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TWO POSITIVE SOLUTIONS FOR SECOND-ORDER
FUNCTIONAL AND ORDINARY BOUNDARY-VALUE

PROBLEMS

KYRIAKOS G. MAVRIDIS, PANAGIOTIS CH. TSAMATOS

Abstract. In this paper we use a fixed point theorem due to Avery and

Henderson to prove, under appropriate conditions, the existence of at least
two positive solutions for a second-order functional and ordinary boundary-

value problem.

1. Introduction

Throughout the recent years, an increasing interest has been observed in find-
ing conditions that guarantee the existence of positive solutions for boundary-value
problems. The well known Guo-Krasnoselskii fixed point theorem [6, 12] has been
proved to be a useful tool to achieve such conditions, while this same theorem
can be applied repeatedly to prove the existence of multiple positive solutions (see
[4, 5, 8, 10, 18, 20, 21] and the references therein). Besides this theorem, there
are a number of others, referring to Banach spaces ordered by proper cones, that
provide conditions such that certain boundary-value problems have multiple pos-
itive solutions, for example the Leggett-Williams fixed point theorem [9, 13] and
the Avery-Henderson fixed point theorem [2].

At this point we would like to stress the recent increase in the number of pa-
pers dealing with functional boundary-value problems, usually specifically with the
existence of positive solutions for these problems (see [8, 11, 14, 15, 19] and the
references therein). Here we will first study a functional boundary-value problem
and then a separate section will be devoted to briefly outlining the analogues of
our results for the ordinary case, since even these analogues are novel. We will use
the Avery-Henderson fixed point theorem ([2], see also [15, 17]); for other papers
using this theorem we refer to [3, 7, 15, 16, 17]. It is remarkable that under cer-
tain conditions the Avery-Henderson fixed point theorem can give results similar
to those of the Krasnoselskii fixed point theorem, i.e. existence of solutions whose
norm is upper and lower bounded by specific constants. Corollaries 3.5 and 4.3
provide such results.

Let R be the set of real numbers, R+ := {x ∈ R : x ≥ 0} and I := [0, 1]. Also,
let 0 ≤ q < 1 and J := [−q, 0]. For every closed interval B ⊆ J ∪ I we denote by
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C(B) the Banach space of all continuous real functions ψ : B → R endowed with
the usual sup-norm

‖ψ‖B := sup{|ψ(s)| : s ∈ B}.
Also, we define the set

C+(B) := {ψ ∈ C(B) : ψ ≥ 0}.
If x ∈ C(J ∪ I) and t ∈ I, then we denote by xt the element of C(J) defined by

xt(s) = x(t+ s), s ∈ J.
Now, consider the equation

(p(t)x′(t))′ + f(t, xt) = 0, t ∈ I, (1.1)

along with the boundary conditions

x0 = φ, (1.2)

ax(1) + bp(1)x′(1) = 0, (1.3)

where f : R+ × C+(J) → R+, p : I → (0,+∞) and φ : J → R+ are continuous
functions, p is also nondecreasing and such that 0 <

∫ 1

0
1

p(s)ds < +∞, and a, b ∈ R.
Also assume that φ(0) = 0.

This paper is motivated by and extends the results of [1, 8] and is organized as
follows. In section 2 we present the definitions and the lemmas we are going to
use, including the fixed point theorem, due to Avery and Henderson [2]. Section 3
contains the results for the functional case and section 4 the results for the ordinary
case. Finally, in section 5 we give some applications of our results.

2. Preliminaries and some basic lemmas

Definition. A function x ∈ C(J ∪ I) is a solution of the boundary-value problem
(1.1)–(1.3) if x satisfies equation (1.1), the boundary condition (1.3) and, moreover
x|J = φ.

Define P : I → R+ and A : I → R, as

P (t) :=
∫ t

0

1
p(s)

ds, t ∈ I, and A(t) := a

∫ 1

t

1
p(s)

ds+ b, t ∈ I.

At this point we make our first assumption:
(H1) For the constants a, b and the function p,

A(0) = aP (1) + b 6= 0 and aA(0) = a(aP (1) + b) ≤ 0.

We remark that assumption (H1) is equivalent to

a 6= − b

P (1)
and min{0,− b

P (1)
} ≤ a ≤ max{0,− b

P (1)
}.

