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OSCILLATION OF HIGH ORDER LINEAR FUNCTIONAL
DIFFERENTIAL EQUATION WITH IMPULSES

HAIHUA LIANG, WEIZHEN FENG

Abstract. We study the solutions to high-order linear functional differential

equations with impulses. We improve previous results in the oscillation theory

for ordinary differential equations and obtain new criteria on the oscillation of
solutions.

1. Introduction

In the past years, the theory of the oscillatory behavior of impulsive ordinary
differential equation (IODE) and impulsive functional differential equation (IFDE)
has been investigated by many authors; see for example [1, 2, 4, 5, 6, 8, 10, 11, 12,
13]. However, most of these articles concern first-order or second-order IODE and
IFDE [1, 2, 5, 6, 8, 11, 13]. Just a few of them have studied third and the fourth-
order IODE [4, 10, 12]. Recently, in [3], the authors studied oscillatory criteria for
even order IODE

x(2n)(t) + p(t)x(t) = 0, t ≥ t0, t 6= tk,

x(i)(t+k ) = a
(i)
k x(i)(tk), i = 0, 1, . . . , 2n− 1; k = 1, 2, . . .

(1.1)

and obtained some important results. To the best of our knowledge, paper [3] is
probably the first publication on the high order IODE. However, there are some-
things worth further consideration. Firstly, the results of [3] is invalid for odd order
IODE and IFDE; Secondly, in order to assure the oscillatory behavior of (1.1), the
following condition is required:∫ t1

t0

p(s)ds +
a
(0)
1

a
(2n−1)
1

∫ t2

t1

p(s)ds +
a
(0)
1 a

(0)
2

a
(2n−1)
1 a

(2n−1)
2

∫ t3

t2

p(s)ds

+ · · ·+
a
(0)
1 a

(0)
2 . . . a

(0)
k

a
(2n−1)
1 a

(2n−1)
2 . . . a

(2n−1)
k

∫ tk+1

tk

p(s)ds + · · · = +∞ ,

(1.2)
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which is parallel assumption to∫ +∞
p(s)ds = +∞ (1.3)

in ODE. We know, however, in the corresponding oscillation theory of ODE, it is
sufficient to assume that ∫ +∞

sn−2p(s)ds = +∞ . (1.4)

So it is natural to ask if it is possible to improved (1.2) to a better form? Moreover,
what is the result about the odd order differential equations with impulses? In the
present article, we deal with a more general linear IFDE and establish several useful
criteria for it. We believe our approach is simple and is also helpful to be used in
other systems.

Consider the impulsive delay differential equation

x(n)(t) + p(t)x(t− τ) = 0, t ≥ t0, t 6= tk,

x(i)(t+k ) = a
(i)
k x(i)(tk), i = 0, 1, . . . , n− 1; k = 1, 2, . . . ,

(1.5)

where n is a natural number with n ≥ 2, 0 ≤ t0 < t1 < t2 < · · · < tk < . . . ,
limk→∞ tk = +∞, tk+1 − tk > 3τ , x(0)(t) = x(t),

x(i)(tk) = lim
h→−0

x(i−1)(tk + h)− x(i−1)(tk)
h

,

x(i)(t+k ) = lim
h→+0

x(i−1)(tk + h)− x(i−1)(t+k )
h

,

where i = 1, 2, . . . , n and x(0)(t+k ) = x(t+k ).
For the rest of this paper, assume the following conditions:

• a
(i)
k > 0, i = 0, 1, . . . , n− 1; k = 1, 2, . . . .

• p(t) is continuous in [t0 − τ,∞); p(t) ≥ 0 and for any T ≥ t0, p(t) is not
identically zero in [T,+∞).

Definition. A function x : [t0−τ, a) → R(a > t0) is said to be a solution of (1.5) on
[t0−τ, a) satisfying the initial-value condition x(i)(t) = φ(i)(t) for i = 0, 1, . . . , n−1
and t ∈ [t0 − τ, t0), if

(i) x(i)(t) is continuous for t ∈ [t0, a) and t 6= tk, i = 0, 1, . . . n−1; k = 1, 2, . . .
(ii) x(t) satisfies x(n)(t) + p(t)x(t− τ) = 0 for t ∈ [t0, a), t 6= tk, k = 1, 2, . . .
(iii) x(i)(t) = φ(i)(t), t ∈ [t0 − τ, t0], i = 0, 1, . . . , n− 1
(iv) x(i)(t+k ) = a

(i)
k x(tk), for tk ∈ [t0, a), i = 0, 1, . . . , n− 1.

It is clear that (1.5) can be transformed into a first-order linear impulsive differ-
ential systems. Theorems on existence of solutions, on uniqueness, and on existence
of global solutions of the first order linear differential equation with impulses can
be found in [7, 9]. There, we can find the existence of global solutions under some
simple conditions.

