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POSITIVE SOLUTIONS AND EIGENVALUES OF NONLOCAL
BOUNDARY-VALUE PROBLEMS

JIFENG CHU, ZHONGCHENG ZHOU

Abstract. We study the ordinary differential equation x′′ + λa(t)f(x) = 0

with the boundary conditions x(0) = 0 and x′(1) =
R 1

η x′(s)dg(s). We char-

acterize values of λ for which boundary-value problem has a positive solution.

Also we find appropriate intervals for λ so that there are two positive solutions.

1. Introduction

This paper concerns the ordinary differential equation

x′′ + λa(t)f(x) = 0, a.e. t ∈ [0, 1] (1.1)

with the boundary conditions

x(0) = 0 (1.2)

x′(1) =
∫ 1

η

x′(s)dg(s), (1.3)

where λ > 0, η ∈ (0, 1) and the integral in (1.3) is meant in the sense of Riemann-
Stieljes. In this paper it is assumed that

(H1) The function f : [0,∞) → [0,∞) is continuous.
(H2) The function a : [0, 1] → [0,∞) is continuous and does not vanish identically

on any subinterval.
(H3) The function g : [0, 1] → R is increasing and such that g(η) = 0 < g(η+)

and g(1) < 1.
In recent years, nonlocal boundary-value problems of this form have been studied

extensively in the literature [6, 7, 8, 9, 10]. This class of problems includes, as special
cases, multi-point boundary-value problems considered by many authors (see [4, 12]
and the references therein). In fact, condition (1.2)-(1.3) is the continuous version
of the multi-point condition

x(0) = 0, x′(1) =
m∑

i=1

αix
′(ξi) (1.4)
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which happens when g is a piece-wise constant function that is increasing and has
finitely many jumps, where α1, α2, . . . αm ∈ R have the same sign, m ≥ 1 is an
integer, 0 < ξ1 < ξ2 < · · · < ξm < 1.

In the sequel, in this paper we shall denote by R the real line and by I the
interval [0,1], C(I) will denote the space of all continuous functions x : I → R. Let

C1
0 (I) = {x ∈ C(I) : x′ is absolutely continuous on I and x(0) = 0}.

Then C1
0 (I) is a Banach space when it is furnished with the super-norm ‖x‖ =

supt∈I |x(t)|.
By a solution x of (1.1)-(1.3) we mean x ∈ C1

0 (I) satisfying equation (1.1) for
almost all t ∈ I and condition (1.3). By a positive solution x of (1.1)-(1.3) if x is
nonnegative and is not identically zero on I. If, for a particular λ, the boundary-
value problem (1.1)-(1.3) has a positive solution x, then λ is called an eigenvalue
and x a corresponding eigenfunction. Recently, several eigenvalue characterizations
for kinds of boundary-value problems have been carried out, for this we refer to
[1, 2, 3, 5, 14, 15].

In this paper, we will use the notation

f0 = lim
x→0+

f(x)
x

, f∞ = lim
x→∞

f(x)
x

.

This paper is organized as follows. In section 2, we will present some preliminary
results, including a fixed point theorem due to Krasnosel’skii [11], which is the basic
tool used in this paper. We shall establish the eigenvalue intervals in terms of f0

and f∞ in section 3. The investigation of the existence of double positive solutions
is carried out in section 4.

2. Preliminaries

First, we present a fixed point theorem in cones due to Krasnosel’skii, which can
be found in [11].

Theorem 2.1. Let X be a Banach space and K (⊂ X) be a cone. Assume that
Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2\Ω1) → K

be a continuous and compact operator such that either
(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω̄2\Ω1).

We will apply Theorem 2.1 to find positive solutions to boundary-value problem
(1.1)-(1.3). To do so, we need to re-formulate the problem as an operator equation
of the form x = Tλx, for an appropriate operator Tλ. In fact, following from [7],
we have:

Lemma 2.2. A function x ∈ C1
0 (I) is a solution of the boundary-value problem

(1.1)-(1.3) if and only if x is a solution of the operator equation x = Tλx, where Tλ

is defined by

(Tλx)(t) =
λt

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))drdg(s) + λ

∫ t

0

∫ 1

s

a(r)f(x(r))dr ds . (2.1)
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In order to apply Theorem 2.1, we define

K = {x ∈ C1
0 (I) : x(t) ≥ 0, x′(t) ≥ 0 and x is concave}.

One may readily verify that K is a cone in C1
0 (I). Moreover, we have the following

elementary fact.

Lemma 2.3. If x ∈ K, then, for any τ ∈ [0, 1] it holds x(t) ≥ τ‖x‖, t ∈ [τ, 1].

