Electronic Journal of Differential Equations, Vol. 2005(2005), No. 86, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS AND EIGENVALUES OF NONLOCAL BOUNDARY-VALUE PROBLEMS

JIFENG CHU, ZHONGCHENG ZHOU

Abstract

We study the ordinary differential equation $x^{\prime \prime}+\lambda a(t) f(x)=0$ with the boundary conditions $x(0)=0$ and $x^{\prime}(1)=\int_{\eta}^{1} x^{\prime}(s) d g(s)$. We characterize values of λ for which boundary-value problem has a positive solution. Also we find appropriate intervals for λ so that there are two positive solutions.

1. Introduction

This paper concerns the ordinary differential equation

$$
\begin{equation*}
x^{\prime \prime}+\lambda a(t) f(x)=0, \quad \text { a.e. } t \in[0,1] \tag{1.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{gather*}
x(0)=0 \tag{1.2}\\
x^{\prime}(1)=\int_{\eta}^{1} x^{\prime}(s) d g(s) \tag{1.3}
\end{gather*}
$$

where $\lambda>0, \eta \in(0,1)$ and the integral in 1.3 is meant in the sense of RiemannStieljes. In this paper it is assumed that
(H1) The function $f:[0, \infty) \rightarrow[0, \infty)$ is continuous.
(H2) The function $a:[0,1] \rightarrow[0, \infty)$ is continuous and does not vanish identically on any subinterval.
(H3) The function $g:[0,1] \rightarrow \mathbb{R}$ is increasing and such that $g(\eta)=0<g\left(\eta^{+}\right)$ and $g(1)<1$.
In recent years, nonlocal boundary-value problems of this form have been studied extensively in the literature [6, 7, 8, 9, 10. This class of problems includes, as special cases, multi-point boundary-value problems considered by many authors (see [4, 12] and the references therein). In fact, condition $1.2-1.3$ is the continuous version of the multi-point condition

$$
\begin{equation*}
x(0)=0, \quad x^{\prime}(1)=\sum_{i=1}^{m} \alpha_{i} x^{\prime}\left(\xi_{i}\right) \tag{1.4}
\end{equation*}
$$

[^0]which happens when g is a piece-wise constant function that is increasing and has finitely many jumps, where $\alpha_{1}, \alpha_{2}, \ldots \alpha_{m} \in \mathbb{R}$ have the same sign, $m \geq 1$ is an integer, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m}<1$.

In the sequel, in this paper we shall denote by \mathbb{R} the real line and by I the interval $[0,1], C(I)$ will denote the space of all continuous functions $x: I \rightarrow \mathbb{R}$. Let

$$
C_{0}^{1}(I)=\left\{x \in C(I): x^{\prime} \text { is absolutely continuous on } I \text { and } x(0)=0\right\}
$$

Then $C_{0}^{1}(I)$ is a Banach space when it is furnished with the super-norm $\|x\|=$ $\sup _{t \in I}|x(t)|$.

By a solution x of (1.1)-(1.3) we mean $x \in C_{0}^{1}(I)$ satisfying equation (1.1) for almost all $t \in I$ and condition (1.3). By a positive solution x of (1.1)-(1.3) if x is nonnegative and is not identically zero on I. If, for a particular λ, the boundaryvalue problem $\sqrt{1.1}-1.3$ has a positive solution x, then λ is called an eigenvalue and x a corresponding eigenfunction. Recently, several eigenvalue characterizations for kinds of boundary-value problems have been carried out, for this we refer to [1, 2, 3, 3, 5, 14, 15].

In this paper, we will use the notation

$$
f_{0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}, \quad f_{\infty}=\lim _{x \rightarrow \infty} \frac{f(x)}{x} .
$$

This paper is organized as follows. In section 2 , we will present some preliminary results, including a fixed point theorem due to Krasnosel'skii [11], which is the basic tool used in this paper. We shall establish the eigenvalue intervals in terms of f_{0} and f_{∞} in section 3 . The investigation of the existence of double positive solutions is carried out in section 4 .

2. Preliminaries

First, we present a fixed point theorem in cones due to Krasnosel'skii, which can be found in 11 .

Theorem 2.1. Let X be a Banach space and $K(\subset X)$ be a cone. Assume that Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K
$$

be a continuous and compact operator such that either
(i) $\|T u\| \geq\|u\|$, $u \in K \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|$, $u \in K \cap \partial \Omega_{2}$; or
(ii) $\|T u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$.