Lemma 2.1. A function x ∈ C(J ∪ I) is a solution of the boundary-value problem
(1.1)–(1.3) if and only if x is a fixed point of the operator T : C(J ∪ I) → C(J ∪ I),
with

Tx(t) =

{
φ(t), t ∈ J∫ 1

0
G(t, s)f(s, xs)ds, t ∈ I,

where

G(t, s) =
1

A(0)

{
P (t)A(s), 0 ≤ t ≤ s ≤ 1
P (s)A(t), 0 ≤ s ≤ t ≤ 1.

(2.1)
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Proof. It is well known (see [1]) that the Green’s function for the homogenous
boundary-value problem consisting of the equation (p(t)x′(t))′ = 0 and the bound-
ary conditions x(0) = 0 and (1.3) is given by the formula (2.1). Therefore, since
φ(0) = 0, the proof is obvious. �

In the sequel, we need the following definitions:
Let E be a real Banach space. A cone in E is a nonempty, closed set P ⊂ E such

that

(i) κu+ λv ∈ P for all u, v ∈ P and all κ, λ ≥ 0
(ii) u, −u ∈ P implies u = 0.

Let P be a cone in a real Banach space E. A functional ψ : P → E is said to be
increasing on P if ψ(x) ≤ ψ(y), for any x, y ∈ P with x ≤ y, where ≤ is the partial
ordering induced to the Banach space by the cone P, i.e.

x ≤ y if and only if y − x ∈ P.

Let ψ be a nonnegative functional on a cone P. For each d > 0 we denote by
P(ψ, d) the set

P(ψ, d) := {x ∈ P : ψ(x) < d}.

At this point we can present Theorem 2.2, due to Avery and Henderson ([2], see
also [15, 17]). This theorem will be used to show that our boundary-value problem
(1.1)–(1.3) has at least two distinct positive solutions and, moreover, for each of
these solutions, we have an upper bound at some specific point of its domain and
a lower bound at some other specific point of its domain. Also, both solutions are
concave and nondecreasing on I.

Theorem 2.2. Let P be a cone in a real Banach space E. Let α and γ be increasing,
nonnegative, continuous functionals on P, and let θ be a nonnegative, continuous
functional on P with θ(0) = 0 such that, for some c > 0 and Θ > 0, γ(x) ≤
θ(x) ≤ α(x) and ‖x‖ ≤ Θγ(x), for all x ∈ P(γ, c). Moreover, suppose there exists
a completely continuous operator T : P(γ, c) → P and 0 < a < b < c such that

θ(λx) ≤ λθ(x), for 0 ≤ λ ≤ 1 and x ∈ ∂P(θ, b),

and

(i) γ(Tx) > c, for all x ∈ ∂P(γ, c),
(ii) θ(Tx) < b, for all x∂ ∈ P(θ, b),
(iii) P(α, a) 6= ∅, and α(Tx) > a, for all x ∈ ∂P(α, a),

or

(i’) γ(Tx) < c, for all x ∈ ∂P(γ, c),
(ii’) θ(Tx) > b, for all x ∈ ∂P(θ, b),
(iii’) P(α, a) 6= ∅, and α(Tx) < a, for all x ∈ ∂P(α, a).

Then T has at least two fixed points x1 and x2 belonging to P(γ, c) such that

a < α(x1) and θ(x1) < b,

and
b < θ(x2) and γ(x2) < c.
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3. Main Results

Define the set

K := {x ∈ C(J ∪ I) : x(t) ≥ 0, t ∈ J ∪ I, x|I is nondecreasing and concave},

which is a cone in C(J ∪ I). The following lemma (see [11]) will be needed later.

Lemma 3.1. Let x : I → R be a nonnegative, nondecreasing and concave function.
Then, x(t) ≥ t‖x‖I , t ∈ I.

Proof. For any t ∈ I, since x is nonnegative, nondecreasing and concave, we have

x(t) = x((1− t)0 + t) ≥ (1− t)x(0) + tx(1) ≥ tx(1) = t‖x‖I .

�

Now let 0 < r1 ≤ r2 ≤ r3 ≤ 1 and consider the following functionals:

γ(x) = x(r1), x ∈ K,
θ(x) = x(r2), x ∈ K,
α(x) = x(r3), x ∈ K.

