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FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NON-LOCAL
BOUNDARY CONDITIONS

ASSIA GUEZANE-LAKOUD

Abstract. In this work, we study an abstract boundary-value problem gener-
ated by an evolution equation and a non-local boundary condition. We prove

the existence and uniqueness of the strong generalized solution and its con-

tinuity to respect to the parameters. The proofs are obtained via a priori
estimates in non classical functional spaces and on the density of the range of

the operator generated by the considered problem.

1. Introduction

The aim of this paper is to study a class of first order equations whose operator
coefficients have variable domains and the boundary conditions are non-local. Here
boundary-value problems (BVP) are called non-local if certain relations between
traces of a solution are set at the boundary of the domain.

Many authors have studied evolution equations with Cauchy conditions; see for
example [4, 5, 6, 7, 8]. In most of these papers the operator coefficients are as-
sumed to be infinitesimal generators of analytic semi groups and have constant
domains. For similar problems, various important results were proved under differ-
ent assumptions in [2, 3] for hyperbolic problems and [9] for homogeneous Cauchy
boundary conditions. Actually, it is difficult to construct a strict solution of the
posed BVP, for this reason we prove the existence and uniqueness of the strong
generalized solution, then we establish its continuity to respect to the parameters.

Summary of this article is as follows: In section 1, we give the statement of
the problem, the basic assumptions then we define the functional spaces in where
the posed problem will be solved, then its abstract formulation. In section 2, we
prove the uniqueness and continuous dependence to respect to the data of the strong
generalized solution when it exists. Section 3 is devoted to prove the existence The-
orem. The continuity of the strong generalized solution to respect to the parameter
is proved in section 4. Finally, we give an application of the results obtained in this
work for a mixed problem.
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2. Statement of the problem, main assumptions, and functional
spaces

In the interval I =]0, T [, with 0 < T < ∞, we consider a BVP generated by the
equation

Lu(t) = ut(t) + A(t)u(t) = f(t). (2.1)

To the above equation, we attach the non-local boundary condition

lµu = u(0)− µu(T ) = ϕ ∈ H, (2.2)

where the functions u, f and ϕ belong to the Hilbert space H, in which the norm
and the inner product are denoted respectively by | · | and (·, ·). The complex
parameter µ satisfies

|µ|2 < e−3T .

To study BVP (2.1)-(2.2), we have the following assumptions:

(A1) For each t ∈ I, A(t) is a closed linear operator in H densely defined and
satisfies

Re(A(t)u, u) ≥ c1|u|2, ∀u ∈ D(A(t)).

The same inequality holds for the adjoint operator A∗(t) of A(t).

(A2) The operator A−1(t) exists for almost all t ∈ I and its derivative
dA−1

dt
be-

longs to L∞(I,L(H)), where L(H) is the space of linear bounded operators
from H to H equipped with the norm

‖A‖L(H) = sup
u∈H u 6=0

|Au|
|u|

.

Now we describe some functional spaces: Let D(t) be the completion of D(A(t))
for almost all t ∈ I, with respect to the norm

|u|2t = Re(A(t)u, u)

We denote by Lµ the operator (L, lµ) = (f, ϕ), then the BVP (2.1)-(2.2) can be
reformulate as

Lµu = F.

The domains of definition D(Lµ) of the operators Lµ are

D(Lµ) = {u ∈ L2(I, H), u(t) ∈ D(A(t)), ut, A(t)u ∈ L2(I,H)}.

By completing D(Lµ) according to the norm

‖u‖2µ = (1− e3T |µ|2)
(

sup
s∈[0,T ]

(|u(s)|2) +
∫ T

0

|u|2t dt
)
,

we obtain a Banach space which we denote by Eµ.
We denote by E the subspace of L2(I, H)×H, consisting of elements F = (f, ϕ)

such the norm ‖F‖2E = ‖f‖2+|ϕ|2 is finite. Here ‖·‖ denotes the norm of L2(I,H)).
Regarding (2.1)-(2.2) and condition (A1), we have the the following statement.

Lemma 2.1. The set D(Lµ) is dense in L2(I,H).
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Proof. Let v ∈ L2(I,H) and u ∈ D(Lµ) such that
∫ T

0
(u, v)dt = 0. An appropriate

choice of u, for example u = A−1(t)v, and using (A1), we obtain

0 = Re
∫ T

0

(u, v)dt = Re
∫ T

0

(A−1(t)v, v)dt ≥ c1|A−1(t)v|2,

from this we deduce that v = 0. �

3. A priori estimate and corollaries

Theorem 3.1. Assume that (A1) and (A2) hold, then there exists a constant C > 0
independent of t and u such that

‖u‖2µ ≤ C‖Lµu‖2E , ∀u ∈ D(Lµ). (3.1)