Then T has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
We will apply Theorem 2.1 to find positive solutions to boundary-value problem (1.1)-(1.3). To do so, we need to re-formulate the problem as an operator equation of the form $x=T_{\lambda} x$, for an appropriate operator T_{λ}. In fact, following from 7, we have:

Lemma 2.2. A function $x \in C_{0}^{1}(I)$ is a solution of the boundary-value problem 1.1)-(1.3) if and only if x is a solution of the operator equation $x=T_{\lambda} x$, where T_{λ} is defined by

$$
\begin{equation*}
\left(T_{\lambda} x\right)(t)=\frac{\lambda t}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{t} \int_{s}^{1} a(r) f(x(r)) d r d s \tag{2.1}
\end{equation*}
$$

In order to apply Theorem 2.1, we define

$$
K=\left\{x \in C_{0}^{1}(I): x(t) \geq 0, x^{\prime}(t) \geq 0 \text { and } x \text { is concave }\right\}
$$

One may readily verify that K is a cone in $C_{0}^{1}(I)$. Moreover, we have the following elementary fact.

Lemma 2.3. If $x \in K$, then, for any $\tau \in[0,1]$ it holds $x(t) \geq \tau\|x\|, t \in[\tau, 1]$.
Theorem 2.4. Assume that $(\mathrm{H} 1)-(\mathrm{H} 3)$ hold, then $T_{\lambda}(K) \subseteq K$ and T_{λ} is continuous and completely continuous.

3. Eigenvalue intervals

For the sake of simplicity, let

$$
\begin{align*}
A & =\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{0}^{1} \int_{s}^{1} a(r) d r d s \tag{3.1}\\
B & =\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{\eta}^{1} \int_{s}^{1} a(r) d r d s \tag{3.2}
\end{align*}
$$

Theorem 3.1. Suppose that (H1)-(H3) hold, then the boundary-value problem (1.1)-(1.3) has at least one positive solution for each

$$
\begin{equation*}
\lambda \in\left(1 / \eta f_{\infty} B, 1 / f_{0} A\right) \tag{3.3}
\end{equation*}
$$

Proof. We construct the sets Ω_{1} and Ω_{2} in order to apply Theorem 2.1. Let λ be given as in 3.3) and choose $\varepsilon>0$ such that

$$
\frac{1}{\eta\left(f_{\infty}-\varepsilon\right) B} \leq \lambda \leq \frac{1}{\left(f_{0}+\varepsilon\right) A}
$$

First, there exists $r>0$ such that

$$
f(x) \leq\left(f_{0}+\varepsilon\right) x, \quad 0<x \leq r
$$

So, for any $x \in K$ with $\|x\|=r$, we have

$$
\begin{aligned}
& \left(T_{\lambda} x\right)(t) \\
& \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{0}+\varepsilon\right) x(r) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r)\left(f_{0}+\varepsilon\right) x(r) d r d s \\
& \leq \lambda\left(f_{0}+\varepsilon\right) r\left\{\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{0}^{1} \int_{s}^{1} a(r) d r d s\right\} \\
& \leq \lambda\left(f_{0}+\varepsilon\right) A r \leq r=\|x\|
\end{aligned}
$$

Consequently, $\left\|T_{\lambda} x\right\| \leq\|x\|$. So, if we set $\Omega_{1}=\{x \in K:\|x\|<r\}$, then

$$
\begin{equation*}
\left\|T_{\lambda} x\right\| \leq\|x\|, \quad \forall x \in K \cap \partial \Omega_{1} \tag{3.4}
\end{equation*}
$$

Next, we choose R_{1} such that

$$
f(x) \geq\left(f_{\infty}-\varepsilon\right) x, \quad x \geq R_{1} .
$$

Let $R=\max \left\{2 r, \eta^{-1} R_{1}\right\}$ and set

$$
\Omega_{2}=\{x \in K:\|x\|<R\} .
$$

If $x \in K$ with $\|x\|=R$, then

$$
\min _{t \in[\eta, 1]} x(t) \geq \eta\|x\| \geq R_{1}
$$

Thus, we have

$$
\begin{aligned}
& \left(T_{\lambda} x\right)(1) \\
& =\frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \geq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \geq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{\infty}-\varepsilon\right) x(r) d r d g(s)+\lambda \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{\infty}-\varepsilon\right) x(r) d r d s \\
& \geq \lambda\left(f_{\infty}-\varepsilon\right) \eta\|x\|\left\{\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{\eta}^{1} \int_{s}^{1} a(r) d r d s\right\} \\
& =\lambda\left(f_{\infty}-\varepsilon\right) B \eta R \geq R=\|x\| .
\end{aligned}
$$

Hence,

$$
\left\|T_{\lambda} x\right\| \geq\|x\|, \quad \forall x \in K \cap \partial \Omega_{2}
$$

From this inequality, $\left(3.4\right.$, and Theorem 2.1 it follows that T_{λ} has a fixed point $x \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r \leq\|x\| \leq R$. Clearly, this x is a positive solution of (1.1)-1.3).