Theorem 2.4. Assume that (H1)-(H3) hold, then Tλ(K) ⊆ K and Tλ is continuous
and completely continuous.

3. Eigenvalue intervals

For the sake of simplicity, let

A =
1

1− g(1)

∫ 1

η

∫ 1

s

a(r)drdg(s) +
∫ 1

0

∫ 1

s

a(r) dr ds (3.1)

B =
1

1− g(1)

∫ 1

η

∫ 1

s

a(r)drdg(s) +
∫ 1

η

∫ 1

s

a(r) dr ds. (3.2)

Theorem 3.1. Suppose that (H1)-(H3) hold, then the boundary-value problem
(1.1)-(1.3) has at least one positive solution for each

λ ∈ (1/ηf∞B, 1/f0A). (3.3)

Proof. We construct the sets Ω1 and Ω2 in order to apply Theorem 2.1. Let λ be
given as in (3.3) and choose ε > 0 such that

1
η(f∞ − ε)B

≤ λ ≤ 1
(f0 + ε)A

.

First, there exists r > 0 such that

f(x) ≤ (f0 + ε)x, 0 < x ≤ r.

So, for any x ∈ K with ‖x‖ = r, we have

(Tλx)(t)

≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))dr dg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(x(r)) dr ds

≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)(f0 + ε)x(r)dr dg(s) + λ

∫ 1

0

∫ 1

s

a(r)(f0 + ε)x(r) dr ds

≤ λ(f0 + ε)r{ 1
1− g(1)

∫ 1

η

∫ 1

s

a(r)dr dg(s) +
∫ 1

0

∫ 1

s

a(r) dr ds}

≤ λ(f0 + ε)Ar ≤ r = ‖x‖.

Consequently, ‖Tλx‖ ≤ ‖x‖. So, if we set Ω1 = {x ∈ K : ‖x‖ < r}, then

‖Tλx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω1. (3.4)

Next, we choose R1 such that

f(x) ≥ (f∞ − ε)x, x ≥ R1.

Let R = max{2r, η−1R1} and set

Ω2 = {x ∈ K : ‖x‖ < R}.
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If x ∈ K with ‖x‖ = R, then

min
t∈[η,1]

x(t) ≥ η‖x‖ ≥ R1.

Thus, we have

(Tλx)(1)

=
λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))dr dg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(x(r)) dr ds

≥ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))dr dg(s) + λ

∫ 1

η

∫ 1

s

a(r)f(x(r)) dr ds

≥ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)(f∞ − ε)x(r)dr dg(s) + λ

∫ 1

η

∫ 1

s

a(r)(f∞ − ε)x(r) dr ds

≥ λ(f∞ − ε)η‖x‖{ 1
1− g(1)

∫ 1

η

∫ 1

s

a(r)dr dg(s) +
∫ 1

η

∫ 1

s

a(r) dr ds}

= λ(f∞ − ε)BηR ≥ R = ‖x‖.
Hence,

‖Tλx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω2.

From this inequality, (3.4), and Theorem 2.1 it follows that Tλ has a fixed point
x ∈ K ∩ (Ω̄2\Ω1) with r ≤ ‖x‖ ≤ R. Clearly, this x is a positive solution of
(1.1)-(1.3). �

Theorem 3.2. Suppose that (H1)-(H3) hold, then the boundary-value problem
(1.1)-(1.3) has at least one positive solution for each

λ ∈ (1/ηf0B, 1/f∞A). (3.5)

Proof. We construct the sets Ω1 and Ω2 in order to apply Theorem 2.1. Let λ be
given as in (3.5) and choose ε > 0 such that

1
η(f0 − ε)B

≤ λ ≤ 1
(f∞ + ε)A

.

First, there exists r > 0 such that

f(x) ≥ (f0 − ε)x, 0 < x ≤ r.

So, for any x ∈ K with ‖x‖ = r, we have

(Tλx)(1)

≥ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))drdg(s) + λ

∫ 1

η

∫ 1

s

a(r)f(x(r)) dr ds

≥ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)(f0 − ε)x(r)drdg(s) + λ

∫ 1

η

∫ 1

s

a(r)(f0 − ε)x(r) dr ds

≥ λ(f0 − ε)ηr{ 1
1− g(1)

∫ 1

η

∫ 1

s

a(r)drdg(s) +
∫ 1

η

∫ 1

s

a(r) dr ds}

≥ λ(f0 − ε)Bηr ≥ r = ‖x‖.

Consequently, ‖Tλx‖ ≥ ‖x‖. So, if we set Ω1 = {x ∈ K : ‖x‖ < r}, then

‖Tλx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω1. (3.6)
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Next, we can choose R1 such that

f(x) ≤ (f∞ + ε)x, x ≥ R1.