In the following, we assume that the solutions of (1.5) exist on [t0 − τ,+∞).

Definition. A solution of (1.5) is said to be non-oscillatory if this solution is
eventually positive or eventually negative. Otherwise, this solution is said to be
oscillatory.
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2. Main Results

The following conditions are assumed in this paper:
(H1) For i = 1, 2, . . . , n− 1,

(t1 − t0) +
a
(i)
1

a
(i−1)
1

(t2 − t1) +
a
(i)
1 a

(i)
2

a
(i−1)
1 a

(i−1)
2

(t3 − t2) + . . .

+
a
(i)
1 a

(i)
2 . . . a

(i)
m

a
(i−1)
1 a

(i−1)
2 . . . a

(i−1)
m

(tm+1 − tm) + · · · = +∞

(H2) lim infk→+∞(a(i)
k a

(i)
k−1 . . . a

(i)
2 a

(i)
1 ) = δi > 0, i = 0, 1, . . . , n− 1

(H3) If n ≥ 3, then wL
m(k) ≥ W holds for k large enough, where W is a constant,

and

wL
m(k) =(a(L−m−1)

k − 1)(tmk − tmk−1) + (a(L−m−1)
k a

(L−m−1)
k−1 − 1)(tmk−1 − tmk−2)

+ · · ·+ (a(L−m−1)
k a

(L−m−1)
k−1 . . . a

(L−m−1)
1 − 1)(tm1 − tm0 ),

where L = 2, 3, . . . , n− 1 and m = 1, 2, . . . L− 1.

We remark that if a
(i)
k ≥ 1, then (H2) and (H3) are satisfied.

Lemma 2.1. Let x(t) be a solution of (1.5). Suppose (H1) holds and for some
i ∈ {1, 2, . . . , n − 1}, there exists a constant T ≥ t0 such that x(i)(t) > 0(< 0),
x(i+1)(t) ≥ 0(≤ 0) for t ≥ T . Then x(i−1)(t) > 0(< 0) holds for sufficiently large t.

Proof. We prove only the conclusion under the assumptions that x(i)(t) > 0,
x(i+1)(t) ≥ 0. The case that x(i)(t) < 0, x(i+1)(t) ≤ 0 can be proved simi-
larly. Without loss of generality, suppose T = t0. By x(i)(t) > 0, x(i+1)(t) ≥ 0,
we know that x(i)(t) is monotonically nondecreasing in each interval (tk, tk+1),
k = 0, 1, 2, . . . . Hence

x(i)(t) ≥ x(i)(t+k ), for t ∈ (tk, tk+1].

Integrating the above inequality, we have

x(i−1)(tk+1) ≥ x(i−1)(t+k ) + x(i)(t+k )(tk+1 − tk).

Then
x(i−1)(t2) ≥ x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1),

and thus

x(i−1)(t3) ≥ x(i−1)(t+2 ) + x(i)(t+2 )(t3 − t2)

= a
(i−1)
2 x(i−1)(t2) + a

(i)
2 x(i)(t2)(t3 − t2)

≥ a
(i−1)
2 [x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1)] + a

(i)
2 x(i)(t2)(t3 − t2)

≥ a
(i−1)
2 [x(i−1)(t+1 ) + x(i)(t+1 )(t2 − t1) +

a
(i)
2

a
(i−1)
2

x(i)(t+1 )(t3 − t2)].

By induction, we find that

x(i−1)(tk) ≥ a
(i−1)
k−1 . . . a

(i−1)
3 a

(i−1)
2

{
x(i−1)(t+1 ) + x(i)(t+1 )

[
(t2 − t1)

+
a
(i)
2

a
(i−1)
2

(t3 − t2) + · · ·+
a
(i)
2 a

(i)
3 . . . a

(i)
k−1

a
(i−1)
2 a

(i−1)
3 . . . a

(i−1)
k−1

(tk − tk−1)
]}

.
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Since a
(i)
k > 0, it follows from (H1) that for sufficiently large k, x(i−1)(tk) > 0. i.e.,

there exists some N such that x(i−1)(tk) > 0 for k ≥ N . Since x(i)(t) > 0,we have

x(i−1)(t) > x(i−1)(t+k ) > 0, for t ∈ (tk, tk+1], tk ≥ tN .

Thus, for sufficiently large t, x(i−1)(t) > 0, which completes the proof. �

Lemma 2.2. Let x(t) be a solution of (1.5). Suppose (H1) holds, and for some
i ∈ {1, 2, . . . , n}, there exists a constant T (T ≥ t0) such that x(t) > 0, x(i)(t) ≤
0(t ≥ T ). Furthermore, x(i)(t) is not identically zero in any interval [t′,+∞).
Then x(i−1)(t) > 0 holds for sufficiently large t.