Theorem 3.2. Suppose that (H1)-(H3) hold, then the boundary-value problem (1.1)-(1.3) has at least one positive solution for each

$$
\begin{equation*}
\lambda \in\left(1 / \eta f_{0} B, 1 / f_{\infty} A\right) \tag{3.5}
\end{equation*}
$$

Proof. We construct the sets Ω_{1} and Ω_{2} in order to apply Theorem 2.1. Let λ be given as in 3.5 and choose $\varepsilon>0$ such that

$$
\frac{1}{\eta\left(f_{0}-\varepsilon\right) B} \leq \lambda \leq \frac{1}{\left(f_{\infty}+\varepsilon\right) A}
$$

First, there exists $r>0$ such that

$$
f(x) \geq\left(f_{0}-\varepsilon\right) x, \quad 0<x \leq r
$$

So, for any $x \in K$ with $\|x\|=r$, we have

$$
\begin{aligned}
& \left(T_{\lambda} x\right)(1) \\
& \geq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \geq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{0}-\varepsilon\right) x(r) d r d g(s)+\lambda \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{0}-\varepsilon\right) x(r) d r d s \\
& \geq \lambda\left(f_{0}-\varepsilon\right) \eta r\left\{\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{\eta}^{1} \int_{s}^{1} a(r) d r d s\right\} \\
& \geq \lambda\left(f_{0}-\varepsilon\right) B \eta r \geq r=\|x\|
\end{aligned}
$$

Consequently, $\left\|T_{\lambda} x\right\| \geq\|x\|$. So, if we set $\Omega_{1}=\{x \in K:\|x\|<r\}$, then

$$
\begin{equation*}
\left\|T_{\lambda} x\right\| \geq\|x\|, \quad \forall x \in K \cap \partial \Omega_{1} \tag{3.6}
\end{equation*}
$$

Next, we can choose R_{1} such that

$$
f(x) \leq\left(f_{\infty}+\varepsilon\right) x, x \geq R_{1}
$$

Here are two cases to be considered, namely, where f is bounded and where f is unbounded.
Case 1: f is bounded. Then, there exists some constant $M>0$ such that $f(x) \leq M, x \in(0, \infty)$. Let $R=\max \{2 r, \lambda M A\}$ and set

$$
\Omega_{2}=\{x \in K:\|x\|<R\} .
$$

Then, for any $x \in K$ with $\|x\|=R$, we have

$$
\begin{aligned}
\left(T_{\lambda} x\right)(t) & \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \leq \lambda M\left\{\frac{1}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\int_{0}^{1} \int_{s}^{1} a(r) d r d s\right\} \\
& \leq \lambda M A \leq R=\|x\|
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|T_{\lambda} x\right\| \leq\|x\|, \quad \forall x \in K \cap \partial \Omega_{2} \tag{3.7}
\end{equation*}
$$

Case 2: f is unbounded. Then, there exists $R>\max \left\{2 r, R_{1}\right\}$ such that

$$
f(x) \leq f(R), 0<x \leq R
$$

For $x \in K$ with $\|x\|=R$, we have

$$
\begin{aligned}
& \left(T_{\lambda} x\right)(t) \\
& \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(R) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(R) d r d s \\
& \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r)\left(f_{\infty}+\varepsilon\right) R d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r)\left(f_{\infty}+\varepsilon\right) R d r d s \\
& =\lambda\left(f_{\infty}+\varepsilon\right) R A \leq R=\|x\|
\end{aligned}
$$

Then (3.7) is also true in this case.
Now (3.6), 3.7, and Theorem 2.1 guarantee that T_{λ} has a fixed point $x \in$ $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$ with $r \leq\|x\| \leq R$. Clearly, this x is a positive solution of (1.1)(1.3).

