 0, t ≥ t0, (1.1)

where q and p are continuous functions defined on the interval [t0,∞), t0 > 0 and
r(t) > 0 for t ≥ t0 > 0, g is a continuous function for x ∈ (−∞,∞), continuously
differentiable and satisfies

xg(x) > 0, g′(x) ≥ k > 0 for all x 6= 0. (1.2)

Equation (1.1) is said to be superlinear if∫ ±∞

±ε

1
g(u)

du < ∞ for ε > 0, (1.3)

and sublinear if ∫ ±ε

0

1
g(u)

du < ∞ for ε > 0. (1.4)

We restrict our attention to those solutions of (1.1) which exist on some half line
[tx,∞) and satisfy sup{|x(t)| : t > T} > 0 for any T ≥ tx. We make a standing
hypothesis that (1.1) does possess such solutions. A solution of (1.1) is said to
be oscillatory if it has arbitrarily large zeros; otherwise it is non-oscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.
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In the previous two decades, there has been increasing interest in obtaining
sufficient conditions for the oscillation and non-oscillation of solutions of different
classes of second order differential equations, see for example [4, 5, 6, 7, 8, 11, 12,
14, 15, 16, 17, 19, 23, 24, 25, 26, 27, 28, 29] and the references therein.

a lot of work has been done on the following particular cases of (1.1):

x′′(t) + q(t)x(t) = 0, (1.5)

(r(t)x′(t))′ + q(t)x(t) = 0, (1.6)

(r(t)x′(t))′ + q(t)g(x(t)) = 0 . (1.7)

An important tool in the study of oscillatory behavior of solutions of these equations
is the averaging technique which goes back as far as the classical result of Wintner
[32] which proved that (1.5) is oscillatory if

lim
t→∞

1
t

∫ t

t0

∫ t

t0

q(v)dv ds = ∞. (1.8)

Hartman [14] proved that that the limit in (1.8) cannot be replaced by the limit
supremum and proved that the condition

−∞ < lim
t→∞

inf
1
t

∫ t

t0

∫ s

t0

q(v)dv ds < lim
t→∞

sup
1
t

∫ t

t0

∫ s

t0

q(v)dv ds ≤ ∞, (1.9)

implies that every solution of (1.5) oscillates.
Kamenev [15] improved Wintner’s result by proving that the condition

lim
t→∞

1
tn

∫ t

t0

(t− s)nq(s)ds = ∞, (1.10)

for some integer n > 1 is sufficient for the oscillation of (1.5).
Yan [36] proved that if

lim sup
t→∞

1
tn

∫ t

t0

(t− s)nq(s)ds < ∞,

for some integer n > 1 and there exists a function φ on [t0,∞) satisfying∫
t0
∞φ2

+(t)dt = ∞,

where φ+(t) = max{φ(t), 0} such that

lim sup
t→∞

1
tn

∫ t

t0

(t− s)nq(s)ds > sup
u≥t0

φ(u),

then every solution of equation (1.5) oscillates.
Philos [24] further improved Kamenev’s result by proving the following: Suppose

there exist continuous functions H, h : D ≡ {(t, s) : t ≥ s ≥ t0} → R such that

H(t, t) = 0, t ≥ t0,

H(t, s) > 0, t > s ≥ t0,
(1.11)

and H has a continuous and nonpositive partial derivative on D with respect to
the second variable and satisfies

−∂H(t, s)
∂s

= h(t, s)
√

H(t, s) ≥ 0 . (1.12)
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Further, suppose that

lim
t→∞

1
H(t, t0)

∫ t

t0

[H(t, s)q(s)− 1
4
h2(t, s)]ds = ∞. (1.13)

Then every solution of equation (1.5) oscillates.
We note, however, that when q(t) = γ

t2 , (1.5) reduces to the well known Euler
equation

u′′(t) +
γ

t2
u(t) = 0, t ≥ 1, (1.14)

to which none of the above mentioned oscillation criteria is applicable. In fact,
the Euler equation (1.14) is oscillatory if γ > 1

4 , and non-oscillatory if γ ≤ 1
4 , see

[17]. For further results on the oscillation of superlinear and sublinear equations,
we refer the reader to [6, 7, 8, 31].