Proof. Without loss of generality, assume T = t0. We will show that for any
tk ≥ t0, x(i−1)(tk) > 0 holds. Suppose that there exists some tj ≥ t0 such that
x(i−1)(tj) ≤ 0. Since x(i)(t) ≤ 0, it is obvious that x(i−1)(t) is monotonically non-
increasing in any interval (tk, tk+1] If k ≥ j. By the condition that x(i)(t) is not
identically zero in any interval [t′,+∞), we obtain that there exists some tl ≥ tj
such that x(i)(t) is not identically zero in(tl, tl+1]. For convenient, assume l = j.
So

x(i−1)(tj+1) < x(i−1)(t+j ) = a
(i−1)
j x(i−1)(tj) ≤ 0

and

x(i−1)(t) ≤ x(i−1)(t+j+1) = a
(i−1)
j+1 x(i−1)(tj+1) < 0, for t ∈ (tj+1, tj+2].

By induction, x(i−1)(t) < 0 holds for t ∈ (tj+m, tj+m+1], where m is a natural
number. Then x(i−1)(t) < 0, x(i)(t) ≤ 0, t ∈ (tj+1,∞). Thus, by Lemma 2.1, we
obtain x(i−2)(t) < 0 for all sufficiently large t.

Making use of Lemma 2.1 repeatedly, we eventually obtain that x(t) < 0 for t
large enough, which contradicts x(t) > 0(t ≥ T ). Therefore, x(i−1)(tk) > 0 for any
tk. Since a

(i−1)
k > 0 and that x(i−1)(t) is monotonically non-increasing in (tk, tk+1],

we have x(i−1)(t) > 0 for sufficiently large t. Thus the proof is complete. �

Lemma 2.3. Let x(t) be a solution of (1.5). Suppose that (H1) holds and that
there exists a constant T ≥ t0 such that x(t) > 0 for t ≥ T . Then, there exists a T ′

and an integer L, 0 ≤ L ≤ n, with n + L odd, such that

x(i)(t) > 0, i = 0, 1, . . . L,

(−1)i+Lx(i)(t) > 0, i = L + 1, . . . , n− 1, t ≥ T ′.
(2.1)

Proof. By the assumption that x(t) > 0(t ≥ T ), we have x(n)(t) = −p(t)x(t−τ) ≤ 0
for t ≥ T + τ and that x(n)(t) is not identically zero in any interval [t′,+∞).
According to Lemma 2.2, there exists some T0 ≥ T + τ such that x(n−1)(t) > 0
holds for t ≥ T0.

Therefore, x(n−2)(t) is monotonically nondecreasing in (tk, tk+1](tk ≥ T0). If
x(n−2)(tk) < 0 holds for all tk ≥ T0, then it is obvious that x(n−2)(t) < 0(t ≥ T0).
If there is some j such that x(n−2)(tj) ≥ 0, then, by the monotonicity of x(n−2)(t)
and a

(n−2)
k > 0, we obtain x(n−2)(t) > 0 for sufficiently large t. So, in any case,

there exists a T1 such that one of the following statements is true:
(A1) x(n−1)(t) > 0, x(n−2)(t) > 0, t ≥ T1

(B1) x(n−1)(t) > 0, x(n−2)(t) < 0, t ≥ T1.
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If (A1) is true, Lemma 2.1 shows that x(n−3)(t) > 0 holds for sufficiently large t.
By using Lemma 2.1 repeatedly, we finally arrive at that

x(n−1)(t) > 0, x(n−2)(t) > 0, . . . , x′(t) > 0, x(t) > 0.

If (B1) holds, Lemma 2.2 suggests that x(n−3)(t) > 0 for sufficiently large t. So,
there exists a T2 ≥ T1 such that one of the following statements is true:

(A2) x(n−3)(t) > 0, x(n−4)(t) > 0, t ≥ T2

(B2) x(n−3)(t) > 0, x(n−4)(t) < 0, t ≥ T2.

Proceeding as in the above argument, we obtain that there exists a T ′ ≥ T and
L : 0 ≤ L ≤ n− 1, with n + L odd, such that (2.1) holds. �

Lemma 2.4. Let x(t) be a solution of (1.5). Assume that (H2) and (H3) are
satisfied and there exist a natural number L ≥ 1 and a T ′ ≥ t0, such that x(i)(t) > 0
holds for t ≥ T ′ and i = 0, 1, . . . L. Then there exist constants M and T such that

x(t) ≥ MtL−1, t ≥ T. (2.2)

Proof. Without loss of generality, let T ′ = t0. At first, we claim that there exists a
constant a > 0 such that

x(L−1)(t) ≥ a. (2.3)

holds for sufficiently large t. Suppose it is not true, then lim inft→+∞ x(L−1)(t) = 0.
Since x(L)(t) > 0, this implies lim infk→+∞ x(L−1)(t+k ) = 0. Note that

x(L−1)(t+k ) = a
(L−1)
k x(L−1)(tk) ≥ a

(L−1)
k x(L−1)(t+k−1)

= a
(L−1)
k a

(L−1)
k−1 x(L−1)(tk−1) ≥ · · · ≥ a

(L−1)
k a

(L−1)
k−1 . . . a

(L−1)
1 x(L−1)(t+0 ),

hence lim inft→+∞(a(L−1)
k a

(L−1)
k−1 . . . a

(L−1)
1 ) = 0, which contradicts condition (H2).