Example. Let the function $f(x)$ in 1.1 be

$$
\begin{equation*}
f(x)=x^{\alpha}+x^{\beta}, \tag{3.8}
\end{equation*}
$$

then problem (1.1)-1.3 has at least one positive solution for all $\lambda \in(0, \infty)$ if $0<\alpha<1,0<\beta<1$ or $\alpha>1, \beta>1$.

Proof. It is easy to see that $f_{0}=\infty, f_{\infty}=0$ if $0<\alpha<1,0<\beta<1$ and $f_{0}=0, f_{\infty}=\infty$ if $\alpha>1, \beta>1$. Then the results can be easily obtained by using Theorem 3.1 or Theorem 3.2 directly.

4. Twin positive solutions

In this section, we establish the existence of two positive solutions to problem (1.1)- (1.3).

Theorem 4.1. Suppose that (H1)-(H3) hold. In addition, assume there exist two constants $R>r>0$ such that

$$
\begin{equation*}
\max _{0 \leq x \leq r} f(x) \leq r / \lambda A, \quad \min _{\eta R \leq x \leq R} f(x) \geq R / \lambda B \tag{4.1}
\end{equation*}
$$

Then the boundary-value problem (1.1)-(1.3) has at least one positive solution $x \in K$ with $r \leq\|x\| \leq R$.

Proof. For $x \in \partial K_{r}=\{x \in K:\|x\|=r\}$, we have $f(x(t)) \leq r / \lambda A$ for $t \in[0,1]$. Then we have

$$
\begin{aligned}
\left(T_{\lambda} x\right)(t) & \leq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{0}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \leq \frac{\lambda}{1-g(1)} \frac{r}{\lambda A} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\lambda \frac{r}{\lambda A} \int_{0}^{1} \int_{s}^{1} a(r) d r d s=r
\end{aligned}
$$

As a result, $\left\|T_{\lambda} x\right\| \leq\|x\|, \forall x \in \partial K_{r}$. For $x \in \partial K_{R}$, we have $f(x(t)) \geq R / \lambda B$ for $t \in[\eta, 1]$. Then we have

$$
\begin{aligned}
\left(T_{\lambda} x\right)(1) & \geq \frac{\lambda}{1-g(1)} \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d g(s)+\lambda \int_{\eta}^{1} \int_{s}^{1} a(r) f(x(r)) d r d s \\
& \geq \frac{\lambda}{1-g(1)} \frac{R}{\lambda B} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d g(s)+\lambda \frac{R}{\lambda B} \int_{\eta}^{1} \int_{s}^{1} a(r) d r d s=R
\end{aligned}
$$

As a result, $\left\|T_{\lambda} x\right\| \geq\|x\|$, for all $x \in \partial K_{R}$. Then we can obtain the result by using Theorem 2.1.

Remark 4.2. In Theorem 4.1, if condition (4.1) is replaced by

$$
\max _{0 \leq x \leq R} f(x) \leq R / \lambda A, \quad \min _{\eta r \leq x \leq r} f(x) \geq r / \lambda B
$$

Then (1.1) has also a solution $x \in K$ with $r \leq\|x\| \leq R$.
For the remainder of this section, we need the following condition:
(H4) $\sup _{r>0} \min _{\eta r \leq x \leq r} f(x)>0$.
Let

$$
\lambda^{*}=\sup _{r>0} \frac{r}{A \max _{0 \leq x \leq r} f(x)}, \quad \lambda^{* *}=\inf _{r>0} \frac{r}{B \min _{\eta r \leq x \leq r} f(x)}
$$

We can easily obtain that $0<\lambda^{*} \leq \infty$ and $0 \leq \lambda^{* *}<\infty$ by using (H1) and (H4).
Theorem 4.3. Suppose that (H1)-(H4) hold. In addition, assume that $f_{0}=\infty$ and $f_{\infty}=\infty$. Then the boundary-value problem (1.1)-(1.3) has at least two positive solutions for any $\lambda \in\left(0, \lambda^{*}\right)$.