For the oscillation of (1.6), Leighton [19] proved that if:∫ ∞

t0

dt

r(t)
= ∞ and

∫ ∞

t0

q(t)dt = ∞, (1.15)

then every solution of (1.6) oscillates.
Willett [30] used the transformation

τ =
( ∫ ∞

t

ds

r(s)

)−1

, u(t) = τ−1y(t),

to establish a new version of Leighton’s criterion and obtained the following oscil-
lation criteria: If∫ ∞

t0

dt

r(t)
= ∞ and

∫ ∞

t0

q(t)
(
t

∫ ∞

t

ds

r(s)

)2

dt = ∞, (1.16)

then every solution of (1.6) oscillates.
We note, however, that the oscillation criteria of Leighton and Willett are not

applicable to the equation

(t2u′(t))′ + γu(t) = 0, t > 0, (1.17)

where γ is a positive constant. Kong [17], Li [21], Li and Yeh [22], Rogovechenkov
[25], and Yu [38] used the generalized Riccati technique and have given several
sufficient conditions for oscillation of (1.6) which can be applied to (1.17); in fact
every solution of (1.17) oscillates if γ > 1

4 ; see [22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38].

In the study of the differential equation (1.7), many criteria for oscillation exist
which involve the behavior of the integral of q however the common restrictions
that

q(t) > 0, g′(u) > 0 for u 6= 0,

∫ ∞

t0

dt

r(t)
= ∞,

on the functions q, g and r are required; see for example [4, 5, 11, 12].
The presence of the damping term in (1.1) calls for a modified approach to

the study of the oscillatory properties of solutions, see for example the paper by
Saker, Peng and Agarwal [28], Li, Wang and Yan [23] and the references therein.
They cited most of the oscillation results for (1.1) when p(t) and q(t) are positive
functions.

Recently, Rogovechenko et al. [27] considered (1.1) and established some suffi-
cient conditions for oscillations. They posed the following open problem: It would
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be very important to obtain general oscillation criteria for nonlinear differential
equations with damping term without requiring additional sign conditions on the
coefficients p(t) and q(t).

In this paper, we consider (1.1) and by using a Riccati transformation technique,
we establish some oscillation criteria of Kamanev and Philos type with no sign
conditions on p(t) and q(t). Our results in this paper are the affirmative answer to
the question posed by Rogovechenko et al. [27] and improve and complement the
results established by Sun [29].

2. Main Results

In this section, we will use the Riccati technique to establish sufficient conditions
for oscillation of (1.1). Comparisons between our results and the previously known
are presented and some examples illustrate the main results.

Theorem 2.1. Assume that (1.2) and (1.3) hold. Furthermore, suppose that there
exists a function ρ : [t0,∞) → (0,∞) such that:

ρ′(t) ≥ 0,
(
r(t)ρ(t)

)′ ≥ 0,
(
r(t)ρ(t)

)′′ ≤ 0,
[
r(t)ρ′(t)− ρ(t)p(t)

]′ ≤ 0, (2.1)

lim inf
t→∞

∫ t

t0

ρ(s)q(s)ds > −∞, (2.2)

lim sup
t→∞

1
t

∫ t

t0

[ ∫ s

t0

ρ(u)q(u)du
]2

ds = ∞. (2.3)

Then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) possesses a non-oscillatory solution x on
an interval [T,∞), T ≥ t0. Without loss of generality, we shall assume that x(t) > 0
for all t ≥ T (the case x(t) < 0 can be treated similarly and will be omitted). Let
w(t) be defined by the Riccati transformation

w(t) =
ρ(t)r(t)x′(t)

g(x(t))
.

This and (1.1) imply for t ≥ T that

w′(t) = −ρ(t)q(t) +
x′(t)

g(x(t))
[r(t)ρ′(t)− ρ(t)p(t)]− g′(x(t))w2(t)

ρ(t)r(t)
. (2.4)

We consider the following two cases:
Case 1. the integral

∫∞
T

g′(x(s))w2(s)
ρ(s)r(s) ds is finite. Then there exists a positive

constant N such that∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds ≤ N for all t ≥ T. (2.5)

Now, from (2.4),∫ t

t0

ρ(s)q(s)ds

=
∫ T

t0

ρ(s)q(s)ds +
∫ t

T

ρ(s)q(s)ds

= −w(t) + c1 +
∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds−

∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds,

(2.6)
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where c1 = w(T ) +
∫ T

t0
ρ(s)q(s)ds. By Bonnet’s theorem since r(t)ρ′(t)− ρ(t)p(t) is

non-increasing, for a fixed t ≥ T , there exists ξ ∈ [T, t] such that∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds = [r(T )ρ′(T )− ρ(T )p(T )]

∫ ξ

T

x′(s)
g(x(s))

ds

= [r(T )ρ′(T )− ρ(T )p(T )]
x(ξ)

inf
x(T )

1
g(u)

du .