It is easy to see that α, γ are nonnegative, increasing and continuous functionals on
K, θ is nonnegative and continuous on K and θ(0) = 0. Also, it is straightforward
to see that

γ(x) ≤ θ(x) ≤ α(x), x ∈ K, (3.1)
since x ∈ K is nondecreasing on I. Furthermore, for any x ∈ K, by Lemma 3.1 we
have γ(x) = x(r1) ≥ r1‖x‖I . So

‖x‖I ≤
1
r1
γ(x), x ∈ K. (3.2)

Additionally, by the definition of θ we obtain

θ(λx) = λθ(x), 0 ≤ λ ≤ 1, x ∈ K.

At this point, we state the following assumptions:
(H2) There exist M > 0, continuous function u : I → R+ and a function L :

R+ → R+, which is nondecreasing on [0,M ], such that

f(t, y) ≤ u(t)L(‖y‖J), t ∈ I, y ∈ C+(J),

L(M)
∫ 1

0

G(r2, s)u(s)ds < Mr2.

(H3) There exist constants δ ∈ (0, 1), η1, η3 > 0 and functions τ : I → [0, q],
continuous v : I → R+ and nondecreasing w : R+ → R+ such that

f(t, y) ≥ v(t)w(y(−τ(t))), t ∈ X, y ∈ C+(J),

where X := {t ∈ I : δ ≤ t− τ(t) ≤ 1}, sup{v(t) : t ∈ X} > 0,

w(ηi)
∫

X

G(ri, s)v(s)ds >
ηi

δ
, i ∈ {1, 3},

0 < η3 < Mδr2 < η1, and M is defined in (H2).
The following lemma can be found in [11]. The proof is provided for the sake of

completeness.
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Lemma 3.2. If x : I → R is a differentiable function with x′(t) ≥ 0, t ∈ I, and
p : I → R is a positive and nondecreasing function such that (p(t)x′(t))′ ≤ 0, t ∈ I,
then x is concave.

Proof. Let t1, t2 ∈ I, with t1 ≤ t2. Since (p(t)x′(t))′ ≤ 0, t ∈ I, px′ is a nonincreas-
ing function on I, so p(t1)x′(t1) ≥ p(t2)x′(t2). Therefore, we have

p(t1)(x′(t2)− x′(t1)) = p(t1)x′(t2)− p(t1)x′(t1)

≤ p(t1)x′(t2)− p(t2)x′(t2)

= x′(t2)(p(t1)− p(t2)).

Since p is nondecreasing on I, we have p(t1)− p(t2) ≤ 0, so

p(t1)(x′(t2)− x′(t1)) ≤ x′(t2)(p(t1)− p(t2)) ≤ 0.

However p(t1) ≥ 0, therefore we get that x′(t1) ≥ x′(t2), which implies that x′ is
nonincreasing on I. Consequently, x is concave. �

The following lemma will be needed for the proof of Theorem 3.4.

Lemma 3.3. Suppose that (H1) holds. Then

(i) A(t)
A(0) > 0, t ∈ I.

(ii) A′(t)
A(0) ≥ 0, t ∈ I.

(iii) Tx(t) ≥ 0, t ∈ I, x ∈ K.
(iv) (Tx)′(t) ≥ 0, t ∈ I, x ∈ K.
(v) T (K) ⊆ K.

Proof. (i) For any t ∈ I, keeping in mind that aA(0) ≤ 0, we get

A(t)
A(0)

=
a

∫ 1

t
1

p(s)ds+ b

A(0)

=
a

A(0)

∫ 1

t

1
p(s)

ds+
b

A(0)

≥ a

A(0)

∫ 1

0

1
p(s)

ds+
b

A(0)

=
a

∫ 1

0
1

p(s)ds+ b

A(0)
= 1.

Therefore, A(t)
A(0) ≥ 0, t ∈ I.

(ii) Since p(t) > 0, t ∈ I, and, by (H1), a
A(0) ≤ 0, for any t ∈ I we have

A′(t)
A(0)

=
− a

p(t)

A(0)
= − a

A(0)
1
p(t)

≥ 0.