The claim is proved.
If L = 1, by (2.3) we find the Lemma 2.4 has been proved. Now, suppose L ≥ 2.

We will show that
x(L−2)(t) ≥ a

2
t (2.4)

holds for sufficiently large t.
In order to simplify the sign, we assume that (2.3) holds for t ≥ t0. Consequently,

for t ∈ (t0, t1], we have

x(L−2)(t) = x(L−2)(t+0 ) +
∫ t

t0

x(L−1)(s)ds ≥ a(t− t0).

Particularly, x(L−2)(t1) ≥ a(t1 − t0). For t ∈ (t1, t2], we have

x(L−2)(t) = x(L−2)(t+1 ) +
∫ t

t1

x(L−1)(s)ds

≥ x(L−2)(t+1 ) + a(t− t1)

= a
(L−2)
1 x(L−2)(t1) + a(t− t1)

≥ a
(L−2)
1 a(t1 − t0) + at− at1

= a[t + (a(L−2)
1 − 1)t1 − a

(L−2)
1 t0].
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In particular, x(L−2)(t2) ≥ a[t2 + (a(L−2)
1 − 1)t1 − a

(L−2)
1 t0]. For t ∈ (t2, t3], we

obtain

x(L−2)(t) ≥ x(L−2)(t+2 ) + a(t− t2)

= a
(L−2)
2 x(L−2)(t2) + a(t− t2)

≥ a
(L−2)
2 a[t2 + (a(L−2)

1 − 1)t1 − a
(L−2)
1 t0] + at− at2

= a[t + (a(L−2)
2 − 1)t2 + a

(L−2)
2 (a(L−2)

1 − 1)t1 − a
(L−2)
2 a

(L−2)
1 t0].

By induction, for t ∈ (tk, tk+1], we get

x(L−2)(t)

≥ a[t + (a(L−2)
k − 1)tk + a

(L−2)
k (a(L−2)

k−1 − 1)tk−1 + . . .

+ a
(L−2)
k a

(L−2)
k−1 . . . a

(L−2)
2 (a(L−2)

1 − 1)t1 − a
(L−2)
k a

(L−2)
k−1 . . . a

(L−2)
2 a

(L−2)
1 t0]

= a
[
t + (a(L−2)

k − 1)(tk − tk−1) + (a(L−2)
k a

(L−2)
k−1 − 1)(tk−1 − tk−2)

+ · · ·+ (a(L−2)
k a

(L−2)
k−1 . . . a

(L−2)
1 − 1)(t1 − t0)− t0

]
= a[t + wL

1 (k)− t0].

From (H3), we find x(L−2)(t) ≥ a
2 t holds for sufficiently large t. To complete the

proof, we prove the inequality

x(L−j)(t) ≥ a

pj
tj−1, j = 1, 2, . . . L, (2.5)

where pj = 2j−1(j − 1)! and that t is sufficiently large. From the above argument,
it is clear that (2.5) holds for j = 1, 2. We suppose (2.5) holds for j(j < L) and
t > t0. Then for t ∈ (t0, t1],

x(L−j−1)(t) ≥ x(L−j−1)(t+0 ) +
∫ t

t0

a

pj
sj−1ds ≥ a

pj

∫ t

t0

sj−1ds =
a

jpj
(tj − tj0).

In particular, x(L−j−1)(t1) ≥ a
jpj

(tj1 − tj0). For t ∈ (t1, t2], we get

x(L−j−1)(t) ≥x(L−j−1)(t+1 ) +
∫ t

t1

a

pj
sj−1ds

≥a
(L−j−1)
1

a

jpj
(tj1 − tj0) +

a

jpj
(tj − tj1)

=
a

jpj
[tj + (a(L−j−1)

1 − 1)tj1 − a
(L−j−1)
1 tj0].

In particular, x(L−j−1)(t2) ≥ a
jpj

[tj2 +(a(L−j−1)
1 − 1)tj1− a

(L−j−1)
1 tj0]. By induction,

we find that for t ∈ (tk, tk + 1],

x(L−j−1)(t)

≥ a

jpj

[
tj + (a(L−j−1)

k − 1)tjk + a
(L−j−1)
k (a(L−j−1)

k−1 − 1)tjk−1 + . . .