Proof. Define

$$
h(r)=\frac{r}{A \max _{0 \leq x \leq r} f(x)} .
$$

Using the condition (H1), $f_{0}=\infty$ and $f_{\infty}=\infty$, we can easily obtain that h : $(0, \infty) \rightarrow(0, \infty)$ is continuous and

$$
\lim _{r \rightarrow 0} h(r)=\lim _{r \rightarrow \infty} h(r)=0
$$

So there exists $r_{0} \in(0, \infty)$ such that $h\left(r_{0}\right)=\sup _{r>0} h(r)=\lambda^{*}$. For $\lambda \in\left(0, \lambda^{*}\right)$, there exist two constants $r_{1}, r_{2}\left(0<r_{1}<r_{0}<r_{2}<\infty\right)$ with $h\left(r_{1}\right)=h\left(r_{2}\right)=\lambda$. Thus

$$
\begin{array}{ll}
f(x) \leq r_{1} / \lambda A, & 0 \leq x \leq r_{1} \\
f(x) \leq r_{2} / \lambda A, & 0 \leq x \leq r_{2} \tag{4.3}
\end{array}
$$

On the other hand, by using the condition $f_{0}=\infty$ and $f_{\infty}=\infty$, there exist two constants $r_{3}, r_{4}\left(0<r_{3}<r_{1}<r_{2}<\eta r_{4}<\infty\right)$ with

$$
\frac{f(x)}{x} \geq \frac{1}{\lambda \eta B}, \quad x \in\left(0, r_{3}\right) \cup\left(\eta r_{4}, \infty\right) .
$$

Therefore,

$$
\begin{array}{r}
\min _{\eta r_{3} \leq x \leq r_{3}} f(x) \geq r_{3} / \lambda B \\
\min _{\eta r_{4} \leq x \leq r_{4}} f(x) \geq r_{4} / \lambda B . \tag{4.5}
\end{array}
$$

It follows from Remark 4.2 and 4.2 , 4.4) that problem 4.1 - 1.3 has a solution $x_{1} \in K$ with $r_{3} \leq\left\|x_{1}\right\| \leq r_{1}$. Also, it follows from Theorem 4.1 and 4.3, 4.5) that problem (1.1)- (1.3) has a solution $x_{2} \in K$ with $r_{2} \leq\left\|x_{2}\right\| \leq r_{4}$. As a results, problem (1.1)-1.3 has at least two positive solutions

$$
r_{3} \leq\left\|x_{1}\right\| \leq r_{1}<r_{2} \leq\left\|x_{2}\right\| \leq r_{4}
$$

Theorem 4.4. Suppose that (H1)-(H4) hold. In addition, assume that $f_{0}=0$ and $f_{\infty}=0$. Then, the boundary-value problem (1.1)-1.3 has at least two positive solutions for all $\lambda \in\left(\lambda^{* *}, \infty\right)$.
Proof. Define

$$
g(r)=\frac{r}{B \min _{\eta r \leq x \leq r} f(x)}
$$

Using the conditions (H1), $f_{0}=0$ and $f_{\infty}=0$, we can easily obtain that g : $(0, \infty) \rightarrow(0, \infty)$ is continuous and

$$
\lim _{r \rightarrow 0} g(r)=\lim _{r \rightarrow \infty} g(r)=+\infty
$$

So there exists $r_{0} \in(0, \infty)$ such that $g\left(r_{0}\right)=\inf _{r>0} g(r)=\lambda^{* *}$. For $\lambda \in\left(\lambda^{* *}, \infty\right)$, there exist two constants $r_{1}, r_{2}\left(0<r_{1}<r_{0}<r_{2}<\infty\right)$ with $g\left(r_{1}\right)=g\left(r_{2}\right)=\lambda$. Thus

$$
\begin{align*}
& f(x) \geq r_{1} / \lambda B, \quad \eta r_{1} \leq x \leq r_{1} \tag{4.6}\\
& f(x) \geq r_{2} / \lambda B, \quad \eta r_{2} \leq x \leq r_{2} \tag{4.7}
\end{align*}
$$

On the other hand, since $f_{0}=0$, there exists a constant $r_{3}\left(0<r_{3}<r_{1}\right)$ with

$$
\frac{f(x)}{x} \leq \frac{1}{\lambda A}, \quad x \in\left(0, r_{3}\right)
$$

Therefore,

$$
\begin{equation*}
\max _{0 \leq x \leq r_{3}} f(x) \leq r_{3} / \lambda A \tag{4.8}
\end{equation*}
$$

Further, using the condition $f_{\infty}=0$, there exists a constant $r\left(r_{2}<r<+\infty\right)$ with

$$
\frac{f(x)}{x} \leq \frac{1}{\lambda A}, x \in(r, \infty)
$$

Let $M=\sup _{0 \leq x \leq r} f(x)$ and $r_{4} \geq A \lambda M$. It is easily seen that

$$
\begin{equation*}
\max _{0 \leq x \leq r_{4}} f(x) \leq r_{4} / \lambda A \tag{4.9}
\end{equation*}
$$