(iii) By the definition of T , we get

Tx(t) =
A(t)
A(0)

∫ t

0

P (s)f(s, xs)ds+ P (t)
∫ 1

t

A(s)
A(0)

f(s, xs)ds, t ∈ I.

Moreover, if x ∈ K then xt ≥ 0, t ∈ I. By the definition of f we have f(t, xt) ≥ 0,
t ∈ I. So using (i) we conclude that Tx(t) ≥ 0, t ∈ I.
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(iv) By the definition of T , for every t ∈ I we get

(Tx)′(t) = A′(t)
∫ t

0

1
A(0)

P (s)f(s, xs)ds+A(t)
1

A(0)
P (t)f(t, xt)

+ P ′(t)
∫ 1

t

1
A(0)

A(s)f(s, xs)ds− P (t)
1

A(0)
A(t)f(t, xt)

=
A′(t)
A(0)

∫ t

0

P (s)f(s, xs)ds+ P ′(t)
∫ 1

t

A(s)
A(0)

f(s, xs)ds.

Therefore, using (ii) and the easily provable facts that P ′(t) ≥ 0, t ∈ I, and
f(t, xt) ≥ 0, t ∈ I, x ∈ K, we conclude that (Tx)′(t) ≥ 0, t ∈ I.
(v) From (1.1), for every t ∈ I and x ∈ K we have

(p(t)x′(t))′ = −f(t, xt) ≤ 0.

So, since for x ∈ K we have xt ≥ 0, t ∈ I, by the definition of f and, according to
Lemma 3.2, we have that Tx is concave. This, along with (iii) and (iv), completes
the proof. �

Theorem 3.4. Suppose that assumptions (H1)–(H3) hold and ‖φ‖J < M . Then
the boundary-value problem (1.1)–(1.3) has at least two solutions x1, x2, which are
concave and nondecreasing on I, positive on J ∪ I and such that x1(r3) > η3

δ ,
x1(r2) < Mr2, x2(r2) > Mr2 and x2(r1) < η1

δ .

Proof. First of all, we observe that, because of (H1), f(t, ·) maps bounded sets
into bounded sets. Therefore T is a completely continuous operator. Additionally,
according to Lemma 3.3 we have T : K(γ, c) → K.

Now we set β1 = η1
δ , β2 = Mr2 and β3 = η3

δ . Let x ∈ ∂K(γ, β1). Then
γ(x) = x(r1) = β1 and so ‖x‖I ≥ β1. Having in mind assumption (H3), we get

γ(Tx) = (Tx)(r1)

=
∫ 1

0

G(r1, s)f(s, xs)ds

≥
∫

X

G(r1, s)f(s, xs)ds

≥
∫

X

G(r1, s)v(s)w(xs(−τ(s)))ds

=
∫

X

G(r1, s)v(s)w(x(s− τ(s)))ds

≥
∫

X

G(r1, s)v(s)w(x(δ))ds.
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Additionally, by assumption (H3), the definition of K and Lemma 3.1, we have

γ(Tx) ≥
∫

X

G(r1, s)v(s)w(δ‖x‖I)ds

≥ w(δβ1)
∫

X

G(r1, s)v(s)ds

= w(η1)
∫

X

G(r1, s)v(s)ds

>
η1
δ

= β1.

This means that condition (i) of Theorem 2.2 is satisfied.
Now let x ∈ ∂K(θ, β2). Then θ(x) = x(r2) = β2 and so

‖x‖I ≤
1
r2
x(r2) =

1
r2
β2 = M.

Also we assumed that ‖φ‖J ≤M , so ‖x‖J∪I ≤M . Now, by (H2), we have

θ(Tx) = Tx(r2)

=
∫ 1

0

G(r2, s)f(s, xs)ds

≤
∫ 1

0

G(r2, s)u(s)L(‖xs‖J)ds

≤
∫ 1

0

G(r2, s)u(s)L(M)ds

= L(M)
∫ 1

0

G(r2, s)u(s)ds < Mr2 = β2.

So condition (ii) of Theorem 2.2 is also satisfied.
Now, define the function y : J ∪ I → R with y(t) = β3

2 . Then it is obvious
that α(y) = β3

2 < β3, so K(α, β3) 6= ∅. Also, for any x ∈ ∂K(α, β3) we have
α(x) = x(r3) = β3. Therefore, ‖x‖I ≥ β3. Now, having in mind assumption (H3)
and as in the case of the functional γ above, we get

α(Tx) = Tx(r3) ≥
∫

X

G(r3, s)v(s)w(x(δ))ds .