+ a
(L−j−1)
k a

(L−j−1)
k−1 . . . a

(L−j−1)
2 (a(L−j−1)

1 − 1)tj1 − a
(L−j−1)
k a

(L−j−1)
k−1

. . . a
(L−j−1)
2 a

(L−2)
1 tj0

]
=

a

jpj

[
tj + (a(L−j−1)

k − 1)(tjk − tjk−1) + (a(L−j−1)
k a

(L−j−1)
k−1 − 1)(tjk−1 − tjk−2)
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+ · · ·+ (a(L−j−1)
k a

(L−j−1)
k−1 . . . a

(L−j−1)
1 − 1)(tj1 − tj0)− tj0

]
=

a

jpj
[tj + wL

j (k)− tjo].

Using (H3) again, we obtain that

x(L−j−1)(t) ≥ a

2jpj
tj =

a

pj+1
tj

holds for sufficiently large t. Therefore, (2.5) is as well satisfied for j + 1. Thus the
proof is complete. �

We are now able to state and show the main results, using the assumption
(H4)∫ t1

t0

p(s)sn−2ds +
1
b1

∫ t2

t1

p(s)sn−2ds +
1

b1b2 . . . bk

∫ tk+1

tk

p(s)sn−2ds + · · · = +∞,

where bi = max{a(1.5)
i , a

(2)
i , . . . a

(n−1)
i }.

Theorem 2.5. Assuming (H1)–(H4) and that n is even, then all solutions of (1.5)
are oscillatory.

Proof. Suppose (1.5) has a non-oscillatory solution x(t). We may assume x(t) > 0
(t ≥ t0) (the case when x(t) < 0(t ≥ t0) can be proved similarly and will not be
included here). Lemma 2.3 shows that there exist constants L ∈ {1, 3, . . . , n − 1}
such that (2.1) holds. Moreover, from Lemma 2.4, there exists a T ≥ t0 such that
t ≥ T implies

x(t− τ) ≥ M(t− τ)L−1 ≥ M

2
tL−1 = NtL−1,

where N = M
2 . For convenience, let T = t0. Thus

x(n)(t) = −p(t)x(t− τ) ≤ −Np(t)tL−1, (t ≥ t0).

Multiplying both sides of the above inequality by tn−L−1 and integrating both sides
of it from tk to t, we obtain∫ t

tk

x(n)(s)sn−L−1ds ≤ −N

∫ t

tk

p(s)sn−2ds, t ∈ (tk, tk+1].

Integrating by parts,

Q(t)−Q(t+k ) ≤ −N

∫ t

tk

p(s)sn−2ds, (2.6)

where

Q(t) =tn−L−1x(n−1)(t)− (n− L− 1)tn−L−2x(n−2)(t)

+ (n− L− 1)(n− L− 2)tn−L−3x(n−3)(t) + . . .

+ (−1)n−L−1(n− L− 1)!x(L)(t).

Lemma 2.3 suggests that Q(t) ≥ 0. In view of (2.6), we obtain

Q(t+k )−N

∫ tk+1

tk

p(s)sn−2ds ≥ 0.

Since

Q(t+i ) = a
(n−1)
i tn−L−1

i x(n−1)(ti)− (n− L− 1)a(n−2)
i tn−L−2

i x(n−2)(ti)
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+ (n− L− 1)(n− L− 2)a(n−3)
i tn−L−3

i x(n−3)(ti)

+ · · ·+ (−1)n−L−1(n− L− 1)!a(L)
i x(L)(ti)

≤ biQ(ti),

then

Q(t1) ≤ Q(t+0 )−N

∫ t1

t0

p(s)sn−2ds,

Q(t2) < Q(t+1 )−N

∫ t2

t1

p(s)sn−2ds

≤ b1Q(t1)−N

∫ t2

t1

p(s)sn−2ds

≤ b1[Q(t+0 )−N

∫ t1

t0

p(s)sn−2ds]−N

∫ t2

t1

p(s)sn−2ds

= b1N [
Q(t+0 )

N
−

∫ t1

t0

p(s)sn−2ds− 1
b1

∫ t2

t1

p(s)sn−2ds].

Similarly

Q(t3)

< Q(t+2 )−N

∫ t3

t2

p(s)sn−2ds

≤ b2Q(t2)−N

∫ t3

t2

p(s)sn−2ds

≤ b2b1N
[Q(t+0 )

N
−

∫ t1

t0

p(s)sn−2ds− 1
b1

∫ t2

t1

p(s)sn−2ds− 1
b1b2

∫ t3

t2

p(s)sn−2ds
]
.

Applying induction, we get

Q(tk) ≤ bk−1 . . . b2b1N
[Q(t+0 )

N
− (

∫ t1

t0

p(s)sn−2ds +
1
b1

∫ t2

t1

p(s)sn−2ds

+ · · ·+ 1
bk−1 . . . b2b1

∫ tk

tk−1

p(s)sn−2ds)
]
.