Since [r(T )ρ′(T )− ρ(T )p(T )] ≥ 0 and∫ x(ξ)

x(T )

1
g(u)

du <

{
0 if x(ξ) ≤ x(T )∫∞

x(T )
1

g(u)du if x(ξ) ≥ x(T ),

we have

−∞ <

∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds ≤ k1, (2.7)

where

k1 = [r(T )ρ′(T )− ρ(T )p(T )]
∫ ∞

x(T )

1
g(u)

du.

Thus, for t ≥ T ,[ ∫ t

t0

ρ(s)q(s)ds
]2

=
{
c1 − w(t) +

∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds−

∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds
}2

≤ 4c2
1 + 4(w(t))2 + 4[

∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds]2

+ 4
[ ∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds
]2

.

Therefore, taking into account (2.5) and (2.7), we conclude that[ ∫ t

t0

ρ(s)q(s)ds
]2 ≤ c2 + 4(w(t))2,

where

c2 = 4c2
1 + 4

[ ∫ t

T

[r(s)ρ′(s)− ρ(s)p(s)]
x′(s)

g(x(s))
ds

]2 + 4
[ ∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds
]2

.

Thus, for every t ≥ T ,∫ t

t0

[ ∫ s

t0

ρ(u)q(u)du
]2

ds =
∫ T

t0

[ ∫ s

t0

ρ(u)q(u)du
]2

ds +
∫ t

T

[ ∫ s

t0

ρ(u)q(u)du
]2

ds

= c3 +
∫ t

T

[ ∫ s

t0

ρ(u)q(u)du
]
ds

≤ c3 + c2(t− T ) + 4
∫ t

T

w2(s)ds

≤ c3 + c2(t− T ) +
4
k

∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

r(s)ρ(s)ds,
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since r(t)ρ(t) is positive and nondecreasing for t ∈ [t0,∞), Bonnet’s theorem ensures
the existence of T1 ∈ [T, t] such that∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

r(s)ρ(s)ds = r(t)ρ(t)
∫ t

T1

g′(x(s))w2(s)
ρ(s)r(s)

ds.

Also, since r(t)ρ(t) is positive on [t0,∞) and (r(t)ρ(t))′ is nonnegative and bounded
above, it follows that r(t)ρ(t) ≤ βt for all large t where β > 0 is a constant and
this implies that ∫ ∞

t0

1
ρ(s)r(s)

ds = ∞,

Thus, we conclude that∫ t

t0

[
∫ s

t0

ρ(u)q(u)du]2ds ≤ c3 + c2(t− T ) +
4β

k
t

∫ t

T1

g′(x(s))w2(s)
ρ(s)r(s)

ds.

So, we have

lim sup
t→∞

1
t

∫ t

t0

[ ∫ s

t0

ρ(u)q(u)du
]2

ds ≤ c2 +
4β

k
N < ∞,

which contradicts (2.3).
Case 2. The integral

∫∞
T

g′(x(s))w2(s)
ρ(s)r(s) ds is infinite. From (2.4), taking into account

(2.6) and (2.7), for every t ≥ T we obtain∫ t

t0

ρ(s)q(s)ds ≤ −w(t) + A−
∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds, (2.8)

where A = c1 + k1. By the condition (2.2), from (2.8), it follows that for some
constant B,

−w(t) ≥ B +
∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds for every t ≥ T. (2.9)

We can consider a T2 ≥ T such that

C = B +
∫ T2

T

g′(x(s))w2(s)
ρ(s)r(s)

ds > 0.

Then (2.9) ensures that w(t) is negative on [T2,∞). Now, (2.9) gives

g′(x(t))w2(t)
ρ(t)r(t)

(
B +

∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds
)−1

≥ g′(x(t))x′(t)
g(x(t))

, t ≥ T2,

and consequently for all t ≥ T2,

log
B +

∫ t

T
g′(x(s))w2(s)

ρ(s)r(s) ds

C
≥ log

g(x(T2))
g(x(t))

.

Hence,

B +
∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds ≥ C
g(x(T2))
g(x(t))

, t ≥ T2.