Proof. To obtain the a priori estimate (3.1), we introduce the family of abstract
smoothing operators A−1

ε (t) = (I + εA(t))−1, ε > 0, with range D(A(t)), they have
the following properties:

(P1) The operators A−1
ε (t) are strongly differentiable for almost all t and the

derivatives dA−1
ε (t)
dt ∈ L∞(I,L(H)) and when ε → 0,

|u−A−1
ε (t)u| = |εA(t)A−1

ε (t)u| → 0, ∀u ∈ H

(P2) We approximate the unbounded operators A(t) using bounded operators
A(t)A−1

ε (t) which are strongly differentiable for almost all t ∈ I and

d(A(t)A−1
ε (t))

dt
=
−1
ε

dA−1
ε (t)
dt

.

Note that (A−1
ε (t))∗ has the properties (P1)-(P2).

Now, we multiply equation (2.1) by B(t) = ec(s−t)(A−1
ε (t))∗A−1

ε (t)u. Then we
integrate the double real part of the result equation over the interval Is =]0, s[⊂ I,
to obtain

2 Re
∫ s

0

ec(s−t)(Lu, (A−1
ε (t))∗A−1

ε (t)u)dt

= 2 Re
∫ s

0

ec(s−t)(ut, (A−1
ε (t))∗A−1

ε (t)u)dt

+ 2 Re
∫ s

0

ec(s−t)(A(t)u, (A−1
ε (t))∗A−1

ε (t)u)dt,

(3.2)

which is equivalent to

|A−1
ε (t)u|2t=s = ecs|A−1

ε (t)u|2t=0 + 2 Re
∫ s

0

ec(s−t)(A−1
ε (t)Lu, A−1

ε (t)u)dt

− cRe
∫ s

0

ec(s−t)|A−1
ε (t)u|2dt

+ Re
∫ s

0

ec(s−t)(u,
d

dt
(A−1∗

ε (t)A−1
ε (t))u)dt

− 2 Re
∫ s

0

ec(s−t)(Au, (A−1∗
ε (t))A−1

ε (t)u)dt .

(3.3)
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Using the Cauchy inequality and passing to the limit as ε → 0, and using (A2) and
the properties of the smoothing operators, we arrive at

|u|2t=s +
∫ s

0

ec(s−t)|u|2t dt

≤ ecs|u|2t=0 +
∫ s

0

ec(s−t)|Lu|2dt + (1− c)
∫ s

0

ec(s−t)|u|2dt,

(3.4)

To eliminate the last term on the right hand side of (3.4), we choose c = 1, conse-
quently

|u|2t=s +
∫ s

0

e(s−t)|u|2t dt ≤ es|u|2t=0 +
∫ s

0

e(s−t)|Lu|2dt, (3.5)

which implies

|u|2t=s +
∫ s

0

|u|2t dt ≤ eT |u|2t=0 + eT

∫ T

0

|Lu|2dt. (3.6)

Repeating steps already employed, but on the interval ]s, T [, we obtain

es−T |u|2t=T +
∫ T

s

e(s−t)|u|2t dt ≤ |u|2t=s +
∫ T

s

e(s−t)|Lu|2dt. (3.7)

Since the exponential function is increasing,

|u|2t=T +
∫ T

s

|u|2t dt ≤ eT |u|2t=s + eT

∫ T

0

|Lu|2dt. (3.8)

Multiplying (3.6) and (3.8) by e2T and then adding up, we have

(e2T − eT )|u|2t=s + e2T

∫ s

0

|u|2t dt +
∫ T

s

|u|2t dt

≤ e3T |u|2t=0 − |u|2t=T + (e3T + eT )‖Lu‖2.
(3.9)

Lemma 3.2 ([1]). Let g be a function from I into H and let h be an element of H
such that

h = g(0)− µg(T ). (3.10)

If the parameter µ satisfies |µ|2 < e−3T , then

e3T |g(0)|2 − |g(T )|2 ≤ e3T

1− e3T |µ|2
|h|2. (3.11)

Applying Lemma 3.2 to the first two terms in the left hand side of (3.9) and
using elementary estimates, we obtain

(e2T − eT )|u|2t=s + e2T

∫ s

0

|u|2t dt +
∫ T

s

|u|2t dt

≤ e3T

1− e3T |µ|2
|lµu|2 + (e3T + eT )‖Lu‖2,

(3.12)

Taking the supremum over the interval [0, T ] of (3.12),

α(T )( sup
s∈[0,T ]

(|u|2t=s) +
∫ T

0

|u|2t dt) ≤ e3T

1− e3T |µ|2
|lµu|2 + (e3T + eT )‖Lu‖2,
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where α(T ) = min{(e2T − eT ), 1}, multiplying both sides of the above inequality
by (1− e3T |µ|2) and taking into account that 0 < 1− e3T |µ|2 < 1, we have

α(T )(1− e3T |µ|2)[ sup
s∈[0,T ]

(|u|2t=s) +
∫ T

0

|u|2t dt] ≤ (e3T + eT )[|lµu|2 + ‖Lu‖2].