According to (H4), Q(tk) < 0 holds for sufficiently large k. This contradicts that
Q(tk) ≥ 0. Hence every solution of equation (1.5) is oscillatory. �

Note that in Theorem 2.5, we use a method different from that of [3], and that
our result and [3, Theorem 1] are independent. In particular, if 0 <

∏+∞
k=1 a

(i)
k ≤∏+∞

k=1 bk < +∞, i = 0, 1, . . . , n− 1, then condition (1.2) turns out to be (1.3). But
in this theorem, we only need condition (1.4) to be satisfied.

Theorem 2.6. Suppose (H1)–(H4) hold, and that n is odd. If
∞∑

k=1

|a(0)
k − 1| < +∞, (2.7)

then all the non-oscillatory solutions of (1.5) tend to zero.
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Proof. Assume that x(t) is a non-oscillatory solution of (1.5). Without loss of
generality, we may assume x(t) > 0 for t ≥ t0 − τ . By Lemma 2.3, one of the
following two statements holds:

(i) x(t) > 0, x′(t) > 0, . . . , x(L)(t) > 0, x(L+1)(t) < 0 . . . , x(n−1)(t) > 0,
x(n)(t) ≤ 0, L ∈ {2, 4, . . . , n− 1},

(ii) x(t) > 0, x′(t) < 0, x′′(t) > 0, . . .x(n−1)(t) > 0, x(n)(t) ≤ 0.
If (i) is true, then employing the conditions (H1)-(H4) and by a similar way of the

proof of Theorem 2.5, we find x(t) is oscillatory, which contradicts the assumption
that x(t) is a non-oscillatory solution. Thus, only (ii) can be true. Therefore, x(t)
is monotonically decreasing in each interval (tk, tk+1].

We claim that limt→∞ x(t) = α ≥ 0 exists and is finite. First, we show that
+∞∑
k=1

|x(t+k )− x(tk)| < +∞.

It is an easy exercise to prove that condition (2.7) implies
+∞∏
k=1

a
(0)
k < +∞. (2.8)

Since

x(t+k ) = a
(0)
k x(tk) ≤ a

(0)
k x(t+k−1)

= a
(0)
k a

(0)
k−1x(tk−1) ≤ · · · ≤ a

(0)
k a

(0)
k−1 . . . a

(0)
1 x(t+0 ),

by (2.8), we know that {x(t+k )} is bounded for k ∈ N . Furthermore, x(t) is non-
increasing in every interval (tk, tk+1], i.e. x(t) ≤ x(t+k ) t ∈ (tk, tk+1]. Thus, x(t) is
bounded on [t0,+∞). Now, from (2.7) and the bounded nature of x(t), we find

+∞∑
k=1

|x(t+k )− x(tk)| < +∞.

Next, to complete the claim, we let

cl =
l∑

k=1

[x(t+k )− x(tk)], lim
l→∞

cl = c. (2.9)

and define a function

y(t) = −ck + x(t), t ∈ (tk, tk+1], k ∈ N.

We will prove that y(t) is non-increasing and bounded on [t0,+∞). From the
definition of y(t), we have

y(tk) = −ck−1 + x(tk) = −ck−1 − [x(t+k )− x(tk)] + x(t+k )

= −ck + x(t+k ) ≥ −ck + x(tk+1) = y(tk+1), k ∈ N.

Now, for any t0 < a < b < +∞, if there is some k such that a, b ∈ (tk, tk+1], then

y(a) = −ck + x(a) ≥ −ck + x(b) = y(b).

If there exist m, k ∈ N such that 0 < m < k and a ∈ (tm, tm+1], b ∈ (tk, tk+1],
then from the non-increasing nature of x(t) on (tk, tk+1] and that y(tk) ≥ y(tk+1)
we have

y(a) = −cm + x(a) ≥ −cm + x(tm+1) = y(tm+1)
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≥ y(tk) = −ck−1 + x(tk) = −ck−1 − [x(t+k )− x(tk)] + x(t+k )

= −ck + x(t+k ) ≥ −ck + x(b) = y(b).

Hence, y(t) is non-increasing on [t0,+∞). On the other hand, (2.9) and the bounded
nature of x(t) imply that y(t) is bounded on [t0,+∞). Therefore, the limt→∞ y(t) =
A exists and hence the limt→∞ x(t) = α exists and α = A + c ≥ 0.

Finally, we prove that α = 0. If α > 0, then there exists T > t0 such that
x(t− τ) ≥ α

2 for t ≥ T . Thus

x(n)(t) = −p(t)x(t− τ) ≤ −α

2
p(t),

and therefore, ∫ t

tk

x(n)(s)sn−2ds ≤ −α

2

∫ t

tk

p(s)sn−2ds,

where t ∈ (tk, tk+1].
The remainder of the proof is similar to that of Theorem 2.5 with L = 1 and is

omitted. The proof is completed. �

We remark that the Theorem 2.6 is an extension of the result in [8].
For the next theorem we assume

(H5) There exists a sequence {tkm
}∞m=1 such that∫ tkm

tkm−τ

(tkm − s)n−1p(s)ds > (n− 1)!,

Theorem 2.7. Suppose that (H1)-(H5) hold and that n is odd. Then all solutions
of (1.5) are oscillatory.