Here are two cases to be considered, namely, where f is bounded and where f is
unbounded.
Case 1: f is bounded. Then, there exists some constant M > 0 such that
f(x) ≤ M, x ∈ (0,∞). Let R = max{2r, λMA} and set

Ω2 = {x ∈ K : ‖x‖ < R}.

Then, for any x ∈ K with ‖x‖ = R, we have

(Tλx)(t) ≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))drdg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(x(r)) dr ds

≤ λM{ 1
1− g(1)

∫ 1

η

∫ 1

s

a(r)drdg(s) +
∫ 1

0

∫ 1

s

a(r) dr ds}

≤ λMA ≤ R = ‖x‖.

Hence,
‖Tλx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω2. (3.7)

Case 2: f is unbounded. Then, there exists R > max{2r, R1} such that

f(x) ≤ f(R), 0 < x ≤ R.

For x ∈ K with ‖x‖ = R, we have

(Tλx)(t)

≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))drdg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(x(r)) dr ds

≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(R)drdg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(R) dr ds

≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)(f∞ + ε)Rdr dg(s) + λ

∫ 1

0

∫ 1

s

a(r)(f∞ + ε)R dr ds

= λ(f∞ + ε)RA ≤ R = ‖x‖.

Then (3.7) is also true in this case.
Now (3.6), (3.7), and Theorem 2.1 guarantee that Tλ has a fixed point x ∈

K ∩ (Ω̄2\Ω1) with r ≤ ‖x‖ ≤ R. Clearly, this x is a positive solution of (1.1)-
(1.3). �

Example. Let the function f(x) in (1.1) be

f(x) = xα + xβ , (3.8)

then problem (1.1)-(1.3) has at least one positive solution for all λ ∈ (0,∞) if
0 < α < 1, 0 < β < 1 or α > 1, β > 1.

Proof. It is easy to see that f0 = ∞, f∞ = 0 if 0 < α < 1, 0 < β < 1 and
f0 = 0, f∞ = ∞ if α > 1, β > 1. Then the results can be easily obtained by using
Theorem 3.1 or Theorem 3.2 directly. �
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4. Twin positive solutions

In this section, we establish the existence of two positive solutions to problem
(1.1)-(1.3).

Theorem 4.1. Suppose that (H1)-(H3) hold. In addition, assume there exist two
constants R > r > 0 such that

max
0≤x≤r

f(x) ≤ r/λA, min
ηR≤x≤R

f(x) ≥ R/λB. (4.1)

Then the boundary-value problem (1.1)-(1.3) has at least one positive solution x ∈ K
with r ≤ ‖x‖ ≤ R.

Proof. For x ∈ ∂Kr = {x ∈ K : ‖x‖ = r}, we have f(x(t)) ≤ r/λA for t ∈ [0, 1].
Then we have

(Tλx)(t) ≤ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))dr dg(s) + λ

∫ 1

0

∫ 1

s

a(r)f(x(r)) dr ds

≤ λ

1− g(1)
r

λA

∫ 1

η

∫ 1

s

a(r)dr dg(s) + λ
r

λA

∫ 1

0

∫ 1

s

a(r) dr ds = r .

As a result, ‖Tλx‖ ≤ ‖x‖,∀x ∈ ∂Kr. For x ∈ ∂KR, we have f(x(t)) ≥ R/λB for
t ∈ [η, 1]. Then we have

(Tλx)(1) ≥ λ

1− g(1)

∫ 1

η

∫ 1

s

a(r)f(x(r))drdg(s) + λ

∫ 1

η

∫ 1

s

a(r)f(x(r)) dr ds

≥ λ

1− g(1)
R

λB

∫ 1

η

∫ 1

s

a(r)drdg(s) + λ
R

λB

∫ 1

η

∫ 1

s

a(r) dr ds = R.

As a result, ‖Tλx‖ ≥ ‖x‖, for all x ∈ ∂KR. Then we can obtain the result by using
Theorem 2.1. �

Remark 4.2. In Theorem 4.1, if condition (4.1) is replaced by

max
0≤x≤R

f(x) ≤ R/λA, min
ηr≤x≤r

f(x) ≥ r/λB.

Then (1.1) has also a solution x ∈ K with r ≤ ‖x‖ ≤ R.

For the remainder of this section, we need the following condition:
(H4) supr>0 minηr≤x≤r f(x) > 0.
Let

λ∗ = sup
r>0

r

A max0≤x≤r f(x)
, λ∗∗ = inf

r>0

r

B minηr≤x≤r f(x)
.