So, (2.9) yields

x′(t) ≤ −C ′

ρ(t)r(t)
, t ≥ T2,
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where C ′ = Cg(x(T2)) > 0. Thus, we have

x(t) ≤ x(T2)− C ′
∫ t

T

1
ρ(s)r(s)

ds for all t ≥ T2

which leads to limt→∞ x(t) = −∞, which is a contradiction. This completes the
proof. �

Example 2.2. Consider the differential equation

(t
1
2 x′(t))′ − 1

t
x′(t) + t

−3
2 (x2(t) sgnx(t) + x(t)) = 0, t ≥ 1. (2.10)

Here p(t) = −1
t , q(t) = t−3/2 and g(x) = x2 sgn x+x. We see that p, q and g satisfy

conditions (1.2), (1.3) and (2.1). To apply Theorem 2.1. It remains to prove that
(2.2) and (2.3) hold. By choosing ρ(t) = t1/2 we see that

lim inf
t→∞

∫ t

1

ρ(s)q(s)ds = lim inf
t→∞

∫ t

1

s−1ds > −∞,

lim sup
t→∞

1
t

∫ t

1

[
∫ s

1

q(u)du]2ds = lim sup
t→∞

2
t

∫ t

1

[1− 1√
s2

]2ds < ∞,

lim sup
t→∞

1
t

∫ t

1

[
∫ s

1

ρ(u)q(u)du]2ds = ∞.

Thus Theorem 2.1 ensures that every solution of (2.10) oscillates. Note that that
the results from Wong [33, 34], and Bhatia [4] can not be applied to (2.10).

Example 2.3. Consider the differential equation(1
t
x′(t)

)′ + (
1
2

+ sin t)x′(t) + (
1
2

+ cos t)x(t) = 0, t ≥ 1. (2.11)

Here p(t) = 1
2 + sin t, q(t) = 1

2 + cos t and g(x) = x. Note that (1.2) and (1.3) are
satisfied. By choosing ρ(t) = t we have

lim inf
t→∞

∫ t

1

ρ(s)q(s)ds = ∞,

lim sup
t→∞

1
t

∫ t

1

[
∫ s

1

ρ(u)q(u)du]2ds = ∞.

Thus Theorem 2.1 ensures that every solution of (2.11) oscillates.

Theorem 2.4. Assume that (1.2), (1.3), (2.1), and (2.2) hold. Furthermore, Sup-
pose that ∫ ±∞

±ε

√
g′(x)

g(x)
dx < ∞, ε > 0, (2.12)√

g′(x)G(x) > 0 for all x 6= 0, (2.13)

where G(x) =
∫∞

x

√
g′(u)

g(u) du,

lim sup
t→∞

1
tα

∫ t

T

{(t− s)αρ(s)q(s)

− 1
4c

∫ t

T

[α− (t− s)
λ(s)

r(s)ρ(s)
]2(t− s)α−2 V (s)

V ′(s)
}ds = ∞,

(2.14)
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for some integer α > 1, where

V (t) =
∫ t

t0

1
r(s)ρ(s)

ds, lim
t→∞

V (t) = ∞, λ(t) = [r(t)ρ′(t)− ρ(t)p(t)].

Then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) possesses a non-oscillatory solution x on
an interval [T,∞), T ≥ t0. Without loss of generality, we shall assume that x(t) > 0
for all t ≥ T ≥ t0 (the case x(t) < 0 treated similarly and will be omitted). Again
we define w(t) as in Theorem 2.1. and prove that (1.1) holds then we have equation
(2.4). First, we claim that

I =
∫ ∞

T

g′(x(s))w2(s)
ρ(s)r(s)

ds,

is infinite. Otherwise, if I < ∞, there exists a positive constant N such that∫ t

T

g′(x(s))w2(s)
ρ(s)r(s)

ds ≤ N, for all t ≥ T.

Now, by the Schwarz’s inequality, we have∣∣∣ ∫ t

T

w(s)
ρ(s)r(s)

√
g′(x(s))ds

∣∣∣2 ≤ ( ∫ t

T

ds

ρ(s)r(s)

)( ∫ t

T

w2(s)g′(x(s))
ρ(s)r(s)

ds
)

≤ N
( ∫ t

T

ds

ρ(s)r(s)

)
.

Set

M1 =
∫ ∞

x(T )

√
g′(u)

g(u)
du > 0,

√
g′(x)

∫ ∞

x(t)

√
g′(u)

g(u)
du ≥ M2 > 0. (2.15)

Then, we have

g′(x(t)) ≥ M2
2

[ ∫ ∞

x(t)

√
g′(u)

g(u)
du

]−2

= M2
2

[
M1 −

∫ x(t)

x(T )

√
g′(u)

g(u)
du

]−2

= M2
2

[
M1 −

∫ t

T

x′(s)
√

g′(x(s))
g(x(s))

ds
]−2

≥ M2
2

[
M1 +

∣∣ ∫ t

T

w(s)
ρ(s)r(s)

√
g′(x(s))ds

∣∣]−2

≥ M2
2 [M1 +

√
NV (t)]−2.