Proof. Suppose on the contrary that (1.5) has a non-oscillatory solution x(t). With-
out loss of generality, we may assume that x(t) > 0 for t ≥ t0−τ and {tkm

} = {tk}.
Lemma 2.3 suggests that, for sufficiently large t, one of the statements (i) or (ii)

in Theorem 2.6 is true. If (i) is true, then one can prove the required conclusion
in a similar way as the proof of Theorem 2.5. So only the case (ii) need to be
considered.

Since tk− tk−1 > 3τ , for s ∈ [tk− τ, tk), we have s− τ ∈ (tk−1 + τ, tk− τ). Using
the Taylor formula and (ii), we obtain

x(n)(s) = −p(s)x(s− τ)

= −p(s)
[
x(tk − τ) + x′(tk − τ)(s− tk) +

1
2
x′′(tk − τ)(s− tk)2

+ . . .
x(n−1)(tk − τ)

(n− 1)!
(s− tk)n−1 +

x(n)(ξ)
n!

(s− tk)n
]

= −p(s)
[
x(tk − τ)− x′(tk − τ)(tk − s) +

1
2
x′′(tk − τ)(tk − s)2 . . .

+
x(n−1)(tk − τ)

(n− 1)!
(tk − s)n−1 − x(n)(ξ)

n!
(tk − s)n

]
≤ −p(s)

x(n−1)(tk − τ)
(n− 1)!

(tk − s)n−1,
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where ξ ∈ (s− τ, tk − τ). Integrating both sides of the above inequality from tk − τ
to tk,

x(n−1)(tk)− x(n−1)(tk − τ) ≤ −x(n−1)(tk − τ)
(n− 1)!

∫ tk

tk−τ

(tk − s)n−1p(s)ds.

Since x(n−1)(tk) > 0,

−x(n−1)(tk − τ) ≤ −x(n−1)(tk − τ)
(n− 1)!

∫ tk

tk−τ

(tk − s)n−1p(s)ds,

or

1 ≥ 1
(n− 1)!

∫ tk

tk−τ

(tk − s)n−1p(s)ds,∫ tk

tk−τ

(tk − s)n−1p(s)ds ≤ (n− 1)!

which contradicts (H5). So every solution of (1.5) is oscillatory. �

Corollary 2.8. Assume that
(i) (H1) holds;
(ii) a

(i)
k ≥ 1,

∏+∞
k=1 bk < +∞, i = 0, 1, 2, . . . , n− 1;

(iii)
∫ +∞

tn−2p(t)dt = +∞.
Then the following statements are true: (a) If n is even, then every solution of
(1.5) is oscillatory. (b) If n is odd, then every non-oscillatory solution of (1.5)
converges to zero.

Proof. It is clear that condition a
(i)
k ≥ 1 implies that (H2) and (H3), and that∏+∞

k=1 bk < +∞ yields that (2.7). (ii) and (iii) yield (H4). Thus, the required
conclusion comes out immediately. �

Corollary 2.9. Assume that (H1), (H2), (H3) hold and there exist an integer
K ≥ 0 and a constant α ≥ 0 such that 1

bk
≥ ( tk+1

tk
)α for k ≥ K, where bi =

max{a(1.5)
i , a

(2)
i , . . . a

(n−1)
i }. If

∫ +∞
tn−2+αp(t)dt = +∞, then the following state-

ments are true: (a) If n is even,then every solution of (1.5) is oscillatory. (b) If n
is odd and (2.7) is satisfied,then every non-oscillatory solution of (1.5) converges
to zero.

Proof. Without loss of generality, assume that K = 0. By the assumption of
Corollary 2.9, we have

1
b1b2 . . . bk

∫ tk+1

tk

tn−2p(t)dt≥(
t2
t1

)α(
t3
t2

)α . . . (
tk+1

tk
)α

∫ tk+1

tk

tn−2p(t)dt

= (
tk+1

t1
)α

∫ tk+1

tk

tn−2p(t)dt

≥ 1
tα1

∫ tk+1

tk

tn−2+αp(t)dt,

and∫ t1

t0

tn−2p(t)dt +
1
b1

∫ t1

t0

tn−2p(t)dt + · · ·+ 1
b1b2 . . . bk

∫ tk+1

tk

tn−2p(t)dt
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≥ 1
tα1

∫ t1

t0

tn−2+αp(t)dt +
1
tα1

∫ t2

t1

tn−2+αp(t)dt + · · ·+ 1
tα1

∫ tk+1

tk

tn−2+αp(t)dt

=
1
tα1

∫ tk+1

t0

tn−2+αp(t)dt → +∞ as k → +∞.