Finally, multiplying the both sides of this inequality by α(T ), we see that C =
e3T +eT

α(T ) , then the proof of Theorem 3.1 is complete. �

From the inequality ‖u‖2µ ≤ C‖Lµu‖2E , it follows that there is a bounded inverse
L−1

µ on the range R(Lµ) of Lµ. However, since we have no information concerning
R(Lµ) except that R(Lµ) ⊂ L2(I,H) × H, we must extend Lµ (we construct its
closure Lµ). In a standard way, we prove the following Lemma.

Lemma 3.3. Assume that the conditions of Theorem 3.1 hold, then the operator
Lµ has a closure which we denote by Lµ with domain of definition D(Lµ) = D(Lµ).

So a function u ∈ Eµ is in D(L̄µ) if there exist a sequence (un) ∈ D(Lµ)
and an element F ∈ E such that ‖un − u‖µ → 0 and ‖Lµun − F‖E → 0. i.e:
L̄µu = limn→∞ Lµun

Definition 3.4. The solution of equation L̄µu = F is called strong generalized
solution of the BVP (2.1)-(2.2).

From Lemma 3.3, we extend inequality (3.1) to all element u ∈ D(Lµ)

‖u‖2µ ≤ C‖L̄µu‖2E ,∀u ∈ D(Lµ) . (3.13)

Corollary 3.5. The strong generalized solution of the problem (2.1)-(2.2), when it
exists is unique and depends continuously on the data (f, ϕ).

Corollary 3.6. The range R(Lµ) of Lµ is closed in E,

R(Lµ) = R(Lµ); (Lµ)−1 = L−1
µ .

The proofs of the above Corollaries are the same as in [2].
Note that Corollary 3.6 shows that to prove the existence of the strong gener-

alized solution, it suffices to prove that R(Lµ) is everywhere dense in the Hilbert
space E.

4. Denseness of the set of values and the solvability of the problem

Theorem 4.1. If (A1) and (A2) are satisfied, then for every f ∈ L2(I,H) and
ϕ ∈ H, the strong generalized solution of the BVP (2.1)-(2.2), exists, is unique and
satisfies

‖u‖2µ ≤ C‖Lµu‖2E ,∀u ∈ D(Lµ).

Proof. By virtue of Corollary 3.6, to prove the existence of the strong generalized
solution, it suffices to prove that R(Lµ) = E. Since E is a Hilbert space we can
show that if (F, V ) = 0 where F = Lµu = (Lu, lµu) ∈ R(Lµ) and V ∈ E then
V = 0 i.e:

R(Lµ)⊥ = {0}
Note that (F, V ) = 0 is equivalent to

(Lu, v)L2(I,H) + (lµu, ϕ) = 0, (4.1)
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Step 1. Let u ∈ D(Lµ) = {u ∈ D(Lµ) such that lµu = 0}, then (4.1) becomes

(Lu, v)L2(I,H) = 0. (4.2)

We put u = (A−1
ε (t))∗A−1

ε (t)h, in the above equation, where h is an arbitrary
element of L2(I,H). By integrating by part the double real part of the resultant
equation, we obtain

Re((A−1
ε (t))∗A−1

ε (t)h, v)t=T − Re((A−1
ε (t))∗A−1

ε (t)h, v)t=0

+ Re
∫ T

0

(
d(A−1

ε (t))∗A−1
ε (t)

dt
h, v)dt + 2 Re

∫ T

0

(A(t)(A−1
ε (t))∗A−1

ε (t)h, v)dt = 0.

In particular if h = v, the above equality becomes

|A−1
ε (t)v|t=T − |A−1

ε (t)v|t=0 + Re
∫ T

0

(
d((A−1

ε (t))∗A−1
ε (t))

dt
v, v)dt

+ 2 Re
∫ T

0

(A−1
ε (t)v,A−1

ε (t)A(t)∗v)dt = 0.

Applying the properties of the regularizing operators A−1
ε (t) as ε → 0, the second

term in the right hand side of the above equation approaches zero. Then

(1− |µ|2)|v(T )|2 + 2
∫ T

0

|v|tdt = 0,

which implies that v(T ) = 0 and |v|t = 0,so v = 0.
Step 2. Let u ∈ D(Lµ), from (F, V ) = 0 and the result of step1, it follows that

(ϕ, lµu) = 0.