Condition (2.1) ensures (as in Theorem 2.1) that limt→∞ V (t) = ∞. Hence,

g′(x) ≥ M2
2

{
[M1 +

√
N ]

√
V (t)

}−2 =
c

V (t)
, (2.16)

where c = M2
2 [M1 +

√
N ]−2. Therefore, by (2.4), taking into account (2.16), we

have

ρ(t)q(t) ≤ −w′(t) +
λ(t)

r(t)ρ(t)
w(t)− c

V ′(t)
V (t)

w2(t), (2.17)
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where λ(t) = [r(t)ρ′(t)− ρ(t)p(t)]. Hence, for all t ≥ T , we have∫ t

T

(t− s)αρ(s)q(s)ds

≤ −
∫ t

T

(t− s)αw′(s)ds +
∫ t

T

(t− s)αλ(s)w(s)
r(s)ρ(s)

ds− c

∫ t

T

(t− s)αV ′(s)w2(s)
V (s)

ds

= (t− T )αw(T )− α

∫ t

T

(t− s)α−1w(s)ds +
∫ t

T

(t− s)αλ(s)w(s)
r(s)ρ(s)

ds

− c

∫ t

T

(t− s)αV ′(s)w2(s)
V (s)

ds

= (t− T )αw(T )

−
∫ t

T

{√
cV ′(s)
V (s)

(t− s)
α
2 w(s) +

[α− (t− s) λ(s)
r(s)ρ(s) ](t− s)

α
2−1√

cV ′(s)
V (s)

}2

ds

+
1
4c

∫ t

T

[α− (t− s)
λ(s)

r(s)ρ(s)
]2(t− s)α−2 V (s)

V ′(s)
ds.

Thus

1
tα

∫ t

T

{
(t− s)αρ(s)q(s)− 1

4c
[α− (t− s)

λ(s)
r(s)ρ(s)

]2(t− s)α−2 V (s)
V ′(s)

}
ds

≤ (1− T

t
)αw(T ).

Then, taking a limit superior on both sides, we obtain a contradiction to the con-
dition (2.14). Thus it must be the case I = ∞. As in the proof of Theorem 2.1
(Case 2) we arrive at the contradiction limt→∞ x(t) = −∞. This completes the
proof. �

Theorem 2.5. Assume that (1.2), (2.12), and (2.13) hold. Furthermore, Suppose
that

lim
t→∞

R(t) = lim
t→∞

∫ t

t0

ds

r(s)
= ∞, (2.18)

lim
t→∞

inf
∫ t

t0

q(s)ds > −∞, (2.19)

there exist a function φ ∈ C1([t0,∞), (0,∞)), H, h : D ≡ {(t, s) : t ≥ s ≥ t0} → R
such that

H(t, t) = 0, t ≥ t0,

H(t, s) > 0, t > s ≥ t0,

and H has a continuous and nonpositive partial derivative on D with respect to the
second variable and satisfies

− ∂

∂u
(H(t, u)φ(u)) + H(t, u)φ(u)

p(u)
r(u)ξ

= h(t, u)
√

H(t, u)φ(u)DR′(u),

lim
t→∞

inf
1

H(t, s)

∫ t

s

[H(t, u)φ(u)q(u)− 1
4
R(u)h2(t, u)]du ≥ f(s), (2.20)
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for some constant D > 0, and

lim
t→∞

∫ t

t0

[f+(s)]2R′(s)
[φ(s)]2R(s)

ds = ∞, (2.21)

where f+(t) = max{f(t), 0}. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) possesses a non-oscillatory solution x on
an interval [T,∞), T ≥ t0. Without loss of generality, we shall assume that x(t) > 0
for all t ≥ T (the case x(t) < 0 can be treated similarly). Let

w(t) =
r(t)x′(t)
g(x(t))

.