This implies that (H4) holds and the required conclusion thus comes from Theorem
2.5 and Theorem 2.6. �

Corollary 2.10. Assume that (H1) holds and a
(i)
k ≥ 1, i = 1, 2, . . . , n − 1, k =

1, 2, . . . . Furthermore, there exist an integer K ≥ 0 and a constant α < 0 such that
1
bk
≥ ( tk+1

tk
)α for k ≥ K. If

+∞∑
k=1

tαk+1

∫ tk+1

tk

tn−2p(t)dt = +∞,

then the following statements are true: (a) If n is even, then every solution of
(1.5) is oscillatory. (b) If n is odd and (2.7) is satisfied, then every non-oscillatory
solution of (1.5) converges to zero.

Proof. We proceed as in the proof of Corollary 2.9 and obtain that

1
b1b2 . . . bk

∫ tk+1

tk

tn−2p(t)dt ≥ (
tk+1

t1
)α

∫ tk+1

tk

tn−2p(t)dt.

Then ∫ t1

t0

tn−2p(t)dt +
1
b1

∫ t2

t1

tn−2p(t)dt + · · ·+ 1
b1b2 . . . bk

∫ tk+1

tk

tn−2p(t)dt

≥ 1
tα1

+∞∑
k=1

tαk+1

∫ tk+1

tk

tn−2p(t)dt = +∞.

By Theorem 2.5 and Theorem 2.6, the required result follows. �

3. Examples

The following examples illustrate how the results can be applied in practice.

Example 3.1. Consider the impulsive delay differential equation

x(6)(t) +
2t + 1

t6
x(t− 1

5
) = 0, t 6= k, k = 1, 2, . . .

x(i)(k+) = 2k√
2x(i)(k), i = 0, 1, . . . , 5; k = 1, 2, . . .

(3.1)

where a
(i)
k = 2k√

2 = bk, i = 0, 1, . . . 5, k = 1, 2, . . . ; p(t) = 2t+1
t6 . One can show easily

that
∏+∞

k=1 bk = 2 and
∫ +∞

t4p(t)dt = +∞. By Corollary 2.8, every solution of
equation (3.1) is oscillatory.

Example 3.2. Consider the impulsive delay differential equation

x(5)(t) +
1
t4

x(t− 1
4
) = 0, t 6= k, k = 1, 2, . . .

x(i)(k+) = (1 + c2k

)x(i)(k), i = 0, 1, 2, . . . , 4; k = 1, 2, . . . ,

(3.2)

where c is a constant, 0 < c < 1. bk = a
(i)
k = 1 + c2k

, i = 0, 1, 2, 3, 4; k =
1, 2, . . . and p(t) = 1

t4 . By simple calculation, we obtain limk→+∞ b1b2 . . . bk =
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1
1−c ,

∫ +∞
t3p(t)dt = +∞. It follows from Corollary 2.8 that every non-oscillatory

solution of equation (3.2) tends to zero.

Example 3.3. Consider the impulsive delay differential equation

x(10)(t) + (1/t
17
2 )x(t− 0.5) = 0, t 6= k2, k = 1, 2, . . .

x(i)(k+) = ((k + 1)/k)x(i)(k), i = 0, 1, . . . , 9; k = 1, 2, . . .
(3.3)

where bk = a
(i)
k = k+1

k , i = 0, 1, . . . , 9; k = 1, 2, . . . ; p(t) = 1/t
17
2 . Let α = − 1

2 , then

1
bk

=
k + 1

k
= (

tk+1

tk
)α.

Furthermore,
+∞∑
k=1

tαk+1

∫ tk+1

tk

t8p(t)dt =
1
2

+∞∑
k=1

1
k + 1

= +∞.

Thus, by Corollary 2.10, all the solutions of equation (E3) are oscillatory.

Example 3.4. Consider the impulsive delay differential equation

x(3)(t) + (2 +
1
t2

)x(t− 1
4
) = 0, t 6= k, k = 1, 2, . . .

x(i)(k+) = ((k + 1)/k)x(i)(k),

x(0)(k+) = x(0)(k), i = 1, 2; k = 1, 2, . . .

(3.4)

where a
(0)
k = 1, bk = a

(i)
k = k+1

k , i = 1, 2, k = 1, 2, . . . , p(t) = 2 + 1
t2 . A simple

calculation leads to
+∞∑
k=1

1
b1b2 . . . bk

∫ k+1

k

sp(s)ds =
+∞∑
k=1

1
k + 1

∫ k+1

k

(2s +
1
s
)ds ≥

+∞∑
k=1

2k + 1
k + 1

= +∞,

∫ t

t− 1
3

(t− s)2p(s)ds ≥ 2
∫ t

t− 1
3

(t− s)2ds =
4
3
t2 − 8

9
+

2
27

→ +∞(t → +∞) .

Thus, (H1)–(H5) hold. By Theorem 2.7, every solution of equation (3.4) is oscilla-
tory.
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