Taking into account assumption (H3), the definition of K and Lemma 3.1, we have

α(Tx) = w(η3)
∫

X

G(r3, s)v(s)ds >
η3
δ

= β3.

Consequently, assumption (iii) of Theorem 2.2 is satisfied. The result can now be
obtained by applying Theorem 2.2. �

The solutions x1, x2 obtained in Theorem 3.4 are both nondecreasing. Thus,
in the special case when r1 = r2 = r3 = 1, we have that xi(rj) = xi(1) = ‖xi‖,
i = 1, 2, j = 1, 2, 3. Therefore, we have the following corollary of Theorem 3.4.

Corollary 3.5. Suppose that assumptions (H1)–(H3) hold for r1 = r2 = r3 = 1
and furthermore ‖φ‖J ≤ M . Then the boundary-value problem (1.1)–(1.3) has at
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least two solutions x1, x2, which are concave and nondecreasing on I, positive on
J ∪ I and such that

η3
δ
< ‖x1‖ < M < ‖x2‖ <

η1
δ
.

4. The Ordinary Case

Suppose that q = 0. Then J = {0}, so the boundary-value problem (1.1)–(1.3)
is reformulated as follows

(p(t)x′(t))′ + f(t, x(t)) = 0, t ∈ I, (4.1)

x(0) = 0, (4.2)

ax(1) + bp(1)x′(1) = 0, (4.3)

where f : R+ × R+ → R+, p : I → (0,+∞) are continuous functions, p is also
nondecreasing and lower bounded by a strictly positive number and a, b ∈ R. Note
that equation (4.1) is equivalent to the form

(p(t)x′(t))′ + f(t, xt(0)) = 0, t ∈ I
and C+({0}) ≡ R+, so f : R+ × C+({0}) → R+.

Now, the analogue of Lemma 2.1 for this case is as follows.

Lemma 4.1. A function x ∈ C(I) is a solution of the boundary-value problem
(4.1)–(4.3) if and only if x is a fixed point of the operator T̂ : C(I) → C(I), with

T̂ x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds, t ∈ I,

where G is defined in Lemma 2.1.

Assumptions (H2), (H3), for the special case q = 0, are stated as follows:
(H2’) There exist M > 0, continuous function u : I → R+ and a function L :

R+ → R+ which is nondecreasing on [0,M ], such that

f(t, y) ≤ u(t)L(y) for all t ∈ I and y ∈ R+

and

L(M)
∫ 1

0

G(r2, s)u(s)ds < Mr2.

(H3’) There exist constants δ ∈ (0, 1), η1, η3 > 0 and functions v : I → R+

continuous and w : R+ → R+ nondecreasing, such that

f(t, y) ≥ v(t)w(y) for all t ∈ Z := [δ, 1] and y ∈ R+

and
w(ηi)

∫
Z

G(ri, s)v(s)ds >
ηi

δ
, i ∈ {1, 3},

where 0 < η3 < Mδr2 < η1, and M is defined in (H2’).
Therefore, we have the following results, which are the analogue of Theorem 3.4

and Corollary 3.5 respectively.

Theorem 4.2. Suppose that assumptions (H1), (H2)’, (H3’) hold. Then the boundary-
value problem (4.1)–(4.3) has at least two solutions x1, x2, which are concave, non-
decreasing and positive on I, such that x1(r3) > η3

δ , x1(r2) < Mr2, x2(r2) > Mr2
and x2(r1) < η1

δ .
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Corollary 4.3. Suppose that (H1), (H2’), (H3’) hold for r1 = r2 = r3 = 1. Then
the boundary-value problem (4.1)–(4.3) has at least two solutions x1, x2, which are
concave, nondecreasing and positive on I, such that

η3
δ
< ‖x1‖ < M < ‖x2‖ <

η1
δ
.