From this definition and (1.1) it follows that

w′(t) = −q(t)− p(t)
r(t)

w(t)− g′(x(t))
r(t)

w2(t), t ≥ t0, (2.22)∫ t

t0

q(s)ds = −w(t) + w(t0)−
∫ t

t0

p(s)w(s)
r(s)

ds−
∫ t

t0

g′(x(s))w2(s)
r(s)

ds. (2.23)

We distinguish two cases:
Case 1. The integral

∫∞
t0

g′(x(s))w2(s)
r(s) ds is finite. Then there exists a positive

constant N such that∫ t

T

g′(x(s))w2(s)
r(s)

ds ≤ M for all t ≥ t0. (2.24)

By the Schwarz’s inequality, we have

∣∣∣ ∫ t

T

w(s)
r(s)

√
g′(x(s))ds

∣∣∣2 ≤ ( ∫ t

T

ds

r(s)

)( ∫ t

T

w2(s)g′(x(s))
r(s)

ds
)

≤ M
( ∫ t

T

ds

r(s)
)

= MR(t).
(2.25)

Taking into account (2.15), (2.25) and (2.19), the procedure in Theorem 2.4 implies

g′(x(t)) ≥ D

R(t)
, t ≥ t0, (2.26)

where D = M2
2 [M1 +

√
M ]−2. Hence, for every t ≥ t0, (2.18) and (2.22) imply

q(t) ≤ −w′(t)− p(t)
r(t)

w(t)− DR′(t)
R(t)

w2(t).
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Then∫ t

s

H(t, u)φ(u)q(u)du ≤ −
∫ t

s

H(t, u)φ(u)w′(u)du−
∫ t

s

H(t, u)φ(u)
p(u)
r(u)

w(u)du

−D

∫ t

s

H(t, u)φ(u)
R′(u)
R(u)

w2(u)du, (s ≥ t0)

= H(t, s)φ(s)w(s)−D

∫ t

s

H(t, u)φ(u)
R′(u)
R(u)

w2(u)du

−
∫ t

s

[− ∂

∂u
(H(t, u)φ(u)) + H(t, u)φ(u)

p(u)
r(u)

]w(u)du

= H(t, s)φ(s)w(s) +
1
4
R(u)h2(t, u)

−
∫ t

s

[√H(t, u)φ(u)DR′(u)
R(u)

w(u) +
1
2

√
R(u)h(t, u)

]2

du.

Thus for all t ≥ s ≥ t0, we have∫ t

s

[H(t, u)φ(u)q(u)− 1
4
R(u)h2(t, u)]du

≤ H(t, s)φ(s)w(s)−
∫ t

s

[√H(t, u)φ(u)DR′(u)
R(u)

w(u) +
1
2

√
R(u)h(t, u)

]2

du.

Hence, ∫ t

s

[H(t, u)φ(u)q(u)− 1
4
R(u)h2(t, u)]du ≤ H(t, s)φ(s)w(s). (2.27)

Dividing (2.27) by H(t, s) and then taking the lower limit as t →∞, we have

f(s) ≤ φ(s)w(s), s ≥ t0,

and hence
[f+(s)]2 ≤ [φ(s)]2[w(s)]2, s ≥ t0.

In view of (2.24) and (2.26) we have

lim
t→∞

∫ t

t0

D[f+(s)]2R′(s)
[φ(s)]2R(s)

ds ≤ lim
t→∞

∫ t

t0

D[w(s)]2R′(s)
R(s)

ds

≤ lim
t→∞

∫ t

t0

[w(s)]2g′(x(s))
r(s)

ds ≤ M < ∞.

This contradicts (2.21).
Case 2. The integral

∫∞
t0

g′(x(s))w2(s)
r(s) ds is infinite. In this case, by (2.19) and (2.23),

the procedure of Theorem 2.1 (Case 2) leads to the contradiction limt→∞ x(t) =
−∞. This completes the proof. �

Corollary 2.6. Replace (2.20) and (2.21) by

lim
t→∞

sup
1

H(t, s)

∫ t

s

[H(t, u)φ(u)q(u)− 1
4
R(u)h2(t, u)]du = ∞. (2.28)

Then the conclusion of Theorem 2.5 still holds.
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Proof. Divide (2.27) by H(t, s) and then take the upper limit as t →∞. This way,
we get a contradiction to (2.28). Them the rest of the proof is similar to the proof
of Theorem 2.5 (Case 2). �
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Corrigendum posted on January 2, 2008

Page 4. To the assumptions in Theorem 2.1, add

r(t)ρ′(t)− ρ(t)p(t) ≥ 0 .

Page 7. The same assumption needs to added to Theorem 2.4.
Page 7. In Example 2.3 replace (2.11) with(1

t
x′(t)

)′ − 1
t2

x′(t) + (2 + cos t)x(t) = 0, t ≥ 1.

The authors are grateful to Mr. Başak Karpuz, whose remarks prompted the
posting of this corrigendum.
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