Choosing u(t) = (T − t)A−1(t)h, where h ∈ L2(I,H), substituting u by its value
in the above equation, we obtain (ϕ, TA−1(0)h) = 0. Since D(A(0)) is dense in H,
we conclude that ϕ = 0, so V = 0. �

5. Continuity of the strong generalized solution with respect to
the parameter µ

Theorem 5.1. Assume that the conditions of Theorem 3.1 are satisfied. If µn →
µ as n → ∞, then (Lµn)−1 → (Lµ)−1 in L(Eµn , Eµ) endowed with the simple
convergence topology.

Proof. Let Ê be the completion of D(Lµ) with respect to the norm

‖u‖2
Ê

= sup
s∈[0,T ]

(|u(s)|2) +
∫ T

0

|u|2t dt.

We can see that
‖u‖2

Ê
≤ β‖u‖2µ, (5.1)

where the constant β is independent of µn. From (5.1) and (3.13), we can write

‖u‖2
Ê
≤ C ′‖Lµn

u‖2E , ∀u ∈ D(Lµn
), (5.2)

where C ′ = C/β.
Now, using Banach Steinhauss Theorem, to prove Theorem 5.1, it suffices to

prove that
(a) sup ‖(Lµn

)−1‖L(E,Ê) < ∞.
(b) As n →∞, (Lµn

)−1 → (Lµ)−1 in a subspace G dense in E.
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Part(a) is proved immediately from (5.2). To prove part (b) we choose G =R(Lµ)
(which is dense in E). Indeed, let F ∈ R(Lµ), then (Lµn

)−1F−(Lµ)−1F ∈ D(Lµn
).

We can see that (5.2) is equivalent to

‖(Lµn
)−1F − (Lµ)−1F‖2

Ĕ
≤ C ′‖F − Lµn

(Lµ)−1F‖2E , (5.3)

setting g = (Lµ)−1F ∈ D(Lµn
) ⊆ D(Lµn

) in (25), we obtain

‖(Lµn)−1F − (Lµ)−1F‖2
Ĕ
≤ C ′‖Lµg − Lµng‖2E
= C ′|µn − µ|2g(T ) →

n→∞
0.

This achieves the proof of Theorem 5.1. �

The results concerning the problem (2.1)-(2.2) can be used to investigate mixed
boundary-value problems for partial differential equations.

Example. In D =]0, `[×]0, T [ consider the mixed problem

Lu(x, t) =
∂u

∂t
(x, t) + (−1)nt−n ∂2n+1u

∂x2n+1
(x, t) = f(x, t) (5.4)

∂iu

∂xi
(x, t)

∣∣
x=0

=
∂ju

∂xj
(x, t)

∣∣
x=`

= 0, 0 ≤ i < 2n, 0 ≤ j ≤ n (5.5)

lµu(x, t) = u(x, 0)− µu(x, T ) = ϕ(x). (5.6)

The functions u(x, t) and f(x, t) are from D to H = L2(]0, `[). The operator A(t)
is generated by the expression

Au(x, t) = (−1)nt−n ∂2n+1u

∂x2n+1
(x, t)

and the boundary condition (5.5) with domain of definition

D(A(t)) =
{
u(x, t) ∈ L2(]0, `[), t−n ∂2n+1u

∂x2n+1
(x, t) ∈ L2(]0, `[),

∂iu

∂xi
(x, t)

∣∣
x=0

=
∂ju

∂xj
(x, t)

∣∣
x=`

= 0, 0 ≤ i < 2n; 0 ≤ j ≤ n;∀t ∈ I
}
.

Theorem 5.2. The mixed problem (5.4)–(2.2) has one and only one strong gener-
alized solution.

Proof. It is sufficient to show that (A1) and (A2) hold. Indeed, the operators A(t)
satisfy (A1) with

c1 = T−n`−2n(2n)!((2n + 1)(4n + 1)/2`)
1
2 .

The inverse operator A−1(t) exists and

A−1(t)v(x, t) = (−1)n+1tn
∫ `

x

∫ s2n

0

. . .

∫ s2

0

∫ s1

0

v(r, t)drds1ds2 . . . ds2n.

Furthermore, it satisfies

|A−1(t)v|2 ≤ T 2n `4n+122n+1

((2n)!)2(2n + 1)(4n + 1)
|v|2.

The strong derivative ∂A−1(t)
∂t of the operator A−1(t) are

∂A−1(t)
∂t

v(x, t) = (−1)n+1ntn−1

∫ `

x

∫ s2n

0

. . .

∫ s2

0

∫ s1

0

v(r, t)drds1ds2 . . . ds2n .
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By a simple calculation, we obtain

|∂A−1(t)
∂t

v|2 ≤ n2T 2n−2 `4n+122n+1

((2n)!)2(2n + 1)(4n + 1)
|v|2 < ∞ .

From the above inequality we deduce that the operator ∂A−1(t)
∂t belongs to the space

L∞(I,L(H)). �
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