It follows from Theorem 4.1, (4.6) and (4.8) that 1.1 - 1.3 has a solution $x_{1} \in K$ with $r_{3} \leq\left\|x_{1}\right\| \leq r_{1}$. Also, it follows from Remark 4.2 and 4.7), 4.9) that problem (1.1)-(1.3) has a solution $x_{2} \in K$ with $r_{2} \leq\left\|x_{2}\right\| \leq r_{4}$. Therefore, problem (1.1)- (1.3) has two positive solutions

$$
r_{3} \leq\left\|x_{1}\right\| \leq r_{1}<r_{2} \leq\left\|x_{2}\right\| \leq r_{4}
$$

Example. Assume in (3.8) that $0<\alpha<1<\beta$, then problem 1.1)-1.3 has at least two positive solution for each $\lambda \in\left(0, \lambda^{*}\right)$, where λ^{*} is some positive constant.

Proof. It is easy to see that $f_{0}=\infty, f_{\infty}=\infty$ since $0<\alpha<1<\beta$. Then the result can be easily obtained using Theorem 4.3 .

References

[1] R. P. Agarwal, Haishen Lü and Donal O'Regan; Eigenvalues and the One-Dimensional pLaplacian, Journal of Mathematics Analysis and Applications, 266 (2002), 383-400.
[2] R. P. Agarwal, M. Bohner and P. J. Y. Wong; Positive solutions and eigenvalues of conjugate boundary-value problems, Proceedings of the Edinburgh Mathematical Society, 42 (1999), 349-374.
[3] Jifeng Chu and Daqing Jiang; Eigenvalues and discrete boundary-value problems for the onedimensional p-Laplacian, Journal of Mathematics Analysis and Applications, 305 (2005), 452-465.
[4] C. P. Gupta; Solvability of a three-point boundary-value problem for a second order ordinary differential equation, Journal of Mathematics Analysis and Applications, 168 (1997), 540541.
[5] J. Henderson and H. Wang; Positive solutions for nonlinear eigenvalue problems, Journal of Mathematics Analysis and Applications, 208 (1997), 252-259.
[6] V. Il'in and E. Moiseev; Nonlocal boundary-value problems of the second kind for a SturmLiouville operator, Differential Equations, 23 (1987), 979-987.
[7] G. L. Karakostas and P. Ch. Tsamatos; Positive solutions for a nonlocal boundary-value problem with increasing response, Electronic Journal of Differential Equations, 73 (2000), 1-8.
[8] G. L. Karakostas and P. Ch. Tsamatos; Existence results for some n-dimensional nonlocal boundary-value problems, Journal of Mathematics Analysis and Applications, 259(2001), 429-438.
[9] G. L. Karakostas and P. Ch. Tsamatos; Multiple positive solutions for a nonlocal boundaryvalue problem with response function quiet at zero, Electronic Journal of Differential Equations, 13(2001), 1-10.
[10] G. L. Karakostas and P. Ch. Tsamatos; Sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary-value problem, Applied Mathematics Letters, 15 (2002), 401-407.
[11] M. A. Krasnoselskii; Positive solutions of operator equations, Noordhoff, Groningen, 1964.
[12] R. Ma; Positive solutions for a nonlinear three-point boundary-value problem, Electronic Journal of Differential Equations, 34 (1998), 1-8.
[13] Haiyan Wang; On the number of positive solutions of nonlinear systems, Journal of Mathematics Analysis and Applications, 281 (2003), 287-306.
[14] P. J. Y. Wong and R. P. Agarwal; On eigenvalues and twin positive solutions of (n, p) boundary-value problems, Functional Differential Equations, 4 (1997), 443-476.
[15] P. J. Y. Wong and R. P. Agarwal; Eigenvalue characterization for (n, p) boundary-value problems, J. Austral. Math. Soc. Ser. B. 39 (1998), 386-407.

Jifeng Chu
Department of Applied Mathematics, College of Sciences, Hohai University, Nanjing 210098, China

E-mail address: jifengchu@hhu.edu.cn
Zhongcheng Zhou
School of Mathematics and Finance, Southwest Normal University, Chongqing 400715, China

E-mail address: zhouzc@swnu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 34B15.
 Key words and phrases. Nonlocal boundary-value problems; positive solutions, eigenvalues; fixed point theorem in cones.
 (C) 2005 Texas State University - San Marcos.

 Submitted April 18, 2005. Published July 27, 2005.