5. Applications

1. Consider the boundary-value problem

(etx′(t))′ + exp
( t+ 5

20
x(t− 1

2
)
)

= 0, t ∈ I := [0, 1] (5.1)

x0(t) = φ(t) := |t|, t ∈ J := [−1
2
, 0], (5.2)

x(1)− 2ex′(1) = 0. (5.3)

Obviously, f(t, y) := exp((t+5)y/20) is positive on R+×C+(J), φ is positive on J
and p(t) := et is positive and nondecreasing on I. Also we have a = 1 and b = −2,
so P (t) = 1 − e−t, t ∈ I, A(t) = e−t − e−1 − 2, t ∈ I, A(0) = −(1 + e−1) 6= 0,
aA(0) = −(1 + e−1) ≤ 0 and

G(t, s) =

−
(1−e−t)(e−s−e−1−2)

1+e−1 , 0 ≤ t ≤ s ≤ 1

− (1−e−s)(e−t−e−1−2)
1+e−1 , 0 ≤ s ≤ t ≤ 1.

Set r1 = 1/3, r2 = 1/2 and r3 = 2/3. Define L(t) = e0.3t, t ∈ R+, and u(t) = 1,
t ∈ I. Since

e0.3M +
1 + e−1

2e−1 + e−0.5 − e−1.5
M < 0

for M = 2, assumption (H2) is satisfied.
Additionally, set δ = 1/5, τ(t) = 1/2, t ∈ I, v(t) = 1, t ∈ I and w(t) = e0.25t,

t ∈ R+. Then, X = [ 7
10 , 1] and the inequalities in assumption (H3) take the forms

e0.25η1 +
5(1 + e−1)

(1− e−1/3)(e−0.7 − 1.3e−1)− 0.6
η1 > 0,

e0.25η3 +
5(1 + e−1)

(1− e−2/3)(e−0.7 − 1.3e−1)− 0.6
η3 > 0,

which are satisfied for η1 = 29 and η3 = 0.004.
Finally, it is obvious that 0 < 0.004 < 0.2 < 29 and ‖φ‖J ≤ 2, so we can apply

Theorem 3.4 to get that the boundary-value problem (5.1)–(5.3) has at least two
concave and nondecreasing on [0, 1] and positive on [− 1

2 , 1] solutions x1, x2, such
that

x1(
2
3
) > 0.02, x1(

1
2
) < 1, x2(

1
2
) > 1, x2(

1
3
) < 145.

2. Consider the boundary-value problem

x′′(t) +
(
x(t)− 4

5
)5 + 1 = 0, t ∈ I := [0, 1], (5.4)

x(0) = 0, (5.5)

2x′(1)− x(1) = 0. (5.6)
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Obviously, f(t, y) := (y − 4
5 )5 + 1 is positive on R+ × R+ and p(t) := 1 is positive

and nondecreasing on I. Also we have a = −1 and b = 2, so P (t) = t, t ∈ I,
A(t) = t+ 1, t ∈ I, A(0) = 1 6= 0, aA(0) = −1 ≤ 0 and

G(t, s) =

{
t(s+ 1), 0 ≤ t ≤ s ≤ 1
s(t+ 1), 0 ≤ s ≤ t ≤ 1.

Set r1 = 2/5, r2 = 3/5 and r3 = 4/5. Define L(t) := (t − 4
5 )5 + 1, t ∈ R+, and

u(t) = 1, t ∈ I. Since (
M − 4

5
)5 + 1− 5

6
M < 0

for M = 1.5, assumption (H2’) is satisfied.
Additionally, set δ = 9/10, v(t) = 1, t ∈ I and w(t) = (t − 4

5 )5 + 1, t ∈ R+.
Then, Z = [ 9

10 , 1] and the inequalities in assumption (H3’) take the forms(
η1 −

4
5
)5 + 1− 2500

351
η1 > 0,

(
η3 −

4
5
)5 + 1− 2500

351
η3 > 0,

which are satisfied for η1 = 3 and η3 = 0.1. Finally, it is obvious that

0 < η3 <
27
50
M < η1,

so we can apply Theorem 4.2 to conclude that the boundary-value problem (5.4)–
(5.6) has at least two solutions x1, x2, which are concave, nondecreasing and positive
on [0, 1], such that

x1(
3
4
) >

1
9
, x1(

1
2
) <

9
10
, x2(

1
2
) >

9
10
, x2(

1
4
) <

10
3
.
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