We can easily obtain that 0 < λ∗ ≤ ∞ and 0 ≤ λ∗∗ < ∞ by using (H1) and (H4).

Theorem 4.3. Suppose that (H1)-(H4) hold. In addition, assume that f0 = ∞
and f∞ = ∞. Then the boundary-value problem (1.1)-(1.3) has at least two positive
solutions for any λ ∈ (0, λ∗).

Proof. Define
h(r) =

r

A max0≤x≤r f(x)
.

Using the condition (H1), f0 = ∞ and f∞ = ∞, we can easily obtain that h :
(0,∞) → (0,∞) is continuous and

lim
r→0

h(r) = lim
r→∞

h(r) = 0.
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So there exists r0 ∈ (0,∞) such that h(r0) = supr>0 h(r) = λ∗. For λ ∈ (0, λ∗),
there exist two constants r1, r2(0 < r1 < r0 < r2 < ∞) with h(r1) = h(r2) = λ.
Thus

f(x) ≤ r1/λA, 0 ≤ x ≤ r1, (4.2)

f(x) ≤ r2/λA, 0 ≤ x ≤ r2. (4.3)

On the other hand, by using the condition f0 = ∞ and f∞ = ∞, there exist two
constants r3, r4(0 < r3 < r1 < r2 < ηr4 < ∞) with

f(x)
x

≥ 1
ληB

, x ∈ (0, r3) ∪ (ηr4,∞).

Therefore,

min
ηr3≤x≤r3

f(x) ≥ r3/λB (4.4)

min
ηr4≤x≤r4

f(x) ≥ r4/λB. (4.5)

It follows from Remark 4.2 and (4.2), (4.4) that problem (1.1)-(1.3) has a solution
x1 ∈ K with r3 ≤ ‖x1‖ ≤ r1. Also, it follows from Theorem 4.1 and (4.3), (4.5)
that problem (1.1)-(1.3) has a solution x2 ∈ K with r2 ≤ ‖x2‖ ≤ r4. As a results,
problem (1.1)-(1.3) has at least two positive solutions

r3 ≤ ‖x1‖ ≤ r1 < r2 ≤ ‖x2‖ ≤ r4.

�

Theorem 4.4. Suppose that (H1)-(H4) hold. In addition, assume that f0 = 0 and
f∞ = 0. Then, the boundary-value problem (1.1)-(1.3) has at least two positive
solutions for all λ ∈ (λ∗∗,∞).

Proof. Define
g(r) =

r

B minηr≤x≤r f(x)
.

Using the conditions (H1), f0 = 0 and f∞ = 0, we can easily obtain that g :
(0,∞) → (0,∞) is continuous and

lim
r→0

g(r) = lim
r→∞

g(r) = +∞.

So there exists r0 ∈ (0,∞) such that g(r0) = infr>0 g(r) = λ∗∗. For λ ∈ (λ∗∗,∞),
there exist two constants r1, r2(0 < r1 < r0 < r2 < ∞) with g(r1) = g(r2) = λ.
Thus

f(x) ≥ r1/λB, ηr1 ≤ x ≤ r1, (4.6)

f(x) ≥ r2/λB, ηr2 ≤ x ≤ r2. (4.7)

On the other hand, since f0 = 0, there exists a constant r3(0 < r3 < r1) with

f(x)
x

≤ 1
λA

, x ∈ (0, r3).

Therefore,
max

0≤x≤r3
f(x) ≤ r3/λA. (4.8)

Further, using the condition f∞ = 0, there exists a constant r(r2 < r < +∞) with

f(x)
x

≤ 1
λA

, x ∈ (r,∞).
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Let M = sup0≤x≤r f(x) and r4 ≥ AλM . It is easily seen that

max
0≤x≤r4

f(x) ≤ r4/λA. (4.9)

It follows from Theorem 4.1, (4.6) and (4.8) that (1.1)-(1.3) has a solution x1 ∈ K
with r3 ≤ ‖x1‖ ≤ r1. Also, it follows from Remark 4.2 and (4.7), (4.9) that
problem (1.1)-(1.3) has a solution x2 ∈ K with r2 ≤ ‖x2‖ ≤ r4. Therefore, problem
(1.1)-(1.3) has two positive solutions

r3 ≤ ‖x1‖ ≤ r1 < r2 ≤ ‖x2‖ ≤ r4.

�

Example. Assume in (3.8) that 0 < α < 1 < β, then problem (1.1)-(1.3) has at
least two positive solution for each λ ∈ (0, λ∗), where λ∗ is some positive constant.

Proof. It is easy to see that f0 = ∞, f∞ = ∞ since 0 < α < 1 < β. Then the result
can be easily obtained using Theorem 4.3. �
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